Abstract

The wavefront aberrations of hydrogel material were altered using a technique of femtosecond laser induced refractive index modification. Gradient-index Fresnel lenses ranging from −3.0 to +1.5 diopters (5.8 mm diameter) were written in contact lens material (Contaflex GM Advance 58). Optical quality was assessed in terms of wavefront aberrations, image contrast, and scatter. The spherical and cylindrical power writing errors were 0.05 D ± 0.07 D and 0.10 D ± 0.14 D respectively, and the lenses preserved almost all spatial frequency information relevant for human vision. The induced wavefronts were comprised of a mosaic of approximately 1400 stitched segments, leading to undesirable diffraction. This work demonstrates the capability of femtosecond laser induced refractive index modification to produce high quality optical devices for vision correction.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser writing of freeform gradient index microlenses in hydrogel-based contact lenses

Gustavo A. Gandara-Montano, Adam Ivansky, Daniel E. Savage, Jonathan D. Ellis, and Wayne H. Knox
Opt. Mater. Express 5(10) 2257-2271 (2015)

Large optical phase shifts in hydrogels written with femtosecond laser pulses: elucidating the role of localized water concentration changes

Gustavo A. Gandara-Montano, Vladimir Stoy, Miroslav Dudič, Václav Petrák, Kateřina Haškovcová, and Wayne H. Knox
Opt. Mater. Express 7(9) 3162-3180 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. Ding, R. Blackwell, J. F. Künzler, and W. H. Knox, “Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining,” Opt. Express 14(24), 11901–11909 (2006).
    [Crossref] [PubMed]
  2. L. Ding, D. Jani, J. Linhardt, J. F. Künzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Large enhancement of femtosecond laser micromachining speed in dye-doped hydrogel polymers,” Opt. Express 16(26), 21914–21921 (2008).
    [Crossref] [PubMed]
  3. L. Xu and W. H. Knox, “Lateral gradient index microlenses written in ophthalmic hydrogel polymers by femtosecond laser micromachining,” Opt. Mater. Express 1(8), 1416–1424 (2011).
    [Crossref]
  4. G. A. Gandara-Montano, A. Ivansky, D. E. Savage, J. D. Ellis, and W. H. Knox, “Femtosecond laser writing of freeform gradient index microlenses in hydrogel-based contact lenses,” Opt. Mater. Express 5(10), 2257–2271 (2015).
    [Crossref]
  5. J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Polymers for in vivo tuning of refractive properties in intraocular lenses,” Macromol. Biosci. 8(2), 177–183 (2008).
    [Crossref] [PubMed]
  6. J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Materials for intraocular lenses enabling photo-controlled tuning of focal length in vivo,” Proc. SPIE 6632, 66321F (2007).
    [Crossref]
  7. R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
    [Crossref] [PubMed]
  8. G. A. Gandara-Montano, V. Stoy, M. Dudič, V. Petrák, K. Haškovcová, and W. H. Knox, “Large optical phase shifts in hydrogels written with femtosecond laser pulses: elucidating the role of localized water concentration changes,” Opt. Mater. Express 7(9), 3162–3180 (2017).
    [Crossref]
  9. L. Ding, D. Jani, J. Linhardt, J. F. Künzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Optimization of femtosecond laser micromachining in hydrogel polymers,” J. Opt. Soc. Am. B 26(9), 1679–1687 (2009).
    [Crossref]
  10. L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, N. Anderson, D. Jani, J. Linhardt, R. I. Blackwell, and J. F. Künzler, “Micro-Raman spectroscopy of refractive index microstructures in silicone-based hydrogel polymers created by high-repetition-rate femtosecond laser micromachining,” J. Opt. Soc. Am. B 26(4), 595–602 (2009).
    [Crossref]
  11. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [Crossref]
  12. J. F. Bille, J. Engelhardt, H. R. Volpp, A. Laghouissa, M. Motzkus, Z. Jiang, and R. Sahler, “Chemical basis for alteration of an intraocular lens using a femtosecond laser,” Biomed. Opt. Express 8(3), 1390–1404 (2017).
    [Crossref] [PubMed]
  13. Z. K. Wang, H. Y. Zheng, C. P. Lim, and Y. C. Lam, “Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation,” Appl. Phys. Lett. 95(11), 111110 (2009).
    [Crossref]
  14. L. Xu, “Femtosecond Laser Micromachining in Ophthalmic Materials (I): Material Optimization and Calibration,” in Femtosecond laser processing of ophthalmic materials and ocular tissues: a novel approach for non-invasive vision correction, L. Xu (Ph.D. Thesis, 2013), University of Rochester, pp. 68–93.
  15. D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE Press, 2004), Chap. 4.
  16. V. Portney, “Light distribution in diffractive multifocal optics and its optimization,” J. Cataract Refract. Surg. 37(11), 2053–2059 (2011).
    [Crossref] [PubMed]
  17. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9(5), 150–152 (1984).
    [Crossref] [PubMed]
  18. Contamac Ltd, “GM Advance,” http://www.contamac.com/product/gm-advance , 21, Aug. 2017.
  19. Contamac Ltd, “Contaflex GM Adavance Technical Data”, http://www.contamac.com/sites/default/files/documents/documents/Contaflex%20GM%20Adv%20%7C%20Technical%20Data.pdf , 21, Aug. 2017.
  20. National Center for Biotechnology Information, “Acofilcon A” (PubChem Coumpound Database, CID = 44154199), https://pubchem.ncbi.nlm.nih.gov/compound/44154199 , 21, Aug. 2017.
  21. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
    [PubMed]
  22. A. Guirao and D. R. Williams, “A method to predict refractive errors from wave aberration data,” Optom. Vis. Sci. 80(1), 36–42 (2003).
    [Crossref] [PubMed]
  23. G. Dai, Wavefront Optics for Vision Correction (SPIE Press, 2008), Chap. 3.
  24. J. Schwiegerling and E. DeHoog, “Problems testing diffractive intraocular lenses with Shack-Hartmann sensors,” Appl. Opt. 49(16), D62–D68 (2010).
    [Crossref] [PubMed]
  25. F. Castignoles, T. Lepine, P. Chavel, and G. Cohen, “Shack-Hartmann multiple spots with diffractive lenses,” Opt. Lett. 36(8), 1422–1424 (2011).
    [Crossref] [PubMed]
  26. C. E. Campbell, “Wavefront measurements of diffractive and refractive multifocal intraocular lenses in an artificial eye,” J. Refract. Surg. 24(3), 308–311 (2008).
    [PubMed]
  27. W. N. Charman, R. Montés-Micó, and H. Radhakrishnan, “Problems in the measurement of wavefront aberration for eyes implanted with diffractive bifocal and multifocal intraocular lenses,” J. Refract. Surg. 24(3), 280–286 (2008).
    [PubMed]
  28. D. Gatinel, “Optical performance of monofocal versus multifocal intraocular lenses,” J. Cataract Refract. Surg. 34(11), 1817–1818 (2008).
    [Crossref] [PubMed]
  29. M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg. 37(7), 1305–1312 (2011).
    [Crossref] [PubMed]
  30. S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing (California Technical Publishing, 1999), Chap. 25.
  31. B. Dube, R. Cicala, A. Closz, and J. P. Rolland, “How good is your lens? Assessing performance with MTF full-field displays,” Appl. Opt. 56(20), 5661–5667 (2017).
    [Crossref] [PubMed]
  32. J. L. Mannos and D. J. Sakrison, “The effects of a visual fidelity criterion on the encoding of images,” IEEE Trans. Inf. Theory 20(4), 525–536 (1974).
    [Crossref]
  33. G. Dai, Wavefront Optics for Vision Correction (SPIE Press, 2008), Chap. 8.
  34. D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25(2), 195–205 (1985).
    [Crossref] [PubMed]
  35. D. B. Murphy, K. R. Spring, M. Parry-Hill, and M. W. Davidson, “Comparison of Phase Contrast and DIC Microscopy” (Nikon Instruments Inc.) https://www.microscopyu.com/tutorials/comparison-of-phase-contrast-and-dic-microscopy , 16, Dec. 2017.
  36. I. Cox, IGC Consulting Group, 79 Partridge Hill, Honeoye Falls, NY, 14472 (personal communication 2016).
  37. A. E. Barañano, J. Wu, K. Mazhar, S. P. Azen, R. Varma, and Los Angeles Latino Eye Study Group, “Visual acuity outcomes after cataract extraction in adult latinos,” Ophthalmology 115(5), 815–821 (2008).
    [Crossref] [PubMed]
  38. Z. Zhou, N. G. Congdon, M. Zhang, L. Chen, Z. Zheng, L. Zhang, X. Lin, L. He, K. Choi, and D. S. Lam, “Distribution and visual impact of postoperative refractive error after cataract surgery in rural China: study of cataract outcomes and up-take of services report 4,” J. Cataract Refract. Surg. 33(12), 2083–2090 (2007).
    [Crossref] [PubMed]
  39. D. R. Brooks, N. S. Brown, D. E. Savage, C. Wang, W. H. Knox, and J. D. Ellis, “Precision large field scanning system for high numerical aperture lenses and application to femtosecond micromachining of ophthalmic materials,” Rev. Sci. Instrum. 85(6), 065107 (2014).
    [Crossref] [PubMed]
  40. D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
    [Crossref] [PubMed]
  41. L. Zheleznyak, G. A. Gandara-Montano, S. MacRae, K. H. Huxlin, J. D. Ellis, G. Yoon, and W. H. Knox, “First demonstration of human visual performance through refractive-index modified ophthalmic devices written in hydrogels,” Invest. Ophthalmol. Vis. Sci. 58(8), 1274 (2017).
    [PubMed]

2017 (4)

2016 (1)

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (2)

D. R. Brooks, N. S. Brown, D. E. Savage, C. Wang, W. H. Knox, and J. D. Ellis, “Precision large field scanning system for high numerical aperture lenses and application to femtosecond micromachining of ophthalmic materials,” Rev. Sci. Instrum. 85(6), 065107 (2014).
[Crossref] [PubMed]

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

2011 (4)

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg. 37(7), 1305–1312 (2011).
[Crossref] [PubMed]

F. Castignoles, T. Lepine, P. Chavel, and G. Cohen, “Shack-Hartmann multiple spots with diffractive lenses,” Opt. Lett. 36(8), 1422–1424 (2011).
[Crossref] [PubMed]

L. Xu and W. H. Knox, “Lateral gradient index microlenses written in ophthalmic hydrogel polymers by femtosecond laser micromachining,” Opt. Mater. Express 1(8), 1416–1424 (2011).
[Crossref]

V. Portney, “Light distribution in diffractive multifocal optics and its optimization,” J. Cataract Refract. Surg. 37(11), 2053–2059 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (3)

2008 (6)

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Polymers for in vivo tuning of refractive properties in intraocular lenses,” Macromol. Biosci. 8(2), 177–183 (2008).
[Crossref] [PubMed]

L. Ding, D. Jani, J. Linhardt, J. F. Künzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Large enhancement of femtosecond laser micromachining speed in dye-doped hydrogel polymers,” Opt. Express 16(26), 21914–21921 (2008).
[Crossref] [PubMed]

C. E. Campbell, “Wavefront measurements of diffractive and refractive multifocal intraocular lenses in an artificial eye,” J. Refract. Surg. 24(3), 308–311 (2008).
[PubMed]

W. N. Charman, R. Montés-Micó, and H. Radhakrishnan, “Problems in the measurement of wavefront aberration for eyes implanted with diffractive bifocal and multifocal intraocular lenses,” J. Refract. Surg. 24(3), 280–286 (2008).
[PubMed]

D. Gatinel, “Optical performance of monofocal versus multifocal intraocular lenses,” J. Cataract Refract. Surg. 34(11), 1817–1818 (2008).
[Crossref] [PubMed]

A. E. Barañano, J. Wu, K. Mazhar, S. P. Azen, R. Varma, and Los Angeles Latino Eye Study Group, “Visual acuity outcomes after cataract extraction in adult latinos,” Ophthalmology 115(5), 815–821 (2008).
[Crossref] [PubMed]

2007 (2)

Z. Zhou, N. G. Congdon, M. Zhang, L. Chen, Z. Zheng, L. Zhang, X. Lin, L. He, K. Choi, and D. S. Lam, “Distribution and visual impact of postoperative refractive error after cataract surgery in rural China: study of cataract outcomes and up-take of services report 4,” J. Cataract Refract. Surg. 33(12), 2083–2090 (2007).
[Crossref] [PubMed]

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Materials for intraocular lenses enabling photo-controlled tuning of focal length in vivo,” Proc. SPIE 6632, 66321F (2007).
[Crossref]

2006 (1)

2005 (1)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

2003 (1)

A. Guirao and D. R. Williams, “A method to predict refractive errors from wave aberration data,” Optom. Vis. Sci. 80(1), 36–42 (2003).
[Crossref] [PubMed]

2002 (1)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

1985 (1)

D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25(2), 195–205 (1985).
[Crossref] [PubMed]

1984 (1)

1974 (1)

J. L. Mannos and D. J. Sakrison, “The effects of a visual fidelity criterion on the encoding of images,” IEEE Trans. Inf. Theory 20(4), 525–536 (1974).
[Crossref]

Anderson, N.

Applegate, R. A.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

Azen, S. P.

A. E. Barañano, J. Wu, K. Mazhar, S. P. Azen, R. Varma, and Los Angeles Latino Eye Study Group, “Visual acuity outcomes after cataract extraction in adult latinos,” Ophthalmology 115(5), 815–821 (2008).
[Crossref] [PubMed]

Barañano, A. E.

A. E. Barañano, J. Wu, K. Mazhar, S. P. Azen, R. Varma, and Los Angeles Latino Eye Study Group, “Visual acuity outcomes after cataract extraction in adult latinos,” Ophthalmology 115(5), 815–821 (2008).
[Crossref] [PubMed]

Bille, J. F.

J. F. Bille, J. Engelhardt, H. R. Volpp, A. Laghouissa, M. Motzkus, Z. Jiang, and R. Sahler, “Chemical basis for alteration of an intraocular lens using a femtosecond laser,” Biomed. Opt. Express 8(3), 1390–1404 (2017).
[Crossref] [PubMed]

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

Blackwell, R.

Blackwell, R. I.

Brooks, D. R.

D. R. Brooks, N. S. Brown, D. E. Savage, C. Wang, W. H. Knox, and J. D. Ellis, “Precision large field scanning system for high numerical aperture lenses and application to femtosecond micromachining of ophthalmic materials,” Rev. Sci. Instrum. 85(6), 065107 (2014).
[Crossref] [PubMed]

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

Brown, N. S.

D. R. Brooks, N. S. Brown, D. E. Savage, C. Wang, W. H. Knox, and J. D. Ellis, “Precision large field scanning system for high numerical aperture lenses and application to femtosecond micromachining of ophthalmic materials,” Rev. Sci. Instrum. 85(6), 065107 (2014).
[Crossref] [PubMed]

Campbell, C. E.

C. E. Campbell, “Wavefront measurements of diffractive and refractive multifocal intraocular lenses in an artificial eye,” J. Refract. Surg. 24(3), 308–311 (2008).
[PubMed]

Cancado, L. G.

Castignoles, F.

Chan, K.

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

Charman, W. N.

W. N. Charman, R. Montés-Micó, and H. Radhakrishnan, “Problems in the measurement of wavefront aberration for eyes implanted with diffractive bifocal and multifocal intraocular lenses,” J. Refract. Surg. 24(3), 280–286 (2008).
[PubMed]

Chavel, P.

Chen, L.

Z. Zhou, N. G. Congdon, M. Zhang, L. Chen, Z. Zheng, L. Zhang, X. Lin, L. He, K. Choi, and D. S. Lam, “Distribution and visual impact of postoperative refractive error after cataract surgery in rural China: study of cataract outcomes and up-take of services report 4,” J. Cataract Refract. Surg. 33(12), 2083–2090 (2007).
[Crossref] [PubMed]

Chhoeung, S.

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

Choi, K.

Z. Zhou, N. G. Congdon, M. Zhang, L. Chen, Z. Zheng, L. Zhang, X. Lin, L. He, K. Choi, and D. S. Lam, “Distribution and visual impact of postoperative refractive error after cataract surgery in rural China: study of cataract outcomes and up-take of services report 4,” J. Cataract Refract. Surg. 33(12), 2083–2090 (2007).
[Crossref] [PubMed]

Cicala, R.

Closz, A.

Cohen, G.

Congdon, N. G.

Z. Zhou, N. G. Congdon, M. Zhang, L. Chen, Z. Zheng, L. Zhang, X. Lin, L. He, K. Choi, and D. S. Lam, “Distribution and visual impact of postoperative refractive error after cataract surgery in rural China: study of cataract outcomes and up-take of services report 4,” J. Cataract Refract. Surg. 33(12), 2083–2090 (2007).
[Crossref] [PubMed]

DeHoog, E.

DeMagistris, M.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

Ding, L.

Dube, B.

Dudic, M.

Ellis, J. D.

L. Zheleznyak, G. A. Gandara-Montano, S. MacRae, K. H. Huxlin, J. D. Ellis, G. Yoon, and W. H. Knox, “First demonstration of human visual performance through refractive-index modified ophthalmic devices written in hydrogels,” Invest. Ophthalmol. Vis. Sci. 58(8), 1274 (2017).
[PubMed]

G. A. Gandara-Montano, A. Ivansky, D. E. Savage, J. D. Ellis, and W. H. Knox, “Femtosecond laser writing of freeform gradient index microlenses in hydrogel-based contact lenses,” Opt. Mater. Express 5(10), 2257–2271 (2015).
[Crossref]

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

D. R. Brooks, N. S. Brown, D. E. Savage, C. Wang, W. H. Knox, and J. D. Ellis, “Precision large field scanning system for high numerical aperture lenses and application to femtosecond micromachining of ophthalmic materials,” Rev. Sci. Instrum. 85(6), 065107 (2014).
[Crossref] [PubMed]

Engelhardt, J.

Enright, S.

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

Fork, R. L.

Gandara-Montano, G. A.

Gatinel, D.

D. Gatinel, “Optical performance of monofocal versus multifocal intraocular lenses,” J. Cataract Refract. Surg. 34(11), 1817–1818 (2008).
[Crossref] [PubMed]

Gordon, J. P.

Guirao, A.

A. Guirao and D. R. Williams, “A method to predict refractive errors from wave aberration data,” Optom. Vis. Sci. 80(1), 36–42 (2003).
[Crossref] [PubMed]

Hampp, N.

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Polymers for in vivo tuning of refractive properties in intraocular lenses,” Macromol. Biosci. 8(2), 177–183 (2008).
[Crossref] [PubMed]

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Materials for intraocular lenses enabling photo-controlled tuning of focal length in vivo,” Proc. SPIE 6632, 66321F (2007).
[Crossref]

Haškovcová, K.

He, L.

Z. Zhou, N. G. Congdon, M. Zhang, L. Chen, Z. Zheng, L. Zhang, X. Lin, L. He, K. Choi, and D. S. Lam, “Distribution and visual impact of postoperative refractive error after cataract surgery in rural China: study of cataract outcomes and up-take of services report 4,” J. Cataract Refract. Surg. 33(12), 2083–2090 (2007).
[Crossref] [PubMed]

Heinzer, J.

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Polymers for in vivo tuning of refractive properties in intraocular lenses,” Macromol. Biosci. 8(2), 177–183 (2008).
[Crossref] [PubMed]

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Materials for intraocular lenses enabling photo-controlled tuning of focal length in vivo,” Proc. SPIE 6632, 66321F (2007).
[Crossref]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Huxlin, K. H.

L. Zheleznyak, G. A. Gandara-Montano, S. MacRae, K. H. Huxlin, J. D. Ellis, G. Yoon, and W. H. Knox, “First demonstration of human visual performance through refractive-index modified ophthalmic devices written in hydrogels,” Invest. Ophthalmol. Vis. Sci. 58(8), 1274 (2017).
[PubMed]

Huxlin, K. R.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

Ivansky, A.

Jani, D.

Jiang, Z.

Kim, H. C.

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Polymers for in vivo tuning of refractive properties in intraocular lenses,” Macromol. Biosci. 8(2), 177–183 (2008).
[Crossref] [PubMed]

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Materials for intraocular lenses enabling photo-controlled tuning of focal length in vivo,” Proc. SPIE 6632, 66321F (2007).
[Crossref]

Kim, M. J.

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg. 37(7), 1305–1312 (2011).
[Crossref] [PubMed]

Knox, W. H.

L. Zheleznyak, G. A. Gandara-Montano, S. MacRae, K. H. Huxlin, J. D. Ellis, G. Yoon, and W. H. Knox, “First demonstration of human visual performance through refractive-index modified ophthalmic devices written in hydrogels,” Invest. Ophthalmol. Vis. Sci. 58(8), 1274 (2017).
[PubMed]

G. A. Gandara-Montano, V. Stoy, M. Dudič, V. Petrák, K. Haškovcová, and W. H. Knox, “Large optical phase shifts in hydrogels written with femtosecond laser pulses: elucidating the role of localized water concentration changes,” Opt. Mater. Express 7(9), 3162–3180 (2017).
[Crossref]

G. A. Gandara-Montano, A. Ivansky, D. E. Savage, J. D. Ellis, and W. H. Knox, “Femtosecond laser writing of freeform gradient index microlenses in hydrogel-based contact lenses,” Opt. Mater. Express 5(10), 2257–2271 (2015).
[Crossref]

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

D. R. Brooks, N. S. Brown, D. E. Savage, C. Wang, W. H. Knox, and J. D. Ellis, “Precision large field scanning system for high numerical aperture lenses and application to femtosecond micromachining of ophthalmic materials,” Rev. Sci. Instrum. 85(6), 065107 (2014).
[Crossref] [PubMed]

L. Xu and W. H. Knox, “Lateral gradient index microlenses written in ophthalmic hydrogel polymers by femtosecond laser micromachining,” Opt. Mater. Express 1(8), 1416–1424 (2011).
[Crossref]

L. Ding, D. Jani, J. Linhardt, J. F. Künzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Optimization of femtosecond laser micromachining in hydrogel polymers,” J. Opt. Soc. Am. B 26(9), 1679–1687 (2009).
[Crossref]

L. Ding, L. G. Cancado, L. Novotny, W. H. Knox, N. Anderson, D. Jani, J. Linhardt, R. I. Blackwell, and J. F. Künzler, “Micro-Raman spectroscopy of refractive index microstructures in silicone-based hydrogel polymers created by high-repetition-rate femtosecond laser micromachining,” J. Opt. Soc. Am. B 26(4), 595–602 (2009).
[Crossref]

L. Ding, D. Jani, J. Linhardt, J. F. Künzler, S. Pawar, G. Labenski, T. Smith, and W. H. Knox, “Large enhancement of femtosecond laser micromachining speed in dye-doped hydrogel polymers,” Opt. Express 16(26), 21914–21921 (2008).
[Crossref] [PubMed]

L. Ding, R. Blackwell, J. F. Künzler, and W. H. Knox, “Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining,” Opt. Express 14(24), 11901–11909 (2006).
[Crossref] [PubMed]

Künzler, J. F.

Labenski, G.

Laghouissa, A.

Lam, D. S.

Z. Zhou, N. G. Congdon, M. Zhang, L. Chen, Z. Zheng, L. Zhang, X. Lin, L. He, K. Choi, and D. S. Lam, “Distribution and visual impact of postoperative refractive error after cataract surgery in rural China: study of cataract outcomes and up-take of services report 4,” J. Cataract Refract. Surg. 33(12), 2083–2090 (2007).
[Crossref] [PubMed]

Lam, Y. C.

Z. K. Wang, H. Y. Zheng, C. P. Lim, and Y. C. Lam, “Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation,” Appl. Phys. Lett. 95(11), 111110 (2009).
[Crossref]

Lepine, T.

Lim, C. P.

Z. K. Wang, H. Y. Zheng, C. P. Lim, and Y. C. Lam, “Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation,” Appl. Phys. Lett. 95(11), 111110 (2009).
[Crossref]

Lin, X.

Z. Zhou, N. G. Congdon, M. Zhang, L. Chen, Z. Zheng, L. Zhang, X. Lin, L. He, K. Choi, and D. S. Lam, “Distribution and visual impact of postoperative refractive error after cataract surgery in rural China: study of cataract outcomes and up-take of services report 4,” J. Cataract Refract. Surg. 33(12), 2083–2090 (2007).
[Crossref] [PubMed]

Linhardt, J.

MacRae, S.

L. Zheleznyak, G. A. Gandara-Montano, S. MacRae, K. H. Huxlin, J. D. Ellis, G. Yoon, and W. H. Knox, “First demonstration of human visual performance through refractive-index modified ophthalmic devices written in hydrogels,” Invest. Ophthalmol. Vis. Sci. 58(8), 1274 (2017).
[PubMed]

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg. 37(7), 1305–1312 (2011).
[Crossref] [PubMed]

Mannos, J. L.

J. L. Mannos and D. J. Sakrison, “The effects of a visual fidelity criterion on the encoding of images,” IEEE Trans. Inf. Theory 20(4), 525–536 (1974).
[Crossref]

Martinez, O. E.

Mazhar, K.

A. E. Barañano, J. Wu, K. Mazhar, S. P. Azen, R. Varma, and Los Angeles Latino Eye Study Group, “Visual acuity outcomes after cataract extraction in adult latinos,” Ophthalmology 115(5), 815–821 (2008).
[Crossref] [PubMed]

Montés-Micó, R.

W. N. Charman, R. Montés-Micó, and H. Radhakrishnan, “Problems in the measurement of wavefront aberration for eyes implanted with diffractive bifocal and multifocal intraocular lenses,” J. Refract. Surg. 24(3), 280–286 (2008).
[PubMed]

Motzkus, M.

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Novotny, L.

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Pawar, S.

Petrák, V.

Portney, V.

V. Portney, “Light distribution in diffractive multifocal optics and its optimization,” J. Cataract Refract. Surg. 37(11), 2053–2059 (2011).
[Crossref] [PubMed]

Radhakrishnan, H.

W. N. Charman, R. Montés-Micó, and H. Radhakrishnan, “Problems in the measurement of wavefront aberration for eyes implanted with diffractive bifocal and multifocal intraocular lenses,” J. Refract. Surg. 24(3), 280–286 (2008).
[PubMed]

Rolland, J. P.

Sahler, R.

J. F. Bille, J. Engelhardt, H. R. Volpp, A. Laghouissa, M. Motzkus, Z. Jiang, and R. Sahler, “Chemical basis for alteration of an intraocular lens using a femtosecond laser,” Biomed. Opt. Express 8(3), 1390–1404 (2017).
[Crossref] [PubMed]

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

Sakrison, D. J.

J. L. Mannos and D. J. Sakrison, “The effects of a visual fidelity criterion on the encoding of images,” IEEE Trans. Inf. Theory 20(4), 525–536 (1974).
[Crossref]

Savage, D. E.

G. A. Gandara-Montano, A. Ivansky, D. E. Savage, J. D. Ellis, and W. H. Knox, “Femtosecond laser writing of freeform gradient index microlenses in hydrogel-based contact lenses,” Opt. Mater. Express 5(10), 2257–2271 (2015).
[Crossref]

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

D. R. Brooks, N. S. Brown, D. E. Savage, C. Wang, W. H. Knox, and J. D. Ellis, “Precision large field scanning system for high numerical aperture lenses and application to femtosecond micromachining of ophthalmic materials,” Rev. Sci. Instrum. 85(6), 065107 (2014).
[Crossref] [PubMed]

Schwiegerling, J.

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

Smith, T.

Stoy, V.

Tchah, H.

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg. 37(7), 1305–1312 (2011).
[Crossref] [PubMed]

Thibos, L. N.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

Träger, J.

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Polymers for in vivo tuning of refractive properties in intraocular lenses,” Macromol. Biosci. 8(2), 177–183 (2008).
[Crossref] [PubMed]

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Materials for intraocular lenses enabling photo-controlled tuning of focal length in vivo,” Proc. SPIE 6632, 66321F (2007).
[Crossref]

Varma, R.

A. E. Barañano, J. Wu, K. Mazhar, S. P. Azen, R. Varma, and Los Angeles Latino Eye Study Group, “Visual acuity outcomes after cataract extraction in adult latinos,” Ophthalmology 115(5), 815–821 (2008).
[Crossref] [PubMed]

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Volpp, H. R.

Wang, C.

D. R. Brooks, N. S. Brown, D. E. Savage, C. Wang, W. H. Knox, and J. D. Ellis, “Precision large field scanning system for high numerical aperture lenses and application to femtosecond micromachining of ophthalmic materials,” Rev. Sci. Instrum. 85(6), 065107 (2014).
[Crossref] [PubMed]

Wang, Z. K.

Z. K. Wang, H. Y. Zheng, C. P. Lim, and Y. C. Lam, “Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation,” Appl. Phys. Lett. 95(11), 111110 (2009).
[Crossref]

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

Williams, D. R.

A. Guirao and D. R. Williams, “A method to predict refractive errors from wave aberration data,” Optom. Vis. Sci. 80(1), 36–42 (2003).
[Crossref] [PubMed]

D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25(2), 195–205 (1985).
[Crossref] [PubMed]

Wu, J.

A. E. Barañano, J. Wu, K. Mazhar, S. P. Azen, R. Varma, and Los Angeles Latino Eye Study Group, “Visual acuity outcomes after cataract extraction in adult latinos,” Ophthalmology 115(5), 815–821 (2008).
[Crossref] [PubMed]

Xu, L.

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

L. Xu and W. H. Knox, “Lateral gradient index microlenses written in ophthalmic hydrogel polymers by femtosecond laser micromachining,” Opt. Mater. Express 1(8), 1416–1424 (2011).
[Crossref]

Yoon, G.

L. Zheleznyak, G. A. Gandara-Montano, S. MacRae, K. H. Huxlin, J. D. Ellis, G. Yoon, and W. H. Knox, “First demonstration of human visual performance through refractive-index modified ophthalmic devices written in hydrogels,” Invest. Ophthalmol. Vis. Sci. 58(8), 1274 (2017).
[PubMed]

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg. 37(7), 1305–1312 (2011).
[Crossref] [PubMed]

Zhang, L.

Z. Zhou, N. G. Congdon, M. Zhang, L. Chen, Z. Zheng, L. Zhang, X. Lin, L. He, K. Choi, and D. S. Lam, “Distribution and visual impact of postoperative refractive error after cataract surgery in rural China: study of cataract outcomes and up-take of services report 4,” J. Cataract Refract. Surg. 33(12), 2083–2090 (2007).
[Crossref] [PubMed]

Zhang, M.

Z. Zhou, N. G. Congdon, M. Zhang, L. Chen, Z. Zheng, L. Zhang, X. Lin, L. He, K. Choi, and D. S. Lam, “Distribution and visual impact of postoperative refractive error after cataract surgery in rural China: study of cataract outcomes and up-take of services report 4,” J. Cataract Refract. Surg. 33(12), 2083–2090 (2007).
[Crossref] [PubMed]

Zheleznyak, L.

L. Zheleznyak, G. A. Gandara-Montano, S. MacRae, K. H. Huxlin, J. D. Ellis, G. Yoon, and W. H. Knox, “First demonstration of human visual performance through refractive-index modified ophthalmic devices written in hydrogels,” Invest. Ophthalmol. Vis. Sci. 58(8), 1274 (2017).
[PubMed]

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg. 37(7), 1305–1312 (2011).
[Crossref] [PubMed]

Zheng, H. Y.

Z. K. Wang, H. Y. Zheng, C. P. Lim, and Y. C. Lam, “Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation,” Appl. Phys. Lett. 95(11), 111110 (2009).
[Crossref]

Zheng, Z.

Z. Zhou, N. G. Congdon, M. Zhang, L. Chen, Z. Zheng, L. Zhang, X. Lin, L. He, K. Choi, and D. S. Lam, “Distribution and visual impact of postoperative refractive error after cataract surgery in rural China: study of cataract outcomes and up-take of services report 4,” J. Cataract Refract. Surg. 33(12), 2083–2090 (2007).
[Crossref] [PubMed]

Zhou, Z.

Z. Zhou, N. G. Congdon, M. Zhang, L. Chen, Z. Zheng, L. Zhang, X. Lin, L. He, K. Choi, and D. S. Lam, “Distribution and visual impact of postoperative refractive error after cataract surgery in rural China: study of cataract outcomes and up-take of services report 4,” J. Cataract Refract. Surg. 33(12), 2083–2090 (2007).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (1)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Appl. Phys. Lett. (1)

Z. K. Wang, H. Y. Zheng, C. P. Lim, and Y. C. Lam, “Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation,” Appl. Phys. Lett. 95(11), 111110 (2009).
[Crossref]

Biomed. Opt. Express (1)

IEEE Trans. Inf. Theory (1)

J. L. Mannos and D. J. Sakrison, “The effects of a visual fidelity criterion on the encoding of images,” IEEE Trans. Inf. Theory 20(4), 525–536 (1974).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (2)

D. E. Savage, D. R. Brooks, M. DeMagistris, L. Xu, S. MacRae, J. D. Ellis, W. H. Knox, and K. R. Huxlin, “First demonstration of ocular refractive change using blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci. 55(7), 4603–4612 (2014).
[Crossref] [PubMed]

L. Zheleznyak, G. A. Gandara-Montano, S. MacRae, K. H. Huxlin, J. D. Ellis, G. Yoon, and W. H. Knox, “First demonstration of human visual performance through refractive-index modified ophthalmic devices written in hydrogels,” Invest. Ophthalmol. Vis. Sci. 58(8), 1274 (2017).
[PubMed]

J. Cataract Refract. Surg. (5)

D. Gatinel, “Optical performance of monofocal versus multifocal intraocular lenses,” J. Cataract Refract. Surg. 34(11), 1817–1818 (2008).
[Crossref] [PubMed]

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg. 37(7), 1305–1312 (2011).
[Crossref] [PubMed]

Z. Zhou, N. G. Congdon, M. Zhang, L. Chen, Z. Zheng, L. Zhang, X. Lin, L. He, K. Choi, and D. S. Lam, “Distribution and visual impact of postoperative refractive error after cataract surgery in rural China: study of cataract outcomes and up-take of services report 4,” J. Cataract Refract. Surg. 33(12), 2083–2090 (2007).
[Crossref] [PubMed]

V. Portney, “Light distribution in diffractive multifocal optics and its optimization,” J. Cataract Refract. Surg. 37(11), 2053–2059 (2011).
[Crossref] [PubMed]

R. Sahler, J. F. Bille, S. Enright, S. Chhoeung, and K. Chan, “Creation of a refractive lens within an existing intraocular lens using a femtosecond laser,” J. Cataract Refract. Surg. 42(8), 1207–1215 (2016).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

J. Refract. Surg. (3)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

C. E. Campbell, “Wavefront measurements of diffractive and refractive multifocal intraocular lenses in an artificial eye,” J. Refract. Surg. 24(3), 308–311 (2008).
[PubMed]

W. N. Charman, R. Montés-Micó, and H. Radhakrishnan, “Problems in the measurement of wavefront aberration for eyes implanted with diffractive bifocal and multifocal intraocular lenses,” J. Refract. Surg. 24(3), 280–286 (2008).
[PubMed]

Macromol. Biosci. (1)

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Polymers for in vivo tuning of refractive properties in intraocular lenses,” Macromol. Biosci. 8(2), 177–183 (2008).
[Crossref] [PubMed]

Ophthalmology (1)

A. E. Barañano, J. Wu, K. Mazhar, S. P. Azen, R. Varma, and Los Angeles Latino Eye Study Group, “Visual acuity outcomes after cataract extraction in adult latinos,” Ophthalmology 115(5), 815–821 (2008).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. Express (3)

Optom. Vis. Sci. (1)

A. Guirao and D. R. Williams, “A method to predict refractive errors from wave aberration data,” Optom. Vis. Sci. 80(1), 36–42 (2003).
[Crossref] [PubMed]

Proc. SPIE (1)

J. Träger, J. Heinzer, H. C. Kim, and N. Hampp, “Materials for intraocular lenses enabling photo-controlled tuning of focal length in vivo,” Proc. SPIE 6632, 66321F (2007).
[Crossref]

Rev. Sci. Instrum. (1)

D. R. Brooks, N. S. Brown, D. E. Savage, C. Wang, W. H. Knox, and J. D. Ellis, “Precision large field scanning system for high numerical aperture lenses and application to femtosecond micromachining of ophthalmic materials,” Rev. Sci. Instrum. 85(6), 065107 (2014).
[Crossref] [PubMed]

Vision Res. (1)

D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25(2), 195–205 (1985).
[Crossref] [PubMed]

Other (10)

D. B. Murphy, K. R. Spring, M. Parry-Hill, and M. W. Davidson, “Comparison of Phase Contrast and DIC Microscopy” (Nikon Instruments Inc.) https://www.microscopyu.com/tutorials/comparison-of-phase-contrast-and-dic-microscopy , 16, Dec. 2017.

I. Cox, IGC Consulting Group, 79 Partridge Hill, Honeoye Falls, NY, 14472 (personal communication 2016).

S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing (California Technical Publishing, 1999), Chap. 25.

G. Dai, Wavefront Optics for Vision Correction (SPIE Press, 2008), Chap. 8.

G. Dai, Wavefront Optics for Vision Correction (SPIE Press, 2008), Chap. 3.

L. Xu, “Femtosecond Laser Micromachining in Ophthalmic Materials (I): Material Optimization and Calibration,” in Femtosecond laser processing of ophthalmic materials and ocular tissues: a novel approach for non-invasive vision correction, L. Xu (Ph.D. Thesis, 2013), University of Rochester, pp. 68–93.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE Press, 2004), Chap. 4.

Contamac Ltd, “GM Advance,” http://www.contamac.com/product/gm-advance , 21, Aug. 2017.

Contamac Ltd, “Contaflex GM Adavance Technical Data”, http://www.contamac.com/sites/default/files/documents/documents/Contaflex%20GM%20Adv%20%7C%20Technical%20Data.pdf , 21, Aug. 2017.

National Center for Biotechnology Information, “Acofilcon A” (PubChem Coumpound Database, CID = 44154199), https://pubchem.ncbi.nlm.nih.gov/compound/44154199 , 21, Aug. 2017.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 (a) Lens obtained by shaping the interface between materials with different refractive indices. (b) Gradient-index (GRIN) lens obtained by varying the refractive index spatially. (c) GRIN Fresnel lens. In the most general case, Δn can be positive or negative, and it is drawn in Figs. 1(b) and 1(c) as a negative quantity.
Fig. 2
Fig. 2 (a) Diagram of the femtosecond writing setup. (b) Diagram illustrating that the lenses were written with galvanometer scanning and aided by controlling the 3D location of the sample.
Fig. 3
Fig. 3 (a) Bright field picture of region with two small squares written with femtosecond writing with a power of 130 mW. (b) Interference fringes of the same region. Notice the clear phase change within the written squares. Interferometer wavelength is 633 nm.
Fig. 4
Fig. 4 (a) Diagram of the optical bench used for measurement of the MTF. The system images a resolution target while the tested lens is placed conjugate to the aperture stop plane. The Badal optometer brings the image to best focus. (b) Image of resolution target collected with an unwritten plano hydrogel. The green arrow added to this image points at the square whose edges were used to calculate the horizontal and vertical MTFs. The element surrounded by the red rectangle corresponds to 31 lp/°. Note that 30 lp/° corresponds to the clinical guideline of adequate resolution (i.e. 20/20 Snellen visual acuity).
Fig. 5
Fig. 5 MTF plot of a theoretical diffraction limited lens and of a theoretical aberrated GRIN lens, both over the same aperture. The aMTF for this aberrated GRIN lens is the green area divided by the sum of the green and the blue areas.
Fig. 6
Fig. 6 Absolute value of the phase change induced as a function of writing power.
Fig. 7
Fig. 7 Relative transmission of the written areas compared to the unwritten areas as a function of writing power. The horizontal black line highlights the relative transmission value of 1.0.
Fig. 8
Fig. 8 Picture of the −3 D Fresnel lens taken with a DIC microscope.
Fig. 9
Fig. 9 Wavefront, as measured by the Shack-Hartman sensor, of the written lens with nominal design of (a) −3.0 D, (b) −1.5 D, (c) −0.75 D, (d) 0.00 DS, −1.50 DC, (e) + 0.75 D, and (f) +1.50 D.
Fig. 10
Fig. 10 (a) Obtained spherical power versus the intended spherical power. The dashed line illustrates the ideal case in which the obtained and intended spherical powers are equal. (b) Obtained error in the cylindrical power versus the intended spherical power. The dashed line illustrates the ideal case in which the obtained error in the cylindrical power is zero. (c) Obtained HORMS versus the intended spherical power. The dashed line illustrates the ideal case in which the obtained HORMS is zero.
Fig. 11
Fig. 11 (a) Collected horizontal and vertical MTF curves for the lenses with intended spherical powers of −0.75 D, −1.50 D, and −3.00 D respectively. The MTF curve of a diffraction-limited lens is also shown for reference. (b) Images of the resolution target created by each lens. The area surrounded by the green square is zoomed in (c). (c) The central part of each image, which contains the elements with higher spatial frequencies. The element surrounded by the magenta rectangle corresponds to 35 lp/°, while the element surrounded by the yellow rectangle corresponds to 62 lp/°. Note that 30 lp/° corresponds to the clinical guideline of adequate resolution (i.e. 20/20 Snellen visual acuity), while 60 lp/° is the Nyquist limit as determined by retinal photoreceptor sampling.
Fig. 12
Fig. 12 (a) Picture of diffraction streaks created when a 633 nm laser goes through the lens with nominal design of +1.50 D of spherical power. (b) Same picture as in (a) but with an attenuation filter of optical density of 3.9 in front of the sample.
Fig. 13
Fig. 13 The diffraction patterns of streak 1 and streak 2 are shown. The pattern from an unwritten sample is shown for reference. The intensity patterns as a function of angle were normalized in these plots to the highest intensity measured for the unwritten sample. The instrument noise floor in this plot is 2.9e-5.
Fig. 14
Fig. 14 Image of the resolution target created by the lens designed to have + 1.5 D of power at (a) −1.5 D corresponding to the −1 order, (b) 0.0 D corresponding to the 0 order, (c) +1.5 D corresponding to the +1 order, (d) +3.0 D corresponding to the + 2 order, and (e) +4.5 D corresponding to the +3 order.
Fig. 15
Fig. 15 Diffraction efficiencies of each order for the +1.5 D lens calculated from the images shown in Fig. 14.
Fig. 16
Fig. 16 Theoretical diffraction efficiencies of each order that Fresnel lenses have as a function of the optical phase at which the phase is wrapped. The vertical dashed line is at the phase value of −1.38 waves, which yields a good match with the experimentally found diffraction efficiencies.
Fig. 17
Fig. 17 Comparison between the theoretical diffraction efficiencies for a Fresnel lens with phase wrapping of −1.38 waves and the ones measured with images of the resolution target.

Tables (2)

Tables Icon

Table 1 Wavefront data from each of the written Fresnel lenses.

Tables Icon

Table 2 aMTF data of the spherical lenses.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δϕ= (Δn)(d) λ ,
RMS= n,m ( c n m ) 2 ,
S= 4 3 ( c 2 0 ) r 2 + 2 6 ( c 2 2 ) 2 + ( c 2 2 ) 2 r 2 C= 4 6 ( c 2 2 ) 2 + ( c 2 2 ) 2 r 2 θ= 1 2 tan 1 ( c 2 2 c 2 2 ),
Δϕ=(α)(1 e (ζ)( P N ) ),
(m)(λ)=(p)(sinθ),

Metrics