Abstract

Electron accumulation in transparent conductive oxides (TCOs), when driven by a gate voltage, is capable of inducing extremely strong electro-optic absorption at the telecommunication wavelength window due to the epsilon-near-zero (ENZ) effect and various waveguide modulators have been proposed in recent years. This paper conducts a comparative analysis of TCO modulators by reviewing several representative designs based on the uniform concentration accumulated carrier model and the classical continuous carrier distribution model. We also apply the quantum moment model to analyze the free carrier distribution of the TCO based metal-oxide-semiconductor (MOS) capacitor for the first time, and reveal significantly different device physics compared with previous simulation models. The quantum moment model predicts a much higher driving voltage in order to turn the TCO materials into ENZ and a stronger modulation strength compared with the classical model. Especially, the requirement of the higher gate voltage brings a great challenge to the insulator layer as the electric field in the insulator is exceeding the breakdown strength, which raises the concern of reliability. In order to evaluate the accuracy of different models, we compare the simulation results with two of the most recent experimental papers and show that the quantum model has a better match in terms of the electro-absorption rate and the differential driving voltage. However, the quantum moment model still cannot explain some other experimental results, which may be induced by different modulation mechanisms.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide

Qian Gao, Erwen Li, and Alan X. Wang
Photon. Res. 6(4) 277-281 (2018)

Waveguide-based electro-absorption modulator performance: comparative analysis

Rubab Amin, Jacob B. Khurgin, and Volker J. Sorger
Opt. Express 26(12) 15445-15470 (2018)

Compact epsilon-near-zero silicon photonic phase modulators

Isak C. Reines, Michael G. Wood, Ting S. Luk, Darwin K. Serkland, and Salvatore Campione
Opt. Express 26(17) 21594-21605 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
    [Crossref]
  2. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  3. J. F. Wager, “Applied physics. Transparent electronics,” Science 300(5623), 1245–1246 (2003).
    [Crossref] [PubMed]
  4. T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
    [Crossref]
  5. E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
    [Crossref] [PubMed]
  6. I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
    [Crossref]
  7. M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
    [Crossref] [PubMed]
  8. J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
    [Crossref] [PubMed]
  9. N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
    [Crossref]
  10. J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
    [Crossref] [PubMed]
  11. Y. Yang, K. Kelley, E. Sachet, S. Campione, T. S. Luk, J. P. Maria, M. B. Sinclair, and I. Brener, “Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber,” Nat. Photonics 11(6), 390–395 (2017).
    [Crossref]
  12. Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
    [Crossref] [PubMed]
  13. E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultra-compact silicon-conductive oxide nano-cavity modulator with 0.02 lambda-cubic active volume,” Nano Lett. 18(2), 1075–1081 (2018).
  14. S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, and G. A. Keeler, “Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide,” IEEE Photonics J. 9(4), 1–7 (2017).
    [Crossref]
  15. A. P. Vasudev, J. H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material,” Opt. Express 21(22), 26387–26397 (2013).
    [Crossref] [PubMed]
  16. J. Baek, J. B. You, and K. Yu, “Free-carrier electro-refraction modulation based on a silicon slot waveguide with ITO,” Opt. Express 23(12), 15863–15876 (2015).
    [Crossref] [PubMed]
  17. S. Zhu, G. Q. Lo, and D. L. Kwong, “Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration,” Opt. Express 22(15), 17930–17947 (2014).
    [Crossref] [PubMed]
  18. M. Ayata, Y. Nakano, and T. Tanemura, “Silicon rib waveguide electro-absorption optical modulator using transparent conductive oxide bilayer,” Jpn. J. Appl. Phys. 55(4), 042201 (2016).
    [Crossref]
  19. H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 192–198 (2015).
    [Crossref]
  20. Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photonics J. 4(3), 735–740 (2012).
    [Crossref]
  21. V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
    [Crossref] [PubMed]
  22. A. O. Zaki, K. Kirah, and M. A. Swillam, “Hybrid plasmonic electro-optical modulator,” Appl. Phys., A Mater. Sci. Process. 122(4), 473 (2016).
    [Crossref]
  23. C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photonics J. 5(4), 2202411 (2013).
    [Crossref]
  24. U. Koch, C. Hössbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photonics J. 8(1), 1–13 (2016).
    [Crossref]
  25. A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
    [Crossref] [PubMed]
  26. G. Sinatkas, A. Pitilakis, D. C. Zografopoulos, R. Beccherelli, and E. E. Kriezis, “Transparent conducting oxide electro-optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model,” J. Appl. Phys. 121(2), 023109 (2017).
    [Crossref]
  27. H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
    [Crossref] [PubMed]
  28. V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
    [Crossref]
  29. M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler, “Gigahertz speed operation of epsilon-near-zero silicon photonic modulators,” Optica 5(3), 233–236 (2018).
    [Crossref]
  30. Z. Lu, K. Shi, and P. Yin, “Nanoscale field effect optical modulators based on depletion of epsilon-near-zero films,” Opt. Commun. 381, 18–23 (2016).
    [Crossref]
  31. Q. Gao, E. Li, and A. X. Wang, “Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide,” Photon. Res. 6(4), 277–281 (2018).
    [Crossref]
  32. R. Resta, “Thomas-Fermi dielectric screening in semiconductors,” Phys. Rev. B 16(6), 2717–2722 (1977).
    [Crossref]
  33. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  34. J. Yota, H. Shen, and R. Ramanathan, “Characterization of atomic layer deposition HfO2, Al2O3, and plasma-enhanced chemical vapor deposition Si3N4 as metal–insulator–metal capacitor dielectric for GaAs HBT technology,” J. Vac. Sci. Technol. A 31(1), 01A134 (2013).
    [Crossref]
  35. A. Wettstein, A. Schenk, and W. Fichtner, “Quantum device-simulation with the density-gradient model on unstructured grids,” IEEE Trans. Electron Dev. 48(2), 279–284 (2001).
    [Crossref]
  36. W. Hänsch, T. Vogelsang, R. Kircher, and M. Orlowski, “Carrier transport near the Si/SiO2 interface of a MOSFET,” Solid-State Electron. 32(10), 839–849 (1989).
    [Crossref]
  37. Silvaco Inc, ATLAS user’s manual—Device simulator software (Silvaco Inc. 2013).
  38. H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
    [Crossref]
  39. G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, “Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces,” Adv. Mater. Phys. Chem. 2(2), 59 (2012).
    [Crossref]
  40. I. Hamberg and C. G. Granqvist, “Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows,” J. Appl. Phys. 60(11), R123–R160 (1986).
    [Crossref]
  41. J. R. Zhou and D. K. Ferry, “Simulation of Ultra-small GaAs MESFET Using Quantum Moment Equations,” IEEE Trans. Electron Dev. 39(3), 473–478 (1992).
    [Crossref]
  42. A. Wettstein, A. Schenk, and W. Fichtner, “Quantum device-simulation with the density gradient model on unstructured grids,” IEEE Trans. Electron Dev. 48(2), 279–284 (2001).
    [Crossref]
  43. C. Hoessbacher, Y. Fedoryshyn, A. Emboras, A. Melikyan, M. Kohl, D. Hillerkuss, C. Hafner, and J. Leuthold, “The plasmonic memristor: a latching optical switch,” Optica 1(4), 198–202 (2014).
    [Crossref]
  44. K. Thyagarajan, R. Sokhoyan, L. Zornberg, and H. A. Atwater, “Millivolt modulation of plasmonic metasurface optical response via ionic conductance,” Adv. Mater. 29(31), 1701044 (2017).
    [PubMed]
  45. B. N. Behnken, G. Karunasiri, D. R. Chamberlin, P. R. Robrish, and J. Faist, “Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared microbolometer camera,” Opt. Lett. 33(5), 440–442 (2008).
    [Crossref] [PubMed]
  46. D. Bohm, “A suggested interpretation of the quantum theory in terms of” hidden” variables. I,” Phys. Rev. 85(2), 166–179 (1952).
    [Crossref]
  47. K. F. M. G. Galloway and T. J. Russell, “A simple model for separating interface and oxide charge effects in MOS device characteristics,” IEEE Trans. Nucl. Sci. 36(6), 1497–1501 (1984).
    [Crossref]
  48. P. J. McWhorter and P. S. Winokur, “Simple technique for separating the effects of interface traps and trapped‐oxide charge in metal‐oxide‐semiconductor transistors,” Appl. Phys. Lett. 48(2), 133–135 (1986).
    [Crossref]
  49. R. Castagne and A. Vapaille, “Description of the SiO2/Si interface properties by means of very low frequency MOS capacitance measurements,” Surf. Sci. 28(1), 157–193 (1971).
    [Crossref]

2018 (3)

2017 (5)

G. Sinatkas, A. Pitilakis, D. C. Zografopoulos, R. Beccherelli, and E. E. Kriezis, “Transparent conducting oxide electro-optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model,” J. Appl. Phys. 121(2), 023109 (2017).
[Crossref]

S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, and G. A. Keeler, “Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

Y. Yang, K. Kelley, E. Sachet, S. Campione, T. S. Luk, J. P. Maria, M. B. Sinclair, and I. Brener, “Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber,” Nat. Photonics 11(6), 390–395 (2017).
[Crossref]

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

K. Thyagarajan, R. Sokhoyan, L. Zornberg, and H. A. Atwater, “Millivolt modulation of plasmonic metasurface optical response via ionic conductance,” Adv. Mater. 29(31), 1701044 (2017).
[PubMed]

2016 (5)

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

M. Ayata, Y. Nakano, and T. Tanemura, “Silicon rib waveguide electro-absorption optical modulator using transparent conductive oxide bilayer,” Jpn. J. Appl. Phys. 55(4), 042201 (2016).
[Crossref]

U. Koch, C. Hössbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photonics J. 8(1), 1–13 (2016).
[Crossref]

A. O. Zaki, K. Kirah, and M. A. Swillam, “Hybrid plasmonic electro-optical modulator,” Appl. Phys., A Mater. Sci. Process. 122(4), 473 (2016).
[Crossref]

Z. Lu, K. Shi, and P. Yin, “Nanoscale field effect optical modulators based on depletion of epsilon-near-zero films,” Opt. Commun. 381, 18–23 (2016).
[Crossref]

2015 (5)

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 192–198 (2015).
[Crossref]

J. Baek, J. B. You, and K. Yu, “Free-carrier electro-refraction modulation based on a silicon slot waveguide with ITO,” Opt. Express 23(12), 15863–15876 (2015).
[Crossref] [PubMed]

J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

2014 (4)

S. Zhu, G. Q. Lo, and D. L. Kwong, “Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration,” Opt. Express 22(15), 17930–17947 (2014).
[Crossref] [PubMed]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

C. Hoessbacher, Y. Fedoryshyn, A. Emboras, A. Melikyan, M. Kohl, D. Hillerkuss, C. Hafner, and J. Leuthold, “The plasmonic memristor: a latching optical switch,” Optica 1(4), 198–202 (2014).
[Crossref]

2013 (5)

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photonics J. 5(4), 2202411 (2013).
[Crossref]

V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
[Crossref] [PubMed]

J. Yota, H. Shen, and R. Ramanathan, “Characterization of atomic layer deposition HfO2, Al2O3, and plasma-enhanced chemical vapor deposition Si3N4 as metal–insulator–metal capacitor dielectric for GaAs HBT technology,” J. Vac. Sci. Technol. A 31(1), 01A134 (2013).
[Crossref]

A. P. Vasudev, J. H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material,” Opt. Express 21(22), 26387–26397 (2013).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

2012 (4)

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photonics J. 4(3), 735–740 (2012).
[Crossref]

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
[Crossref] [PubMed]

G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, “Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces,” Adv. Mater. Phys. Chem. 2(2), 59 (2012).
[Crossref]

2011 (1)

2010 (2)

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

2008 (1)

2005 (1)

T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
[Crossref]

2003 (1)

J. F. Wager, “Applied physics. Transparent electronics,” Science 300(5623), 1245–1246 (2003).
[Crossref] [PubMed]

2001 (2)

A. Wettstein, A. Schenk, and W. Fichtner, “Quantum device-simulation with the density-gradient model on unstructured grids,” IEEE Trans. Electron Dev. 48(2), 279–284 (2001).
[Crossref]

A. Wettstein, A. Schenk, and W. Fichtner, “Quantum device-simulation with the density gradient model on unstructured grids,” IEEE Trans. Electron Dev. 48(2), 279–284 (2001).
[Crossref]

1999 (1)

H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

1992 (1)

J. R. Zhou and D. K. Ferry, “Simulation of Ultra-small GaAs MESFET Using Quantum Moment Equations,” IEEE Trans. Electron Dev. 39(3), 473–478 (1992).
[Crossref]

1989 (1)

W. Hänsch, T. Vogelsang, R. Kircher, and M. Orlowski, “Carrier transport near the Si/SiO2 interface of a MOSFET,” Solid-State Electron. 32(10), 839–849 (1989).
[Crossref]

1986 (2)

I. Hamberg and C. G. Granqvist, “Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows,” J. Appl. Phys. 60(11), R123–R160 (1986).
[Crossref]

P. J. McWhorter and P. S. Winokur, “Simple technique for separating the effects of interface traps and trapped‐oxide charge in metal‐oxide‐semiconductor transistors,” Appl. Phys. Lett. 48(2), 133–135 (1986).
[Crossref]

1984 (1)

K. F. M. G. Galloway and T. J. Russell, “A simple model for separating interface and oxide charge effects in MOS device characteristics,” IEEE Trans. Nucl. Sci. 36(6), 1497–1501 (1984).
[Crossref]

1977 (1)

R. Resta, “Thomas-Fermi dielectric screening in semiconductors,” Phys. Rev. B 16(6), 2717–2722 (1977).
[Crossref]

1971 (1)

R. Castagne and A. Vapaille, “Description of the SiO2/Si interface properties by means of very low frequency MOS capacitance measurements,” Surf. Sci. 28(1), 157–193 (1971).
[Crossref]

1952 (1)

D. Bohm, “A suggested interpretation of the quantum theory in terms of” hidden” variables. I,” Phys. Rev. 85(2), 166–179 (1952).
[Crossref]

Alam, M. Z.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Alexander, N. J.

G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, “Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces,” Adv. Mater. Phys. Chem. 2(2), 59 (2012).
[Crossref]

Atwater, H. A.

K. Thyagarajan, R. Sokhoyan, L. Zornberg, and H. A. Atwater, “Millivolt modulation of plasmonic metasurface optical response via ionic conductance,” Adv. Mater. 29(31), 1701044 (2017).
[PubMed]

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Ayata, M.

M. Ayata, Y. Nakano, and T. Tanemura, “Silicon rib waveguide electro-absorption optical modulator using transparent conductive oxide bilayer,” Jpn. J. Appl. Phys. 55(4), 042201 (2016).
[Crossref]

Babicheva, V. E.

Baek, J.

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Beccherelli, R.

G. Sinatkas, A. Pitilakis, D. C. Zografopoulos, R. Beccherelli, and E. E. Kriezis, “Transparent conducting oxide electro-optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model,” J. Appl. Phys. 121(2), 023109 (2017).
[Crossref]

Behnken, B. N.

Bohm, D.

D. Bohm, “A suggested interpretation of the quantum theory in terms of” hidden” variables. I,” Phys. Rev. 85(2), 166–179 (1952).
[Crossref]

Boltasseva, A.

Boyd, R. W.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Brener, I.

Y. Yang, K. Kelley, E. Sachet, S. Campione, T. S. Luk, J. P. Maria, M. B. Sinclair, and I. Brener, “Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber,” Nat. Photonics 11(6), 390–395 (2017).
[Crossref]

Brongersma, M. L.

J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

A. P. Vasudev, J. H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material,” Opt. Express 21(22), 26387–26397 (2013).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Burgos, S. P.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Campione, S.

M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler, “Gigahertz speed operation of epsilon-near-zero silicon photonic modulators,” Optica 5(3), 233–236 (2018).
[Crossref]

S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, and G. A. Keeler, “Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

Y. Yang, K. Kelley, E. Sachet, S. Campione, T. S. Luk, J. P. Maria, M. B. Sinclair, and I. Brener, “Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber,” Nat. Photonics 11(6), 390–395 (2017).
[Crossref]

Capasso, F.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Capretti, A.

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 192–198 (2015).
[Crossref]

Castagne, R.

R. Castagne and A. Vapaille, “Description of the SiO2/Si interface properties by means of very low frequency MOS capacitance measurements,” Surf. Sci. 28(1), 157–193 (1971).
[Crossref]

Chamberlin, D. R.

Chander, K.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Chen, R. T.

E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultra-compact silicon-conductive oxide nano-cavity modulator with 0.02 lambda-cubic active volume,” Nano Lett. 18(2), 1075–1081 (2018).

Chrisey, D. B.

H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Dal Negro, L.

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 192–198 (2015).
[Crossref]

De Leon, I.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

DeVault, C.

Diest, K.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Efstathiadis, H.

G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, “Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces,” Adv. Mater. Phys. Chem. 2(2), 59 (2012).
[Crossref]

Emboras, A.

Engheta, N.

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

Faist, J.

Fedoryshyn, Y.

Feigenbaum, E.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Ferrera, M.

Ferry, D. K.

J. R. Zhou and D. K. Ferry, “Simulation of Ultra-small GaAs MESFET Using Quantum Moment Equations,” IEEE Trans. Electron Dev. 39(3), 473–478 (1992).
[Crossref]

Fichtner, W.

A. Wettstein, A. Schenk, and W. Fichtner, “Quantum device-simulation with the density gradient model on unstructured grids,” IEEE Trans. Electron Dev. 48(2), 279–284 (2001).
[Crossref]

A. Wettstein, A. Schenk, and W. Fichtner, “Quantum device-simulation with the density-gradient model on unstructured grids,” IEEE Trans. Electron Dev. 48(2), 279–284 (2001).
[Crossref]

Galloway, K. F. M. G.

K. F. M. G. Galloway and T. J. Russell, “A simple model for separating interface and oxide charge effects in MOS device characteristics,” IEEE Trans. Nucl. Sci. 36(6), 1497–1501 (1984).
[Crossref]

Gao, Q.

Q. Gao, E. Li, and A. X. Wang, “Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide,” Photon. Res. 6(4), 277–281 (2018).
[Crossref]

E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultra-compact silicon-conductive oxide nano-cavity modulator with 0.02 lambda-cubic active volume,” Nano Lett. 18(2), 1075–1081 (2018).

Geib, K. M.

S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, and G. A. Keeler, “Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

Gilmore, C. M.

H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Granqvist, C. G.

I. Hamberg and C. G. Granqvist, “Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows,” J. Appl. Phys. 60(11), R123–R160 (1986).
[Crossref]

Hafner, C.

U. Koch, C. Hössbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photonics J. 8(1), 1–13 (2016).
[Crossref]

C. Hoessbacher, Y. Fedoryshyn, A. Emboras, A. Melikyan, M. Kohl, D. Hillerkuss, C. Hafner, and J. Leuthold, “The plasmonic memristor: a latching optical switch,” Optica 1(4), 198–202 (2014).
[Crossref]

Haldar, P.

G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, “Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces,” Adv. Mater. Phys. Chem. 2(2), 59 (2012).
[Crossref]

Hamberg, I.

I. Hamberg and C. G. Granqvist, “Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows,” J. Appl. Phys. 60(11), R123–R160 (1986).
[Crossref]

Hänsch, W.

W. Hänsch, T. Vogelsang, R. Kircher, and M. Orlowski, “Carrier transport near the Si/SiO2 interface of a MOSFET,” Solid-State Electron. 32(10), 839–849 (1989).
[Crossref]

Harvey, J. L.

G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, “Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces,” Adv. Mater. Phys. Chem. 2(2), 59 (2012).
[Crossref]

Hillerkuss, D.

Hoessbacher, C.

Horwitz, J. S.

H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Hössbacher, C.

U. Koch, C. Hössbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photonics J. 8(1), 1–13 (2016).
[Crossref]

Huang, C.

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photonics J. 5(4), 2202411 (2013).
[Crossref]

Ihlefeld, J.

S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, and G. A. Keeler, “Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kafafi, Z. H.

H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Kang, J. H.

J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

A. P. Vasudev, J. H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material,” Opt. Express 21(22), 26387–26397 (2013).
[Crossref] [PubMed]

Karunasiri, G.

Kats, M. A.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Keeler, G. A.

M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler, “Gigahertz speed operation of epsilon-near-zero silicon photonic modulators,” Optica 5(3), 233–236 (2018).
[Crossref]

S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, and G. A. Keeler, “Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

Kelley, K.

Y. Yang, K. Kelley, E. Sachet, S. Campione, T. S. Luk, J. P. Maria, M. B. Sinclair, and I. Brener, “Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber,” Nat. Photonics 11(6), 390–395 (2017).
[Crossref]

Kim, H.

H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Kim, J.

Kinsey, N.

Kirah, K.

A. O. Zaki, K. Kirah, and M. A. Swillam, “Hybrid plasmonic electro-optical modulator,” Appl. Phys., A Mater. Sci. Process. 122(4), 473 (2016).
[Crossref]

Kircher, R.

W. Hänsch, T. Vogelsang, R. Kircher, and M. Orlowski, “Carrier transport near the Si/SiO2 interface of a MOSFET,” Solid-State Electron. 32(10), 839–849 (1989).
[Crossref]

Klamkin, J.

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 192–198 (2015).
[Crossref]

Koch, U.

U. Koch, C. Hössbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photonics J. 8(1), 1–13 (2016).
[Crossref]

Kohl, M.

Kong, J.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
[Crossref] [PubMed]

Kriesch, A.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Kriezis, E. E.

G. Sinatkas, A. Pitilakis, D. C. Zografopoulos, R. Beccherelli, and E. E. Kriezis, “Transparent conducting oxide electro-optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model,” J. Appl. Phys. 121(2), 023109 (2017).
[Crossref]

Kwong, D. L.

Lamond, R. J.

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photonics J. 5(4), 2202411 (2013).
[Crossref]

Lanzillotti-Kimura, N. D.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Lavrinenko, A. V.

Lee, C.

G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, “Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces,” Adv. Mater. Phys. Chem. 2(2), 59 (2012).
[Crossref]

Lee, H. W.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Leuthold, J.

U. Koch, C. Hössbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photonics J. 8(1), 1–13 (2016).
[Crossref]

C. Hoessbacher, Y. Fedoryshyn, A. Emboras, A. Melikyan, M. Kohl, D. Hillerkuss, C. Hafner, and J. Leuthold, “The plasmonic memristor: a latching optical switch,” Optica 1(4), 198–202 (2014).
[Crossref]

Li, E.

Q. Gao, E. Li, and A. X. Wang, “Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide,” Photon. Res. 6(4), 277–281 (2018).
[Crossref]

E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultra-compact silicon-conductive oxide nano-cavity modulator with 0.02 lambda-cubic active volume,” Nano Lett. 18(2), 1075–1081 (2018).

Li, Z. R.

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photonics J. 5(4), 2202411 (2013).
[Crossref]

Liberal, I.

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

Liu, X.

J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

A. P. Vasudev, J. H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material,” Opt. Express 21(22), 26387–26397 (2013).
[Crossref] [PubMed]

Lo, G. Q.

Loncar, M.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Lu, Z.

Z. Lu, K. Shi, and P. Yin, “Nanoscale field effect optical modulators based on depletion of epsilon-near-zero films,” Opt. Commun. 381, 18–23 (2016).
[Crossref]

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photonics J. 4(3), 735–740 (2012).
[Crossref]

Luk, T. S.

M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler, “Gigahertz speed operation of epsilon-near-zero silicon photonic modulators,” Optica 5(3), 233–236 (2018).
[Crossref]

S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, and G. A. Keeler, “Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

Y. Yang, K. Kelley, E. Sachet, S. Campione, T. S. Luk, J. P. Maria, M. B. Sinclair, and I. Brener, “Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber,” Nat. Photonics 11(6), 390–395 (2017).
[Crossref]

Ma, R. M.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Maria, J. P.

Y. Yang, K. Kelley, E. Sachet, S. Campione, T. S. Luk, J. P. Maria, M. B. Sinclair, and I. Brener, “Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber,” Nat. Photonics 11(6), 390–395 (2017).
[Crossref]

Mattoussi, H.

H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

McWhorter, P. J.

P. J. McWhorter and P. S. Winokur, “Simple technique for separating the effects of interface traps and trapped‐oxide charge in metal‐oxide‐semiconductor transistors,” Appl. Phys. Lett. 48(2), 133–135 (1986).
[Crossref]

Melikyan, A.

Minami, T.

T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
[Crossref]

Murata, H.

H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Naik, G. V.

Nakano, Y.

M. Ayata, Y. Nakano, and T. Tanemura, “Silicon rib waveguide electro-absorption optical modulator using transparent conductive oxide bilayer,” Jpn. J. Appl. Phys. 55(4), 042201 (2016).
[Crossref]

Niegemann, J.

U. Koch, C. Hössbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photonics J. 8(1), 1–13 (2016).
[Crossref]

Orlowski, M.

W. Hänsch, T. Vogelsang, R. Kircher, and M. Orlowski, “Carrier transport near the Si/SiO2 interface of a MOSFET,” Solid-State Electron. 32(10), 839–849 (1989).
[Crossref]

Pala, R.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Papadakis, G.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Parameswaran, S.

M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler, “Gigahertz speed operation of epsilon-near-zero silicon photonic modulators,” Optica 5(3), 233–236 (2018).
[Crossref]

S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, and G. A. Keeler, “Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

Park, J.

J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

A. P. Vasudev, J. H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material,” Opt. Express 21(22), 26387–26397 (2013).
[Crossref] [PubMed]

Peschel, U.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Pethuraja, G. G.

G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, “Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces,” Adv. Mater. Phys. Chem. 2(2), 59 (2012).
[Crossref]

Pickus, S. K.

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photonics J. 5(4), 2202411 (2013).
[Crossref]

Pique, A.

H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Pitilakis, A.

G. Sinatkas, A. Pitilakis, D. C. Zografopoulos, R. Beccherelli, and E. E. Kriezis, “Transparent conducting oxide electro-optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model,” J. Appl. Phys. 121(2), 023109 (2017).
[Crossref]

Ramanathan, R.

J. Yota, H. Shen, and R. Ramanathan, “Characterization of atomic layer deposition HfO2, Al2O3, and plasma-enhanced chemical vapor deposition Si3N4 as metal–insulator–metal capacitor dielectric for GaAs HBT technology,” J. Vac. Sci. Technol. A 31(1), 01A134 (2013).
[Crossref]

Resta, R.

R. Resta, “Thomas-Fermi dielectric screening in semiconductors,” Phys. Rev. B 16(6), 2717–2722 (1977).
[Crossref]

Robrish, P. R.

Russell, T. J.

K. F. M. G. Galloway and T. J. Russell, “A simple model for separating interface and oxide charge effects in MOS device characteristics,” IEEE Trans. Nucl. Sci. 36(6), 1497–1501 (1984).
[Crossref]

Sachet, E.

Y. Yang, K. Kelley, E. Sachet, S. Campione, T. S. Luk, J. P. Maria, M. B. Sinclair, and I. Brener, “Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber,” Nat. Photonics 11(6), 390–395 (2017).
[Crossref]

Schenk, A.

A. Wettstein, A. Schenk, and W. Fichtner, “Quantum device-simulation with the density-gradient model on unstructured grids,” IEEE Trans. Electron Dev. 48(2), 279–284 (2001).
[Crossref]

A. Wettstein, A. Schenk, and W. Fichtner, “Quantum device-simulation with the density gradient model on unstructured grids,” IEEE Trans. Electron Dev. 48(2), 279–284 (2001).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Serkland, D. K.

M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler, “Gigahertz speed operation of epsilon-near-zero silicon photonic modulators,” Optica 5(3), 233–236 (2018).
[Crossref]

S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, and G. A. Keeler, “Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

Shalaev, V. M.

Shankar, R.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Shen, H.

J. Yota, H. Shen, and R. Ramanathan, “Characterization of atomic layer deposition HfO2, Al2O3, and plasma-enhanced chemical vapor deposition Si3N4 as metal–insulator–metal capacitor dielectric for GaAs HBT technology,” J. Vac. Sci. Technol. A 31(1), 01A134 (2013).
[Crossref]

Shi, K.

Z. Lu, K. Shi, and P. Yin, “Nanoscale field effect optical modulators based on depletion of epsilon-near-zero films,” Opt. Commun. 381, 18–23 (2016).
[Crossref]

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photonics J. 4(3), 735–740 (2012).
[Crossref]

Sinatkas, G.

G. Sinatkas, A. Pitilakis, D. C. Zografopoulos, R. Beccherelli, and E. E. Kriezis, “Transparent conducting oxide electro-optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model,” J. Appl. Phys. 121(2), 023109 (2017).
[Crossref]

Sinclair, M. B.

Y. Yang, K. Kelley, E. Sachet, S. Campione, T. S. Luk, J. P. Maria, M. B. Sinclair, and I. Brener, “Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber,” Nat. Photonics 11(6), 390–395 (2017).
[Crossref]

Sokhoyan, R.

K. Thyagarajan, R. Sokhoyan, L. Zornberg, and H. A. Atwater, “Millivolt modulation of plasmonic metasurface optical response via ionic conductance,” Adv. Mater. 29(31), 1701044 (2017).
[PubMed]

Song, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Sood, A. K.

G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, “Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces,” Adv. Mater. Phys. Chem. 2(2), 59 (2012).
[Crossref]

Sorger, V. J.

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photonics J. 5(4), 2202411 (2013).
[Crossref]

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Swillam, M. A.

A. O. Zaki, K. Kirah, and M. A. Swillam, “Hybrid plasmonic electro-optical modulator,” Appl. Phys., A Mater. Sci. Process. 122(4), 473 (2016).
[Crossref]

Tanemura, T.

M. Ayata, Y. Nakano, and T. Tanemura, “Silicon rib waveguide electro-absorption optical modulator using transparent conductive oxide bilayer,” Jpn. J. Appl. Phys. 55(4), 042201 (2016).
[Crossref]

Thyagarajan, K.

K. Thyagarajan, R. Sokhoyan, L. Zornberg, and H. A. Atwater, “Millivolt modulation of plasmonic metasurface optical response via ionic conductance,” Adv. Mater. 29(31), 1701044 (2017).
[PubMed]

Vapaille, A.

R. Castagne and A. Vapaille, “Description of the SiO2/Si interface properties by means of very low frequency MOS capacitance measurements,” Surf. Sci. 28(1), 157–193 (1971).
[Crossref]

Vasudev, A. P.

Vogelsang, T.

W. Hänsch, T. Vogelsang, R. Kircher, and M. Orlowski, “Carrier transport near the Si/SiO2 interface of a MOSFET,” Solid-State Electron. 32(10), 839–849 (1989).
[Crossref]

Wager, J. F.

J. F. Wager, “Applied physics. Transparent electronics,” Science 300(5623), 1245–1246 (2003).
[Crossref] [PubMed]

Wang, A. X.

Q. Gao, E. Li, and A. X. Wang, “Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide,” Photon. Res. 6(4), 277–281 (2018).
[Crossref]

E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultra-compact silicon-conductive oxide nano-cavity modulator with 0.02 lambda-cubic active volume,” Nano Lett. 18(2), 1075–1081 (2018).

Wang, Y.

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 192–198 (2015).
[Crossref]

Welser, R. E.

G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, “Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces,” Adv. Mater. Phys. Chem. 2(2), 59 (2012).
[Crossref]

Wendt, J. R.

M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler, “Gigahertz speed operation of epsilon-near-zero silicon photonic modulators,” Optica 5(3), 233–236 (2018).
[Crossref]

S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, and G. A. Keeler, “Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

Wettstein, A.

A. Wettstein, A. Schenk, and W. Fichtner, “Quantum device-simulation with the density-gradient model on unstructured grids,” IEEE Trans. Electron Dev. 48(2), 279–284 (2001).
[Crossref]

A. Wettstein, A. Schenk, and W. Fichtner, “Quantum device-simulation with the density gradient model on unstructured grids,” IEEE Trans. Electron Dev. 48(2), 279–284 (2001).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Winokur, P. S.

P. J. McWhorter and P. S. Winokur, “Simple technique for separating the effects of interface traps and trapped‐oxide charge in metal‐oxide‐semiconductor transistors,” Appl. Phys. Lett. 48(2), 133–135 (1986).
[Crossref]

Wood, M. G.

M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler, “Gigahertz speed operation of epsilon-near-zero silicon photonic modulators,” Optica 5(3), 233–236 (2018).
[Crossref]

S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, and G. A. Keeler, “Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

Yang, Y.

Y. Yang, K. Kelley, E. Sachet, S. Campione, T. S. Luk, J. P. Maria, M. B. Sinclair, and I. Brener, “Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber,” Nat. Photonics 11(6), 390–395 (2017).
[Crossref]

Yao, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Yin, P.

Z. Lu, K. Shi, and P. Yin, “Nanoscale field effect optical modulators based on depletion of epsilon-near-zero films,” Opt. Commun. 381, 18–23 (2016).
[Crossref]

Yota, J.

J. Yota, H. Shen, and R. Ramanathan, “Characterization of atomic layer deposition HfO2, Al2O3, and plasma-enhanced chemical vapor deposition Si3N4 as metal–insulator–metal capacitor dielectric for GaAs HBT technology,” J. Vac. Sci. Technol. A 31(1), 01A134 (2013).
[Crossref]

You, J. B.

Yu, K.

Zaki, A. O.

A. O. Zaki, K. Kirah, and M. A. Swillam, “Hybrid plasmonic electro-optical modulator,” Appl. Phys., A Mater. Sci. Process. 122(4), 473 (2016).
[Crossref]

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
[Crossref] [PubMed]

Zhang, X.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Zhao, H.

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 192–198 (2015).
[Crossref]

Zhao, W.

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photonics J. 4(3), 735–740 (2012).
[Crossref]

Zhou, J. R.

J. R. Zhou and D. K. Ferry, “Simulation of Ultra-small GaAs MESFET Using Quantum Moment Equations,” IEEE Trans. Electron Dev. 39(3), 473–478 (1992).
[Crossref]

Zhu, S.

Zografopoulos, D. C.

G. Sinatkas, A. Pitilakis, D. C. Zografopoulos, R. Beccherelli, and E. E. Kriezis, “Transparent conducting oxide electro-optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model,” J. Appl. Phys. 121(2), 023109 (2017).
[Crossref]

Zornberg, L.

K. Thyagarajan, R. Sokhoyan, L. Zornberg, and H. A. Atwater, “Millivolt modulation of plasmonic metasurface optical response via ionic conductance,” Adv. Mater. 29(31), 1701044 (2017).
[PubMed]

Adv. Mater. (2)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

K. Thyagarajan, R. Sokhoyan, L. Zornberg, and H. A. Atwater, “Millivolt modulation of plasmonic metasurface optical response via ionic conductance,” Adv. Mater. 29(31), 1701044 (2017).
[PubMed]

Adv. Mater. Phys. Chem. (1)

G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, “Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces,” Adv. Mater. Phys. Chem. 2(2), 59 (2012).
[Crossref]

Appl. Phys. Lett. (1)

P. J. McWhorter and P. S. Winokur, “Simple technique for separating the effects of interface traps and trapped‐oxide charge in metal‐oxide‐semiconductor transistors,” Appl. Phys. Lett. 48(2), 133–135 (1986).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

A. O. Zaki, K. Kirah, and M. A. Swillam, “Hybrid plasmonic electro-optical modulator,” Appl. Phys., A Mater. Sci. Process. 122(4), 473 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Zhao, Y. Wang, A. Capretti, L. Dal Negro, and J. Klamkin, “Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 192–198 (2015).
[Crossref]

IEEE Photonics J. (4)

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photonics J. 4(3), 735–740 (2012).
[Crossref]

S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, and G. A. Keeler, “Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide,” IEEE Photonics J. 9(4), 1–7 (2017).
[Crossref]

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photonics J. 5(4), 2202411 (2013).
[Crossref]

U. Koch, C. Hössbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photonics J. 8(1), 1–13 (2016).
[Crossref]

IEEE Trans. Electron Dev. (3)

J. R. Zhou and D. K. Ferry, “Simulation of Ultra-small GaAs MESFET Using Quantum Moment Equations,” IEEE Trans. Electron Dev. 39(3), 473–478 (1992).
[Crossref]

A. Wettstein, A. Schenk, and W. Fichtner, “Quantum device-simulation with the density gradient model on unstructured grids,” IEEE Trans. Electron Dev. 48(2), 279–284 (2001).
[Crossref]

A. Wettstein, A. Schenk, and W. Fichtner, “Quantum device-simulation with the density-gradient model on unstructured grids,” IEEE Trans. Electron Dev. 48(2), 279–284 (2001).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

K. F. M. G. Galloway and T. J. Russell, “A simple model for separating interface and oxide charge effects in MOS device characteristics,” IEEE Trans. Nucl. Sci. 36(6), 1497–1501 (1984).
[Crossref]

J. Appl. Phys. (3)

G. Sinatkas, A. Pitilakis, D. C. Zografopoulos, R. Beccherelli, and E. E. Kriezis, “Transparent conducting oxide electro-optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model,” J. Appl. Phys. 121(2), 023109 (2017).
[Crossref]

I. Hamberg and C. G. Granqvist, “Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows,” J. Appl. Phys. 60(11), R123–R160 (1986).
[Crossref]

H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

J. Vac. Sci. Technol. A (1)

J. Yota, H. Shen, and R. Ramanathan, “Characterization of atomic layer deposition HfO2, Al2O3, and plasma-enhanced chemical vapor deposition Si3N4 as metal–insulator–metal capacitor dielectric for GaAs HBT technology,” J. Vac. Sci. Technol. A 31(1), 01A134 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Ayata, Y. Nakano, and T. Tanemura, “Silicon rib waveguide electro-absorption optical modulator using transparent conductive oxide bilayer,” Jpn. J. Appl. Phys. 55(4), 042201 (2016).
[Crossref]

Nano Lett. (4)

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultra-compact silicon-conductive oxide nano-cavity modulator with 0.02 lambda-cubic active volume,” Nano Lett. 18(2), 1075–1081 (2018).

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref] [PubMed]

Nanophotonics (1)

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

Y. Yang, K. Kelley, E. Sachet, S. Campione, T. S. Luk, J. P. Maria, M. B. Sinclair, and I. Brener, “Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber,” Nat. Photonics 11(6), 390–395 (2017).
[Crossref]

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

Opt. Commun. (1)

Z. Lu, K. Shi, and P. Yin, “Nanoscale field effect optical modulators based on depletion of epsilon-near-zero films,” Opt. Commun. 381, 18–23 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. Express (1)

Optica (3)

Photon. Res. (1)

Phys. Rev. (1)

D. Bohm, “A suggested interpretation of the quantum theory in terms of” hidden” variables. I,” Phys. Rev. 85(2), 166–179 (1952).
[Crossref]

Phys. Rev. B (1)

R. Resta, “Thomas-Fermi dielectric screening in semiconductors,” Phys. Rev. B 16(6), 2717–2722 (1977).
[Crossref]

Phys. Rev. Lett. (1)

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
[Crossref] [PubMed]

Sci. Rep. (2)

J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

J. Park, J. H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5(1), 15754 (2015).
[Crossref] [PubMed]

Science (2)

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

J. F. Wager, “Applied physics. Transparent electronics,” Science 300(5623), 1245–1246 (2003).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
[Crossref]

Solid-State Electron. (1)

W. Hänsch, T. Vogelsang, R. Kircher, and M. Orlowski, “Carrier transport near the Si/SiO2 interface of a MOSFET,” Solid-State Electron. 32(10), 839–849 (1989).
[Crossref]

Surf. Sci. (1)

R. Castagne and A. Vapaille, “Description of the SiO2/Si interface properties by means of very low frequency MOS capacitance measurements,” Surf. Sci. 28(1), 157–193 (1971).
[Crossref]

Other (1)

Silvaco Inc, ATLAS user’s manual—Device simulator software (Silvaco Inc. 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Illustration of the MOS capacitor designs for TCO EA modulators: (a) Au/insulator/TCO, (b)Au/TCO/insulator/Si, and (c)TCO/insulator/Si. Waveguide design may vary in difference references.
Fig. 2
Fig. 2 (a) Schematic and electric potential of the ITO/HfO2/p-Si MOS capacitor; (b) electric potential at the Si/HfO2 interface and the ITO/HfO2 interface using classical and quantum model; (c) total accumulated charge of the MOS capacitor calculated by classical and quantum model; (d) electric potential distribution and (e) carrier concentration distribution under different gate voltages using classical (solid line) and quantum model (dashed line).
Fig. 3
Fig. 3 2-D Electric field distribution of the 2-D waveguides at (a) “ON” and (b) “OFF” state with 1-D zoomed-in view; zoomed-in view of the absolute value (c) and optical field intensity (d) of the MIM waveguide at “OFF” state obtained by 1nm uniform concentration model (green line), quantum model (blue line), and classical model (red line).
Fig. 4
Fig. 4 Simulation and experimental results of the modulation strength as a function of the gate voltage for (a) hybrid plasmonic-silicon ridge waveguide [29] and (b) MIM waveguide [31].

Tables (3)

Tables Icon

Table 1 Comparison of modeling results of TCO EA modulators

Tables Icon

Table 2 Material parameters for the Si and ITO semiconductors

Tables Icon

Table 3 Summary of experimental results of TCO EA modulators

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

C= ε 0 ε r d ox
V=  Q ENZ C =  N ENZ d ACL C
E= V d ox
J n =q D n nqn μ n (ΨΛ) μ n n{k T L [ln( n ie )]}
Λ= γ h 2 6m 2 n n
Λ= γ h 2 6m 2 n n
Normalized modulation strength=  modulation  strength  ε r.ox /d =  EA  rate/V ε r.ox /d

Metrics