Abstract

The effect of Al2O3 content on the structure and properties of phosphate glasses Nd3+: Al2O3-K2O-P2O5 was investigated. Deconvolution Raman spectra were used to elucidate the glassy structures and it was observed that with increased Al2O3 content, the vibration frequencies and relative intensities of Qn (n represents the number of bridging oxygens (BO) per tetrahedra) changed. The Raman derived glass structure units were used as descriptors to build quantitative structure-property relationship (QSPR) models using the partial least squares (PLS) method to investigate the relationship of the glass structure and different physical properties such as glass transition temperature (Tg), density (ρ), and refractive index (nc). The glass properties (Tg, ρ and nc) have positive relationships with the vibration frequency and relative intensity of Q21Al (one bridging oxygen bound to Al, and one bridging oxygen bound to K). In contrast, they have negative relationships with the vibration frequency and relative intensity of Q20Al (two bridging oxygens bound to K) and Q3. The increase in Q21Al leads to the tightening of the phosphate network and a decrease in the molar volume, resulting in improved glass properties (Tg, ρ and nc). The Q21Al tetrahedra that form phosphate chains or rings is one of the main factors that affect the luminescent properties (σems, Δλeff and τrad) of the Nd3+ ions. With increases in vibration frequency and relative intensity of Q21Al, the emission cross section (σems) decreases, but both the effective line-width (Δλeff) and fluorescence lifetime (τrad) increase.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effects of doping B2O3 on the defects-state in SiO2-containing phosphate based glasses

Quanlong He, Pengfei Wang, Mengya Sun, Min Lu, and Bo Peng
Opt. Mater. Express 7(8) 2697-2705 (2017)

Structural influence on the femtosecond laser ability to create fluorescent patterns in silver-containing sodium-gallium phosphate glasses

Théo Guérineau, Laura Loi, Yannick Petit, Sylvain Danto, Alexandre Fargues, Lionel Canioni, and Thierry Cardinal
Opt. Mater. Express 8(12) 3748-3760 (2018)

Broadband blue emission from ZnO amorphous nanodomains in zinc phosphate oxynitride glass

Muzhi Cai, Wei Mao, Laurent Calvez, Jean Rocherulle, Hongli Ma, Ronan Lebullenger, Xianghua Zhang, Shiqing Xu, and Junjie Zhang
Opt. Lett. 43(23) 5845-5848 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263(23), 318–341 (2000).
    [Crossref]
  2. C. Wang, H. Wei, J. Wang, D. Huang, W. Fan, and X. Li, “1 J, 1 Hz lamp-pumped high-gain Nd: phosphate glass laser amplifier,” Chin. Opt. Lett. 15(1), 011401 (2017).
    [Crossref]
  3. I. Konidakis, C. P. E. Varsamis, and E. I. Kamitsos, “Effect of synthesis method on the structure and properties of AgPO3-based glasses,” J. Non-Cryst. Solids 357(14), 2684–2689 (2011).
    [Crossref]
  4. D. Palles, I. Konidakis, C. P. E. Varsamis, and E. I. Kamitsos, “Vibrational spectroscopic and bond valence study of structure and bonding in Al2O3-containing Agl-AgPO3 glasses,” Rsc. Adv 6(20), 16697–16710 (2016).
    [Crossref]
  5. N. S. Tagiara, D. Palles, E. D. Simandiras, and E. I. Kamitsos, “Synthesis, thermal and structural properties of pure TeO2 glass and zinc-tellurite glasses,” J. Non-Cryst. Solids 457, 116–125 (2017).
    [Crossref]
  6. D. Möncke, E. I. Kamitsos, D. Palles, R. Limbach, A. Winterstein-Beckmann, T. Honma, Z. Yao, T. Rouxel, and L. Wondraczek, “Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties,” J. Chem. Phys. 145(12), 124501 (2016).
    [Crossref] [PubMed]
  7. R. K. Brow, “Nature of Alumina in Phosphate Glass: I, Properties of Sodium Aluminophosphate Glass,” J. Am. Ceram. Soc. 76(4), 913–918 (1993).
    [Crossref]
  8. R. K. Brow, R. J. Kirkpatrick, and G. L. Turner, “Nature of Alumina in Phosphate Glass: II, Structure of Sodium Alurninophosphate Glass,” J. Am. Ceram. Soc. 76(4), 919–928 (1993).
    [Crossref]
  9. J. Schneider, S. L. Oliveira, L. A. O. Nunes, and H. Panepucci, “Local structure of sodium aluminum metaphosphate glasses,” J. Am. Ceram. Soc. 86(2), 317–324 (2003).
    [Crossref]
  10. H. Toratani, PhD thesis, Kyoto University, Kyoto,Japan, 1989.
  11. A. R. Kuznetsov, S. G. Lunter, S. I. Nikitina, A. G. Plyokhin, and Y. K. Fedorov, “Properties of neodymium-doped aluminophosphate laser glasses,” J. Appl. Spectrosc. 56(1), 68–72 (1992).
    [Crossref]
  12. Y. S. Jiang, S. B. Jiang, and Y. Y. Jiang, “Spectral properfiles of Nd3+ in aluminophosphate glassws,” J. Non-Cryst. Solids 112(1-3), 286–290 (1989).
    [Crossref]
  13. J. S. Hayden and S. A. Payne, “Laser and thermophysical properties of Nd-doped phosphate glasses,” Proc. SPIE 1761, 162–173 (1993).
    [Crossref]
  14. Y. N. Ch, Ȧ. Ravibabu, and S. V. G. V. A. PrasadḂ., “Effect of Al2O3 on Optical Absorption Properties of Heavy Metal Oxide Glass System doped with Nd3+ Ion,” Int. J. Eng. Sci. 4, 2558–2594 (2014).
  15. R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263(28), 1–28 (2000).
    [Crossref]
  16. L. Zhang and R. K. Brow, “A Raman study of iron-phosphate crystalline compounds and glasses,” J. Am. Ceram. Soc. 94(9), 3123–3130 (2011).
    [Crossref]
  17. A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5(26), 67583–67609 (2015).
    [Crossref]
  18. T. Le, V. C. Epa, F. R. Burden, and D. A. Winkler, “Quantitative structure-property relationship modeling of diverse materials properties,” Chem. Rev. 112(5), 2889–2919 (2012).
    [Crossref] [PubMed]
  19. M. Karelson, V. S. Lobanov, and A. R. Katritzky, “Quantum-chemical descriptors in QSAR/QSPR studies,” Chem. Rev. 96(3), 1027–1044 (1996).
    [Crossref] [PubMed]
  20. A. R. Katritzky, M. Kuanar, S. Slavov, C. D. Hall, M. Karelson, I. Kahn, and D. A. Dobchev, “Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction,” Chem. Rev. 110(10), 5714–5789 (2010).
    [Crossref] [PubMed]
  21. D. Guo, Y. Wang, C. Nan, L. Li, and J. Xia, “Application of artificial neural network technique to the formulation design of dielectric ceramics,” Sens. Actuators A Phys. 102(5), 93–98 (2002).
    [Crossref]
  22. D. Guo, Y. Wang, C. Nan, J. Xia, and L. Li, “Investigation of BaTiO3 formulation: an artificial neural network (ANN) method,” J. Am. Ceram. Soc. 22(5), 1867–1872 (2002).
    [Crossref]
  23. Z. Daren, “QSPR studies of PCBs by the combination of genetic algorithms and PLS analysis,” Comput. Chem. 25(2), 197–204 (2001).
    [Crossref] [PubMed]
  24. M. González-Durruthy, L. C. Alberici, C. Curti, Z. Naal, D. T. Atique-Sawazaki, J. M. Vázquez-Naya, H. González-Díaz, C. R. Munteanu, T. A. S. David, M. V. N. José, G. D. Humberto, and R. M. Cristian, “Experimental–computational study of carbon nanotube effects on mitochondrial respiration: in silico nano-QSPR machine learning models based on new Raman spectra transform with Markov–Shannon entropy invariants,” J. Chem. Inf. Model. 57(5), 1029–1044 (2017).
    [Crossref] [PubMed]
  25. S. Yin, Z. Shuai, and Y. Wang, “A quantitative structure-property relationship study of the glass transition temperature of OLED materials,” J. Chem. Inf. Comput. Sci. 43(3), 970–977 (2003).
    [Crossref] [PubMed]
  26. N. Tavassoli, Z. Chen, A. Bain, L. Melo, D. Chen, and E. R. Grant, “Template-oriented genetic algorithm feature selection of analyte wavelets in the Raman spectrum of a complex mixture,” Anal. Chem. 86(21), 10591–10599 (2014).
    [Crossref] [PubMed]
  27. Y. Zheng, X. Zhu, Z. Wang, Z. Hu, F. Gao, R. Nie, X. Cui, J. She, and B. Peng, “Noninvasive blood glucose detection using a miniature wearable Raman spectroscopy system,” Chin. Opt. Lett. 15(8), 083001 (2017).
    [Crossref]
  28. K. Meyer, “Characterization of the structure of binary zinc ultraphosphate glasses by infrared and Raman spectroscopy,” J. Non-Cryst. Solids 209(3), 227–239 (1997).
    [Crossref]
  29. B. N. Nelson and G. J. Exarhos, “Vibrational spectroscopy of cationsite interactions in phosphate glasses,” J. Chem. Phys. 71(7), 2739–2746 (1979).
    [Crossref]
  30. L. L. Velli, C.-P. E. Varsamis, E. I. Kamitsos, D. Möncke, and D. Ehrt, “Structural investigation of metaphosphate glasses,” Phys. Chem. Glasses 46(3), 178–181 (2005).
  31. D. A. Magdas, R. Stefan, D. Toloman, and N. S. Vedeanu, “Copper ions influence on lead-phosphate glass network,” J. Mol. Struct. 1056(4), 314–318 (2014).
    [Crossref]
  32. E. Metwalli and R. K. Brow, “Modifier effects on the properties and structures of aluminophosphate glasses,” J. Non-Cryst. Solids 289(9), 113–122 (2001).
    [Crossref]
  33. G. Le Saout, P. Simon, F. Fayon, A. Blin, and Y. Vaills, “Raman and infrared study of (PbO) x (P2O5)(1− x) glasses,” J. Raman Spectrosc. 33(6), 740–746 (2002).
  34. J. Tsuchida, J. Schneider, M. T. Rinke, and H. Eckert, “Structure of ternary aluminum metaphosphate glasses,” J. Phys. Chem. C 115(44), 21927–21941 (2011).
    [Crossref]
  35. S. Tanabe, T. Hanada, T. Ohyagi, and N. Soga, “Correlation between 151Eu Mössbauer isomer shift and Judd-Ofelt Ω6 parameters of Nd 3+ ions in phosphate and silicate laser glasses,” Phys. Rev. B Condens. Matter 48(14), 10591–10594 (1993).
    [Crossref] [PubMed]
  36. F. Qi, F. Huang, T. Wang, R. Lei, J. Zhang, S. Xu, and L. Zhang, “Influence of Tm 3+ ions on the amplification of Ho3+: 5 I 7→ 5 I 8 transition in fluoride glass modified by Al (PO3)3 for applications in mid-infrared optics,” Chin. Opt. Lett. 15(5), 051604 (2017).
    [Crossref]
  37. W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth-doped Y2O3 and LaF3 single crystals,” Phys. Rev. 145(1), 325–337 (1966).
    [Crossref]
  38. A. Novais, N. O. Dantas, I. Guedes, and M. Vermelho, “Spectroscopic properties of highly Nd-doped lead phosphate glass,” J. Alloys Compd. 648(7), 338–345 (2015).
    [Crossref]

2017 (5)

C. Wang, H. Wei, J. Wang, D. Huang, W. Fan, and X. Li, “1 J, 1 Hz lamp-pumped high-gain Nd: phosphate glass laser amplifier,” Chin. Opt. Lett. 15(1), 011401 (2017).
[Crossref]

N. S. Tagiara, D. Palles, E. D. Simandiras, and E. I. Kamitsos, “Synthesis, thermal and structural properties of pure TeO2 glass and zinc-tellurite glasses,” J. Non-Cryst. Solids 457, 116–125 (2017).
[Crossref]

M. González-Durruthy, L. C. Alberici, C. Curti, Z. Naal, D. T. Atique-Sawazaki, J. M. Vázquez-Naya, H. González-Díaz, C. R. Munteanu, T. A. S. David, M. V. N. José, G. D. Humberto, and R. M. Cristian, “Experimental–computational study of carbon nanotube effects on mitochondrial respiration: in silico nano-QSPR machine learning models based on new Raman spectra transform with Markov–Shannon entropy invariants,” J. Chem. Inf. Model. 57(5), 1029–1044 (2017).
[Crossref] [PubMed]

Y. Zheng, X. Zhu, Z. Wang, Z. Hu, F. Gao, R. Nie, X. Cui, J. She, and B. Peng, “Noninvasive blood glucose detection using a miniature wearable Raman spectroscopy system,” Chin. Opt. Lett. 15(8), 083001 (2017).
[Crossref]

F. Qi, F. Huang, T. Wang, R. Lei, J. Zhang, S. Xu, and L. Zhang, “Influence of Tm 3+ ions on the amplification of Ho3+: 5 I 7→ 5 I 8 transition in fluoride glass modified by Al (PO3)3 for applications in mid-infrared optics,” Chin. Opt. Lett. 15(5), 051604 (2017).
[Crossref]

2016 (2)

D. Möncke, E. I. Kamitsos, D. Palles, R. Limbach, A. Winterstein-Beckmann, T. Honma, Z. Yao, T. Rouxel, and L. Wondraczek, “Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties,” J. Chem. Phys. 145(12), 124501 (2016).
[Crossref] [PubMed]

D. Palles, I. Konidakis, C. P. E. Varsamis, and E. I. Kamitsos, “Vibrational spectroscopic and bond valence study of structure and bonding in Al2O3-containing Agl-AgPO3 glasses,” Rsc. Adv 6(20), 16697–16710 (2016).
[Crossref]

2015 (2)

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5(26), 67583–67609 (2015).
[Crossref]

A. Novais, N. O. Dantas, I. Guedes, and M. Vermelho, “Spectroscopic properties of highly Nd-doped lead phosphate glass,” J. Alloys Compd. 648(7), 338–345 (2015).
[Crossref]

2014 (3)

Y. N. Ch, Ȧ. Ravibabu, and S. V. G. V. A. PrasadḂ., “Effect of Al2O3 on Optical Absorption Properties of Heavy Metal Oxide Glass System doped with Nd3+ Ion,” Int. J. Eng. Sci. 4, 2558–2594 (2014).

N. Tavassoli, Z. Chen, A. Bain, L. Melo, D. Chen, and E. R. Grant, “Template-oriented genetic algorithm feature selection of analyte wavelets in the Raman spectrum of a complex mixture,” Anal. Chem. 86(21), 10591–10599 (2014).
[Crossref] [PubMed]

D. A. Magdas, R. Stefan, D. Toloman, and N. S. Vedeanu, “Copper ions influence on lead-phosphate glass network,” J. Mol. Struct. 1056(4), 314–318 (2014).
[Crossref]

2012 (1)

T. Le, V. C. Epa, F. R. Burden, and D. A. Winkler, “Quantitative structure-property relationship modeling of diverse materials properties,” Chem. Rev. 112(5), 2889–2919 (2012).
[Crossref] [PubMed]

2011 (3)

L. Zhang and R. K. Brow, “A Raman study of iron-phosphate crystalline compounds and glasses,” J. Am. Ceram. Soc. 94(9), 3123–3130 (2011).
[Crossref]

I. Konidakis, C. P. E. Varsamis, and E. I. Kamitsos, “Effect of synthesis method on the structure and properties of AgPO3-based glasses,” J. Non-Cryst. Solids 357(14), 2684–2689 (2011).
[Crossref]

J. Tsuchida, J. Schneider, M. T. Rinke, and H. Eckert, “Structure of ternary aluminum metaphosphate glasses,” J. Phys. Chem. C 115(44), 21927–21941 (2011).
[Crossref]

2010 (1)

A. R. Katritzky, M. Kuanar, S. Slavov, C. D. Hall, M. Karelson, I. Kahn, and D. A. Dobchev, “Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction,” Chem. Rev. 110(10), 5714–5789 (2010).
[Crossref] [PubMed]

2005 (1)

L. L. Velli, C.-P. E. Varsamis, E. I. Kamitsos, D. Möncke, and D. Ehrt, “Structural investigation of metaphosphate glasses,” Phys. Chem. Glasses 46(3), 178–181 (2005).

2003 (2)

S. Yin, Z. Shuai, and Y. Wang, “A quantitative structure-property relationship study of the glass transition temperature of OLED materials,” J. Chem. Inf. Comput. Sci. 43(3), 970–977 (2003).
[Crossref] [PubMed]

J. Schneider, S. L. Oliveira, L. A. O. Nunes, and H. Panepucci, “Local structure of sodium aluminum metaphosphate glasses,” J. Am. Ceram. Soc. 86(2), 317–324 (2003).
[Crossref]

2002 (3)

D. Guo, Y. Wang, C. Nan, L. Li, and J. Xia, “Application of artificial neural network technique to the formulation design of dielectric ceramics,” Sens. Actuators A Phys. 102(5), 93–98 (2002).
[Crossref]

D. Guo, Y. Wang, C. Nan, J. Xia, and L. Li, “Investigation of BaTiO3 formulation: an artificial neural network (ANN) method,” J. Am. Ceram. Soc. 22(5), 1867–1872 (2002).
[Crossref]

G. Le Saout, P. Simon, F. Fayon, A. Blin, and Y. Vaills, “Raman and infrared study of (PbO) x (P2O5)(1− x) glasses,” J. Raman Spectrosc. 33(6), 740–746 (2002).

2001 (2)

Z. Daren, “QSPR studies of PCBs by the combination of genetic algorithms and PLS analysis,” Comput. Chem. 25(2), 197–204 (2001).
[Crossref] [PubMed]

E. Metwalli and R. K. Brow, “Modifier effects on the properties and structures of aluminophosphate glasses,” J. Non-Cryst. Solids 289(9), 113–122 (2001).
[Crossref]

2000 (2)

R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263(28), 1–28 (2000).
[Crossref]

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263(23), 318–341 (2000).
[Crossref]

1997 (1)

K. Meyer, “Characterization of the structure of binary zinc ultraphosphate glasses by infrared and Raman spectroscopy,” J. Non-Cryst. Solids 209(3), 227–239 (1997).
[Crossref]

1996 (1)

M. Karelson, V. S. Lobanov, and A. R. Katritzky, “Quantum-chemical descriptors in QSAR/QSPR studies,” Chem. Rev. 96(3), 1027–1044 (1996).
[Crossref] [PubMed]

1993 (4)

J. S. Hayden and S. A. Payne, “Laser and thermophysical properties of Nd-doped phosphate glasses,” Proc. SPIE 1761, 162–173 (1993).
[Crossref]

R. K. Brow, “Nature of Alumina in Phosphate Glass: I, Properties of Sodium Aluminophosphate Glass,” J. Am. Ceram. Soc. 76(4), 913–918 (1993).
[Crossref]

R. K. Brow, R. J. Kirkpatrick, and G. L. Turner, “Nature of Alumina in Phosphate Glass: II, Structure of Sodium Alurninophosphate Glass,” J. Am. Ceram. Soc. 76(4), 919–928 (1993).
[Crossref]

S. Tanabe, T. Hanada, T. Ohyagi, and N. Soga, “Correlation between 151Eu Mössbauer isomer shift and Judd-Ofelt Ω6 parameters of Nd 3+ ions in phosphate and silicate laser glasses,” Phys. Rev. B Condens. Matter 48(14), 10591–10594 (1993).
[Crossref] [PubMed]

1992 (1)

A. R. Kuznetsov, S. G. Lunter, S. I. Nikitina, A. G. Plyokhin, and Y. K. Fedorov, “Properties of neodymium-doped aluminophosphate laser glasses,” J. Appl. Spectrosc. 56(1), 68–72 (1992).
[Crossref]

1989 (1)

Y. S. Jiang, S. B. Jiang, and Y. Y. Jiang, “Spectral properfiles of Nd3+ in aluminophosphate glassws,” J. Non-Cryst. Solids 112(1-3), 286–290 (1989).
[Crossref]

1979 (1)

B. N. Nelson and G. J. Exarhos, “Vibrational spectroscopy of cationsite interactions in phosphate glasses,” J. Chem. Phys. 71(7), 2739–2746 (1979).
[Crossref]

1966 (1)

W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth-doped Y2O3 and LaF3 single crystals,” Phys. Rev. 145(1), 325–337 (1966).
[Crossref]

Alberici, L. C.

M. González-Durruthy, L. C. Alberici, C. Curti, Z. Naal, D. T. Atique-Sawazaki, J. M. Vázquez-Naya, H. González-Díaz, C. R. Munteanu, T. A. S. David, M. V. N. José, G. D. Humberto, and R. M. Cristian, “Experimental–computational study of carbon nanotube effects on mitochondrial respiration: in silico nano-QSPR machine learning models based on new Raman spectra transform with Markov–Shannon entropy invariants,” J. Chem. Inf. Model. 57(5), 1029–1044 (2017).
[Crossref] [PubMed]

Atique-Sawazaki, D. T.

M. González-Durruthy, L. C. Alberici, C. Curti, Z. Naal, D. T. Atique-Sawazaki, J. M. Vázquez-Naya, H. González-Díaz, C. R. Munteanu, T. A. S. David, M. V. N. José, G. D. Humberto, and R. M. Cristian, “Experimental–computational study of carbon nanotube effects on mitochondrial respiration: in silico nano-QSPR machine learning models based on new Raman spectra transform with Markov–Shannon entropy invariants,” J. Chem. Inf. Model. 57(5), 1029–1044 (2017).
[Crossref] [PubMed]

Bain, A.

N. Tavassoli, Z. Chen, A. Bain, L. Melo, D. Chen, and E. R. Grant, “Template-oriented genetic algorithm feature selection of analyte wavelets in the Raman spectrum of a complex mixture,” Anal. Chem. 86(21), 10591–10599 (2014).
[Crossref] [PubMed]

Blin, A.

G. Le Saout, P. Simon, F. Fayon, A. Blin, and Y. Vaills, “Raman and infrared study of (PbO) x (P2O5)(1− x) glasses,” J. Raman Spectrosc. 33(6), 740–746 (2002).

Brow, R. K.

L. Zhang and R. K. Brow, “A Raman study of iron-phosphate crystalline compounds and glasses,” J. Am. Ceram. Soc. 94(9), 3123–3130 (2011).
[Crossref]

E. Metwalli and R. K. Brow, “Modifier effects on the properties and structures of aluminophosphate glasses,” J. Non-Cryst. Solids 289(9), 113–122 (2001).
[Crossref]

R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263(28), 1–28 (2000).
[Crossref]

R. K. Brow, “Nature of Alumina in Phosphate Glass: I, Properties of Sodium Aluminophosphate Glass,” J. Am. Ceram. Soc. 76(4), 913–918 (1993).
[Crossref]

R. K. Brow, R. J. Kirkpatrick, and G. L. Turner, “Nature of Alumina in Phosphate Glass: II, Structure of Sodium Alurninophosphate Glass,” J. Am. Ceram. Soc. 76(4), 919–928 (1993).
[Crossref]

Burden, F. R.

T. Le, V. C. Epa, F. R. Burden, and D. A. Winkler, “Quantitative structure-property relationship modeling of diverse materials properties,” Chem. Rev. 112(5), 2889–2919 (2012).
[Crossref] [PubMed]

Campbell, J. H.

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263(23), 318–341 (2000).
[Crossref]

Ch, Y. N.

Y. N. Ch, Ȧ. Ravibabu, and S. V. G. V. A. PrasadḂ., “Effect of Al2O3 on Optical Absorption Properties of Heavy Metal Oxide Glass System doped with Nd3+ Ion,” Int. J. Eng. Sci. 4, 2558–2594 (2014).

Chen, D.

N. Tavassoli, Z. Chen, A. Bain, L. Melo, D. Chen, and E. R. Grant, “Template-oriented genetic algorithm feature selection of analyte wavelets in the Raman spectrum of a complex mixture,” Anal. Chem. 86(21), 10591–10599 (2014).
[Crossref] [PubMed]

Chen, Z.

N. Tavassoli, Z. Chen, A. Bain, L. Melo, D. Chen, and E. R. Grant, “Template-oriented genetic algorithm feature selection of analyte wavelets in the Raman spectrum of a complex mixture,” Anal. Chem. 86(21), 10591–10599 (2014).
[Crossref] [PubMed]

Cristian, R. M.

M. González-Durruthy, L. C. Alberici, C. Curti, Z. Naal, D. T. Atique-Sawazaki, J. M. Vázquez-Naya, H. González-Díaz, C. R. Munteanu, T. A. S. David, M. V. N. José, G. D. Humberto, and R. M. Cristian, “Experimental–computational study of carbon nanotube effects on mitochondrial respiration: in silico nano-QSPR machine learning models based on new Raman spectra transform with Markov–Shannon entropy invariants,” J. Chem. Inf. Model. 57(5), 1029–1044 (2017).
[Crossref] [PubMed]

Cui, X.

Curti, C.

M. González-Durruthy, L. C. Alberici, C. Curti, Z. Naal, D. T. Atique-Sawazaki, J. M. Vázquez-Naya, H. González-Díaz, C. R. Munteanu, T. A. S. David, M. V. N. José, G. D. Humberto, and R. M. Cristian, “Experimental–computational study of carbon nanotube effects on mitochondrial respiration: in silico nano-QSPR machine learning models based on new Raman spectra transform with Markov–Shannon entropy invariants,” J. Chem. Inf. Model. 57(5), 1029–1044 (2017).
[Crossref] [PubMed]

Dantas, N. O.

A. Novais, N. O. Dantas, I. Guedes, and M. Vermelho, “Spectroscopic properties of highly Nd-doped lead phosphate glass,” J. Alloys Compd. 648(7), 338–345 (2015).
[Crossref]

Daren, Z.

Z. Daren, “QSPR studies of PCBs by the combination of genetic algorithms and PLS analysis,” Comput. Chem. 25(2), 197–204 (2001).
[Crossref] [PubMed]

David, T. A. S.

M. González-Durruthy, L. C. Alberici, C. Curti, Z. Naal, D. T. Atique-Sawazaki, J. M. Vázquez-Naya, H. González-Díaz, C. R. Munteanu, T. A. S. David, M. V. N. José, G. D. Humberto, and R. M. Cristian, “Experimental–computational study of carbon nanotube effects on mitochondrial respiration: in silico nano-QSPR machine learning models based on new Raman spectra transform with Markov–Shannon entropy invariants,” J. Chem. Inf. Model. 57(5), 1029–1044 (2017).
[Crossref] [PubMed]

Dobchev, D. A.

A. R. Katritzky, M. Kuanar, S. Slavov, C. D. Hall, M. Karelson, I. Kahn, and D. A. Dobchev, “Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction,” Chem. Rev. 110(10), 5714–5789 (2010).
[Crossref] [PubMed]

Eckert, H.

J. Tsuchida, J. Schneider, M. T. Rinke, and H. Eckert, “Structure of ternary aluminum metaphosphate glasses,” J. Phys. Chem. C 115(44), 21927–21941 (2011).
[Crossref]

Ehrt, D.

L. L. Velli, C.-P. E. Varsamis, E. I. Kamitsos, D. Möncke, and D. Ehrt, “Structural investigation of metaphosphate glasses,” Phys. Chem. Glasses 46(3), 178–181 (2005).

Epa, V. C.

T. Le, V. C. Epa, F. R. Burden, and D. A. Winkler, “Quantitative structure-property relationship modeling of diverse materials properties,” Chem. Rev. 112(5), 2889–2919 (2012).
[Crossref] [PubMed]

Exarhos, G. J.

B. N. Nelson and G. J. Exarhos, “Vibrational spectroscopy of cationsite interactions in phosphate glasses,” J. Chem. Phys. 71(7), 2739–2746 (1979).
[Crossref]

Fan, W.

Fayon, F.

G. Le Saout, P. Simon, F. Fayon, A. Blin, and Y. Vaills, “Raman and infrared study of (PbO) x (P2O5)(1− x) glasses,” J. Raman Spectrosc. 33(6), 740–746 (2002).

Fedorov, Y. K.

A. R. Kuznetsov, S. G. Lunter, S. I. Nikitina, A. G. Plyokhin, and Y. K. Fedorov, “Properties of neodymium-doped aluminophosphate laser glasses,” J. Appl. Spectrosc. 56(1), 68–72 (1992).
[Crossref]

Gao, F.

González-Díaz, H.

M. González-Durruthy, L. C. Alberici, C. Curti, Z. Naal, D. T. Atique-Sawazaki, J. M. Vázquez-Naya, H. González-Díaz, C. R. Munteanu, T. A. S. David, M. V. N. José, G. D. Humberto, and R. M. Cristian, “Experimental–computational study of carbon nanotube effects on mitochondrial respiration: in silico nano-QSPR machine learning models based on new Raman spectra transform with Markov–Shannon entropy invariants,” J. Chem. Inf. Model. 57(5), 1029–1044 (2017).
[Crossref] [PubMed]

González-Durruthy, M.

M. González-Durruthy, L. C. Alberici, C. Curti, Z. Naal, D. T. Atique-Sawazaki, J. M. Vázquez-Naya, H. González-Díaz, C. R. Munteanu, T. A. S. David, M. V. N. José, G. D. Humberto, and R. M. Cristian, “Experimental–computational study of carbon nanotube effects on mitochondrial respiration: in silico nano-QSPR machine learning models based on new Raman spectra transform with Markov–Shannon entropy invariants,” J. Chem. Inf. Model. 57(5), 1029–1044 (2017).
[Crossref] [PubMed]

Grant, E. R.

N. Tavassoli, Z. Chen, A. Bain, L. Melo, D. Chen, and E. R. Grant, “Template-oriented genetic algorithm feature selection of analyte wavelets in the Raman spectrum of a complex mixture,” Anal. Chem. 86(21), 10591–10599 (2014).
[Crossref] [PubMed]

Guedes, I.

A. Novais, N. O. Dantas, I. Guedes, and M. Vermelho, “Spectroscopic properties of highly Nd-doped lead phosphate glass,” J. Alloys Compd. 648(7), 338–345 (2015).
[Crossref]

Guo, D.

D. Guo, Y. Wang, C. Nan, L. Li, and J. Xia, “Application of artificial neural network technique to the formulation design of dielectric ceramics,” Sens. Actuators A Phys. 102(5), 93–98 (2002).
[Crossref]

D. Guo, Y. Wang, C. Nan, J. Xia, and L. Li, “Investigation of BaTiO3 formulation: an artificial neural network (ANN) method,” J. Am. Ceram. Soc. 22(5), 1867–1872 (2002).
[Crossref]

Hall, C. D.

A. R. Katritzky, M. Kuanar, S. Slavov, C. D. Hall, M. Karelson, I. Kahn, and D. A. Dobchev, “Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction,” Chem. Rev. 110(10), 5714–5789 (2010).
[Crossref] [PubMed]

Hanada, T.

S. Tanabe, T. Hanada, T. Ohyagi, and N. Soga, “Correlation between 151Eu Mössbauer isomer shift and Judd-Ofelt Ω6 parameters of Nd 3+ ions in phosphate and silicate laser glasses,” Phys. Rev. B Condens. Matter 48(14), 10591–10594 (1993).
[Crossref] [PubMed]

Hayden, J. S.

J. S. Hayden and S. A. Payne, “Laser and thermophysical properties of Nd-doped phosphate glasses,” Proc. SPIE 1761, 162–173 (1993).
[Crossref]

Honma, T.

D. Möncke, E. I. Kamitsos, D. Palles, R. Limbach, A. Winterstein-Beckmann, T. Honma, Z. Yao, T. Rouxel, and L. Wondraczek, “Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties,” J. Chem. Phys. 145(12), 124501 (2016).
[Crossref] [PubMed]

Hu, Z.

Huang, D.

Huang, F.

Humberto, G. D.

M. González-Durruthy, L. C. Alberici, C. Curti, Z. Naal, D. T. Atique-Sawazaki, J. M. Vázquez-Naya, H. González-Díaz, C. R. Munteanu, T. A. S. David, M. V. N. José, G. D. Humberto, and R. M. Cristian, “Experimental–computational study of carbon nanotube effects on mitochondrial respiration: in silico nano-QSPR machine learning models based on new Raman spectra transform with Markov–Shannon entropy invariants,” J. Chem. Inf. Model. 57(5), 1029–1044 (2017).
[Crossref] [PubMed]

Jiang, S. B.

Y. S. Jiang, S. B. Jiang, and Y. Y. Jiang, “Spectral properfiles of Nd3+ in aluminophosphate glassws,” J. Non-Cryst. Solids 112(1-3), 286–290 (1989).
[Crossref]

Jiang, Y. S.

Y. S. Jiang, S. B. Jiang, and Y. Y. Jiang, “Spectral properfiles of Nd3+ in aluminophosphate glassws,” J. Non-Cryst. Solids 112(1-3), 286–290 (1989).
[Crossref]

Jiang, Y. Y.

Y. S. Jiang, S. B. Jiang, and Y. Y. Jiang, “Spectral properfiles of Nd3+ in aluminophosphate glassws,” J. Non-Cryst. Solids 112(1-3), 286–290 (1989).
[Crossref]

José, M. V. N.

M. González-Durruthy, L. C. Alberici, C. Curti, Z. Naal, D. T. Atique-Sawazaki, J. M. Vázquez-Naya, H. González-Díaz, C. R. Munteanu, T. A. S. David, M. V. N. José, G. D. Humberto, and R. M. Cristian, “Experimental–computational study of carbon nanotube effects on mitochondrial respiration: in silico nano-QSPR machine learning models based on new Raman spectra transform with Markov–Shannon entropy invariants,” J. Chem. Inf. Model. 57(5), 1029–1044 (2017).
[Crossref] [PubMed]

Kahn, I.

A. R. Katritzky, M. Kuanar, S. Slavov, C. D. Hall, M. Karelson, I. Kahn, and D. A. Dobchev, “Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction,” Chem. Rev. 110(10), 5714–5789 (2010).
[Crossref] [PubMed]

Kamitsos, E. I.

N. S. Tagiara, D. Palles, E. D. Simandiras, and E. I. Kamitsos, “Synthesis, thermal and structural properties of pure TeO2 glass and zinc-tellurite glasses,” J. Non-Cryst. Solids 457, 116–125 (2017).
[Crossref]

D. Möncke, E. I. Kamitsos, D. Palles, R. Limbach, A. Winterstein-Beckmann, T. Honma, Z. Yao, T. Rouxel, and L. Wondraczek, “Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties,” J. Chem. Phys. 145(12), 124501 (2016).
[Crossref] [PubMed]

D. Palles, I. Konidakis, C. P. E. Varsamis, and E. I. Kamitsos, “Vibrational spectroscopic and bond valence study of structure and bonding in Al2O3-containing Agl-AgPO3 glasses,” Rsc. Adv 6(20), 16697–16710 (2016).
[Crossref]

I. Konidakis, C. P. E. Varsamis, and E. I. Kamitsos, “Effect of synthesis method on the structure and properties of AgPO3-based glasses,” J. Non-Cryst. Solids 357(14), 2684–2689 (2011).
[Crossref]

L. L. Velli, C.-P. E. Varsamis, E. I. Kamitsos, D. Möncke, and D. Ehrt, “Structural investigation of metaphosphate glasses,” Phys. Chem. Glasses 46(3), 178–181 (2005).

Karelson, M.

A. R. Katritzky, M. Kuanar, S. Slavov, C. D. Hall, M. Karelson, I. Kahn, and D. A. Dobchev, “Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction,” Chem. Rev. 110(10), 5714–5789 (2010).
[Crossref] [PubMed]

M. Karelson, V. S. Lobanov, and A. R. Katritzky, “Quantum-chemical descriptors in QSAR/QSPR studies,” Chem. Rev. 96(3), 1027–1044 (1996).
[Crossref] [PubMed]

Katritzky, A. R.

A. R. Katritzky, M. Kuanar, S. Slavov, C. D. Hall, M. Karelson, I. Kahn, and D. A. Dobchev, “Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction,” Chem. Rev. 110(10), 5714–5789 (2010).
[Crossref] [PubMed]

M. Karelson, V. S. Lobanov, and A. R. Katritzky, “Quantum-chemical descriptors in QSAR/QSPR studies,” Chem. Rev. 96(3), 1027–1044 (1996).
[Crossref] [PubMed]

Kirkpatrick, R. J.

R. K. Brow, R. J. Kirkpatrick, and G. L. Turner, “Nature of Alumina in Phosphate Glass: II, Structure of Sodium Alurninophosphate Glass,” J. Am. Ceram. Soc. 76(4), 919–928 (1993).
[Crossref]

Konidakis, I.

D. Palles, I. Konidakis, C. P. E. Varsamis, and E. I. Kamitsos, “Vibrational spectroscopic and bond valence study of structure and bonding in Al2O3-containing Agl-AgPO3 glasses,” Rsc. Adv 6(20), 16697–16710 (2016).
[Crossref]

I. Konidakis, C. P. E. Varsamis, and E. I. Kamitsos, “Effect of synthesis method on the structure and properties of AgPO3-based glasses,” J. Non-Cryst. Solids 357(14), 2684–2689 (2011).
[Crossref]

Krupke, W. F.

W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth-doped Y2O3 and LaF3 single crystals,” Phys. Rev. 145(1), 325–337 (1966).
[Crossref]

Kuanar, M.

A. R. Katritzky, M. Kuanar, S. Slavov, C. D. Hall, M. Karelson, I. Kahn, and D. A. Dobchev, “Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction,” Chem. Rev. 110(10), 5714–5789 (2010).
[Crossref] [PubMed]

Kuznetsov, A. R.

A. R. Kuznetsov, S. G. Lunter, S. I. Nikitina, A. G. Plyokhin, and Y. K. Fedorov, “Properties of neodymium-doped aluminophosphate laser glasses,” J. Appl. Spectrosc. 56(1), 68–72 (1992).
[Crossref]

Le, T.

T. Le, V. C. Epa, F. R. Burden, and D. A. Winkler, “Quantitative structure-property relationship modeling of diverse materials properties,” Chem. Rev. 112(5), 2889–2919 (2012).
[Crossref] [PubMed]

Le Saout, G.

G. Le Saout, P. Simon, F. Fayon, A. Blin, and Y. Vaills, “Raman and infrared study of (PbO) x (P2O5)(1− x) glasses,” J. Raman Spectrosc. 33(6), 740–746 (2002).

Lei, R.

Li, L.

D. Guo, Y. Wang, C. Nan, J. Xia, and L. Li, “Investigation of BaTiO3 formulation: an artificial neural network (ANN) method,” J. Am. Ceram. Soc. 22(5), 1867–1872 (2002).
[Crossref]

D. Guo, Y. Wang, C. Nan, L. Li, and J. Xia, “Application of artificial neural network technique to the formulation design of dielectric ceramics,” Sens. Actuators A Phys. 102(5), 93–98 (2002).
[Crossref]

Li, X.

Limbach, R.

D. Möncke, E. I. Kamitsos, D. Palles, R. Limbach, A. Winterstein-Beckmann, T. Honma, Z. Yao, T. Rouxel, and L. Wondraczek, “Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties,” J. Chem. Phys. 145(12), 124501 (2016).
[Crossref] [PubMed]

Lobanov, V. S.

M. Karelson, V. S. Lobanov, and A. R. Katritzky, “Quantum-chemical descriptors in QSAR/QSPR studies,” Chem. Rev. 96(3), 1027–1044 (1996).
[Crossref] [PubMed]

Lunter, S. G.

A. R. Kuznetsov, S. G. Lunter, S. I. Nikitina, A. G. Plyokhin, and Y. K. Fedorov, “Properties of neodymium-doped aluminophosphate laser glasses,” J. Appl. Spectrosc. 56(1), 68–72 (1992).
[Crossref]

Magdas, D. A.

D. A. Magdas, R. Stefan, D. Toloman, and N. S. Vedeanu, “Copper ions influence on lead-phosphate glass network,” J. Mol. Struct. 1056(4), 314–318 (2014).
[Crossref]

Melo, L.

N. Tavassoli, Z. Chen, A. Bain, L. Melo, D. Chen, and E. R. Grant, “Template-oriented genetic algorithm feature selection of analyte wavelets in the Raman spectrum of a complex mixture,” Anal. Chem. 86(21), 10591–10599 (2014).
[Crossref] [PubMed]

Metwalli, E.

E. Metwalli and R. K. Brow, “Modifier effects on the properties and structures of aluminophosphate glasses,” J. Non-Cryst. Solids 289(9), 113–122 (2001).
[Crossref]

Meyer, K.

K. Meyer, “Characterization of the structure of binary zinc ultraphosphate glasses by infrared and Raman spectroscopy,” J. Non-Cryst. Solids 209(3), 227–239 (1997).
[Crossref]

Möncke, D.

D. Möncke, E. I. Kamitsos, D. Palles, R. Limbach, A. Winterstein-Beckmann, T. Honma, Z. Yao, T. Rouxel, and L. Wondraczek, “Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties,” J. Chem. Phys. 145(12), 124501 (2016).
[Crossref] [PubMed]

L. L. Velli, C.-P. E. Varsamis, E. I. Kamitsos, D. Möncke, and D. Ehrt, “Structural investigation of metaphosphate glasses,” Phys. Chem. Glasses 46(3), 178–181 (2005).

Munteanu, C. R.

M. González-Durruthy, L. C. Alberici, C. Curti, Z. Naal, D. T. Atique-Sawazaki, J. M. Vázquez-Naya, H. González-Díaz, C. R. Munteanu, T. A. S. David, M. V. N. José, G. D. Humberto, and R. M. Cristian, “Experimental–computational study of carbon nanotube effects on mitochondrial respiration: in silico nano-QSPR machine learning models based on new Raman spectra transform with Markov–Shannon entropy invariants,” J. Chem. Inf. Model. 57(5), 1029–1044 (2017).
[Crossref] [PubMed]

Naal, Z.

M. González-Durruthy, L. C. Alberici, C. Curti, Z. Naal, D. T. Atique-Sawazaki, J. M. Vázquez-Naya, H. González-Díaz, C. R. Munteanu, T. A. S. David, M. V. N. José, G. D. Humberto, and R. M. Cristian, “Experimental–computational study of carbon nanotube effects on mitochondrial respiration: in silico nano-QSPR machine learning models based on new Raman spectra transform with Markov–Shannon entropy invariants,” J. Chem. Inf. Model. 57(5), 1029–1044 (2017).
[Crossref] [PubMed]

Nan, C.

D. Guo, Y. Wang, C. Nan, L. Li, and J. Xia, “Application of artificial neural network technique to the formulation design of dielectric ceramics,” Sens. Actuators A Phys. 102(5), 93–98 (2002).
[Crossref]

D. Guo, Y. Wang, C. Nan, J. Xia, and L. Li, “Investigation of BaTiO3 formulation: an artificial neural network (ANN) method,” J. Am. Ceram. Soc. 22(5), 1867–1872 (2002).
[Crossref]

Nelson, B. N.

B. N. Nelson and G. J. Exarhos, “Vibrational spectroscopy of cationsite interactions in phosphate glasses,” J. Chem. Phys. 71(7), 2739–2746 (1979).
[Crossref]

Nie, R.

Nikitina, S. I.

A. R. Kuznetsov, S. G. Lunter, S. I. Nikitina, A. G. Plyokhin, and Y. K. Fedorov, “Properties of neodymium-doped aluminophosphate laser glasses,” J. Appl. Spectrosc. 56(1), 68–72 (1992).
[Crossref]

Novais, A.

A. Novais, N. O. Dantas, I. Guedes, and M. Vermelho, “Spectroscopic properties of highly Nd-doped lead phosphate glass,” J. Alloys Compd. 648(7), 338–345 (2015).
[Crossref]

Nunes, L. A. O.

J. Schneider, S. L. Oliveira, L. A. O. Nunes, and H. Panepucci, “Local structure of sodium aluminum metaphosphate glasses,” J. Am. Ceram. Soc. 86(2), 317–324 (2003).
[Crossref]

Ohyagi, T.

S. Tanabe, T. Hanada, T. Ohyagi, and N. Soga, “Correlation between 151Eu Mössbauer isomer shift and Judd-Ofelt Ω6 parameters of Nd 3+ ions in phosphate and silicate laser glasses,” Phys. Rev. B Condens. Matter 48(14), 10591–10594 (1993).
[Crossref] [PubMed]

Oliveira, S. L.

J. Schneider, S. L. Oliveira, L. A. O. Nunes, and H. Panepucci, “Local structure of sodium aluminum metaphosphate glasses,” J. Am. Ceram. Soc. 86(2), 317–324 (2003).
[Crossref]

Palles, D.

N. S. Tagiara, D. Palles, E. D. Simandiras, and E. I. Kamitsos, “Synthesis, thermal and structural properties of pure TeO2 glass and zinc-tellurite glasses,” J. Non-Cryst. Solids 457, 116–125 (2017).
[Crossref]

D. Möncke, E. I. Kamitsos, D. Palles, R. Limbach, A. Winterstein-Beckmann, T. Honma, Z. Yao, T. Rouxel, and L. Wondraczek, “Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties,” J. Chem. Phys. 145(12), 124501 (2016).
[Crossref] [PubMed]

D. Palles, I. Konidakis, C. P. E. Varsamis, and E. I. Kamitsos, “Vibrational spectroscopic and bond valence study of structure and bonding in Al2O3-containing Agl-AgPO3 glasses,” Rsc. Adv 6(20), 16697–16710 (2016).
[Crossref]

Panepucci, H.

J. Schneider, S. L. Oliveira, L. A. O. Nunes, and H. Panepucci, “Local structure of sodium aluminum metaphosphate glasses,” J. Am. Ceram. Soc. 86(2), 317–324 (2003).
[Crossref]

Payne, S. A.

J. S. Hayden and S. A. Payne, “Laser and thermophysical properties of Nd-doped phosphate glasses,” Proc. SPIE 1761, 162–173 (1993).
[Crossref]

Peng, B.

Plyokhin, A. G.

A. R. Kuznetsov, S. G. Lunter, S. I. Nikitina, A. G. Plyokhin, and Y. K. Fedorov, “Properties of neodymium-doped aluminophosphate laser glasses,” J. Appl. Spectrosc. 56(1), 68–72 (1992).
[Crossref]

Prasad?., S. V. G. V. A.

Y. N. Ch, Ȧ. Ravibabu, and S. V. G. V. A. PrasadḂ., “Effect of Al2O3 on Optical Absorption Properties of Heavy Metal Oxide Glass System doped with Nd3+ Ion,” Int. J. Eng. Sci. 4, 2558–2594 (2014).

Qi, F.

Ravibabu, ?.

Y. N. Ch, Ȧ. Ravibabu, and S. V. G. V. A. PrasadḂ., “Effect of Al2O3 on Optical Absorption Properties of Heavy Metal Oxide Glass System doped with Nd3+ Ion,” Int. J. Eng. Sci. 4, 2558–2594 (2014).

Rinke, M. T.

J. Tsuchida, J. Schneider, M. T. Rinke, and H. Eckert, “Structure of ternary aluminum metaphosphate glasses,” J. Phys. Chem. C 115(44), 21927–21941 (2011).
[Crossref]

Rouxel, T.

D. Möncke, E. I. Kamitsos, D. Palles, R. Limbach, A. Winterstein-Beckmann, T. Honma, Z. Yao, T. Rouxel, and L. Wondraczek, “Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties,” J. Chem. Phys. 145(12), 124501 (2016).
[Crossref] [PubMed]

Schneider, J.

J. Tsuchida, J. Schneider, M. T. Rinke, and H. Eckert, “Structure of ternary aluminum metaphosphate glasses,” J. Phys. Chem. C 115(44), 21927–21941 (2011).
[Crossref]

J. Schneider, S. L. Oliveira, L. A. O. Nunes, and H. Panepucci, “Local structure of sodium aluminum metaphosphate glasses,” J. Am. Ceram. Soc. 86(2), 317–324 (2003).
[Crossref]

She, J.

Shuai, Z.

S. Yin, Z. Shuai, and Y. Wang, “A quantitative structure-property relationship study of the glass transition temperature of OLED materials,” J. Chem. Inf. Comput. Sci. 43(3), 970–977 (2003).
[Crossref] [PubMed]

Simandiras, E. D.

N. S. Tagiara, D. Palles, E. D. Simandiras, and E. I. Kamitsos, “Synthesis, thermal and structural properties of pure TeO2 glass and zinc-tellurite glasses,” J. Non-Cryst. Solids 457, 116–125 (2017).
[Crossref]

Simon, P.

G. Le Saout, P. Simon, F. Fayon, A. Blin, and Y. Vaills, “Raman and infrared study of (PbO) x (P2O5)(1− x) glasses,” J. Raman Spectrosc. 33(6), 740–746 (2002).

Singh, P.

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5(26), 67583–67609 (2015).
[Crossref]

Slavov, S.

A. R. Katritzky, M. Kuanar, S. Slavov, C. D. Hall, M. Karelson, I. Kahn, and D. A. Dobchev, “Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction,” Chem. Rev. 110(10), 5714–5789 (2010).
[Crossref] [PubMed]

Soga, N.

S. Tanabe, T. Hanada, T. Ohyagi, and N. Soga, “Correlation between 151Eu Mössbauer isomer shift and Judd-Ofelt Ω6 parameters of Nd 3+ ions in phosphate and silicate laser glasses,” Phys. Rev. B Condens. Matter 48(14), 10591–10594 (1993).
[Crossref] [PubMed]

Stefan, R.

D. A. Magdas, R. Stefan, D. Toloman, and N. S. Vedeanu, “Copper ions influence on lead-phosphate glass network,” J. Mol. Struct. 1056(4), 314–318 (2014).
[Crossref]

Suratwala, T. I.

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263(23), 318–341 (2000).
[Crossref]

Tagiara, N. S.

N. S. Tagiara, D. Palles, E. D. Simandiras, and E. I. Kamitsos, “Synthesis, thermal and structural properties of pure TeO2 glass and zinc-tellurite glasses,” J. Non-Cryst. Solids 457, 116–125 (2017).
[Crossref]

Tanabe, S.

S. Tanabe, T. Hanada, T. Ohyagi, and N. Soga, “Correlation between 151Eu Mössbauer isomer shift and Judd-Ofelt Ω6 parameters of Nd 3+ ions in phosphate and silicate laser glasses,” Phys. Rev. B Condens. Matter 48(14), 10591–10594 (1993).
[Crossref] [PubMed]

Tavassoli, N.

N. Tavassoli, Z. Chen, A. Bain, L. Melo, D. Chen, and E. R. Grant, “Template-oriented genetic algorithm feature selection of analyte wavelets in the Raman spectrum of a complex mixture,” Anal. Chem. 86(21), 10591–10599 (2014).
[Crossref] [PubMed]

Toloman, D.

D. A. Magdas, R. Stefan, D. Toloman, and N. S. Vedeanu, “Copper ions influence on lead-phosphate glass network,” J. Mol. Struct. 1056(4), 314–318 (2014).
[Crossref]

Tsuchida, J.

J. Tsuchida, J. Schneider, M. T. Rinke, and H. Eckert, “Structure of ternary aluminum metaphosphate glasses,” J. Phys. Chem. C 115(44), 21927–21941 (2011).
[Crossref]

Turner, G. L.

R. K. Brow, R. J. Kirkpatrick, and G. L. Turner, “Nature of Alumina in Phosphate Glass: II, Structure of Sodium Alurninophosphate Glass,” J. Am. Ceram. Soc. 76(4), 919–928 (1993).
[Crossref]

Vaills, Y.

G. Le Saout, P. Simon, F. Fayon, A. Blin, and Y. Vaills, “Raman and infrared study of (PbO) x (P2O5)(1− x) glasses,” J. Raman Spectrosc. 33(6), 740–746 (2002).

Varsamis, C. P. E.

D. Palles, I. Konidakis, C. P. E. Varsamis, and E. I. Kamitsos, “Vibrational spectroscopic and bond valence study of structure and bonding in Al2O3-containing Agl-AgPO3 glasses,” Rsc. Adv 6(20), 16697–16710 (2016).
[Crossref]

I. Konidakis, C. P. E. Varsamis, and E. I. Kamitsos, “Effect of synthesis method on the structure and properties of AgPO3-based glasses,” J. Non-Cryst. Solids 357(14), 2684–2689 (2011).
[Crossref]

Varsamis, C.-P. E.

L. L. Velli, C.-P. E. Varsamis, E. I. Kamitsos, D. Möncke, and D. Ehrt, “Structural investigation of metaphosphate glasses,” Phys. Chem. Glasses 46(3), 178–181 (2005).

Vázquez-Naya, J. M.

M. González-Durruthy, L. C. Alberici, C. Curti, Z. Naal, D. T. Atique-Sawazaki, J. M. Vázquez-Naya, H. González-Díaz, C. R. Munteanu, T. A. S. David, M. V. N. José, G. D. Humberto, and R. M. Cristian, “Experimental–computational study of carbon nanotube effects on mitochondrial respiration: in silico nano-QSPR machine learning models based on new Raman spectra transform with Markov–Shannon entropy invariants,” J. Chem. Inf. Model. 57(5), 1029–1044 (2017).
[Crossref] [PubMed]

Vedeanu, N. S.

D. A. Magdas, R. Stefan, D. Toloman, and N. S. Vedeanu, “Copper ions influence on lead-phosphate glass network,” J. Mol. Struct. 1056(4), 314–318 (2014).
[Crossref]

Velli, L. L.

L. L. Velli, C.-P. E. Varsamis, E. I. Kamitsos, D. Möncke, and D. Ehrt, “Structural investigation of metaphosphate glasses,” Phys. Chem. Glasses 46(3), 178–181 (2005).

Vermelho, M.

A. Novais, N. O. Dantas, I. Guedes, and M. Vermelho, “Spectroscopic properties of highly Nd-doped lead phosphate glass,” J. Alloys Compd. 648(7), 338–345 (2015).
[Crossref]

Wang, C.

Wang, J.

Wang, T.

Wang, Y.

S. Yin, Z. Shuai, and Y. Wang, “A quantitative structure-property relationship study of the glass transition temperature of OLED materials,” J. Chem. Inf. Comput. Sci. 43(3), 970–977 (2003).
[Crossref] [PubMed]

D. Guo, Y. Wang, C. Nan, J. Xia, and L. Li, “Investigation of BaTiO3 formulation: an artificial neural network (ANN) method,” J. Am. Ceram. Soc. 22(5), 1867–1872 (2002).
[Crossref]

D. Guo, Y. Wang, C. Nan, L. Li, and J. Xia, “Application of artificial neural network technique to the formulation design of dielectric ceramics,” Sens. Actuators A Phys. 102(5), 93–98 (2002).
[Crossref]

Wang, Z.

Wei, H.

Winkler, D. A.

T. Le, V. C. Epa, F. R. Burden, and D. A. Winkler, “Quantitative structure-property relationship modeling of diverse materials properties,” Chem. Rev. 112(5), 2889–2919 (2012).
[Crossref] [PubMed]

Winterstein-Beckmann, A.

D. Möncke, E. I. Kamitsos, D. Palles, R. Limbach, A. Winterstein-Beckmann, T. Honma, Z. Yao, T. Rouxel, and L. Wondraczek, “Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties,” J. Chem. Phys. 145(12), 124501 (2016).
[Crossref] [PubMed]

Wondraczek, L.

D. Möncke, E. I. Kamitsos, D. Palles, R. Limbach, A. Winterstein-Beckmann, T. Honma, Z. Yao, T. Rouxel, and L. Wondraczek, “Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties,” J. Chem. Phys. 145(12), 124501 (2016).
[Crossref] [PubMed]

Xia, J.

D. Guo, Y. Wang, C. Nan, L. Li, and J. Xia, “Application of artificial neural network technique to the formulation design of dielectric ceramics,” Sens. Actuators A Phys. 102(5), 93–98 (2002).
[Crossref]

D. Guo, Y. Wang, C. Nan, J. Xia, and L. Li, “Investigation of BaTiO3 formulation: an artificial neural network (ANN) method,” J. Am. Ceram. Soc. 22(5), 1867–1872 (2002).
[Crossref]

Xu, S.

Yadav, A. K.

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5(26), 67583–67609 (2015).
[Crossref]

Yao, Z.

D. Möncke, E. I. Kamitsos, D. Palles, R. Limbach, A. Winterstein-Beckmann, T. Honma, Z. Yao, T. Rouxel, and L. Wondraczek, “Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties,” J. Chem. Phys. 145(12), 124501 (2016).
[Crossref] [PubMed]

Yin, S.

S. Yin, Z. Shuai, and Y. Wang, “A quantitative structure-property relationship study of the glass transition temperature of OLED materials,” J. Chem. Inf. Comput. Sci. 43(3), 970–977 (2003).
[Crossref] [PubMed]

Zhang, J.

Zhang, L.

Zheng, Y.

Zhu, X.

Anal. Chem. (1)

N. Tavassoli, Z. Chen, A. Bain, L. Melo, D. Chen, and E. R. Grant, “Template-oriented genetic algorithm feature selection of analyte wavelets in the Raman spectrum of a complex mixture,” Anal. Chem. 86(21), 10591–10599 (2014).
[Crossref] [PubMed]

Chem. Rev. (3)

T. Le, V. C. Epa, F. R. Burden, and D. A. Winkler, “Quantitative structure-property relationship modeling of diverse materials properties,” Chem. Rev. 112(5), 2889–2919 (2012).
[Crossref] [PubMed]

M. Karelson, V. S. Lobanov, and A. R. Katritzky, “Quantum-chemical descriptors in QSAR/QSPR studies,” Chem. Rev. 96(3), 1027–1044 (1996).
[Crossref] [PubMed]

A. R. Katritzky, M. Kuanar, S. Slavov, C. D. Hall, M. Karelson, I. Kahn, and D. A. Dobchev, “Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction,” Chem. Rev. 110(10), 5714–5789 (2010).
[Crossref] [PubMed]

Chin. Opt. Lett. (3)

Comput. Chem. (1)

Z. Daren, “QSPR studies of PCBs by the combination of genetic algorithms and PLS analysis,” Comput. Chem. 25(2), 197–204 (2001).
[Crossref] [PubMed]

Int. J. Eng. Sci. (1)

Y. N. Ch, Ȧ. Ravibabu, and S. V. G. V. A. PrasadḂ., “Effect of Al2O3 on Optical Absorption Properties of Heavy Metal Oxide Glass System doped with Nd3+ Ion,” Int. J. Eng. Sci. 4, 2558–2594 (2014).

J. Alloys Compd. (1)

A. Novais, N. O. Dantas, I. Guedes, and M. Vermelho, “Spectroscopic properties of highly Nd-doped lead phosphate glass,” J. Alloys Compd. 648(7), 338–345 (2015).
[Crossref]

J. Am. Ceram. Soc. (5)

R. K. Brow, “Nature of Alumina in Phosphate Glass: I, Properties of Sodium Aluminophosphate Glass,” J. Am. Ceram. Soc. 76(4), 913–918 (1993).
[Crossref]

R. K. Brow, R. J. Kirkpatrick, and G. L. Turner, “Nature of Alumina in Phosphate Glass: II, Structure of Sodium Alurninophosphate Glass,” J. Am. Ceram. Soc. 76(4), 919–928 (1993).
[Crossref]

J. Schneider, S. L. Oliveira, L. A. O. Nunes, and H. Panepucci, “Local structure of sodium aluminum metaphosphate glasses,” J. Am. Ceram. Soc. 86(2), 317–324 (2003).
[Crossref]

L. Zhang and R. K. Brow, “A Raman study of iron-phosphate crystalline compounds and glasses,” J. Am. Ceram. Soc. 94(9), 3123–3130 (2011).
[Crossref]

D. Guo, Y. Wang, C. Nan, J. Xia, and L. Li, “Investigation of BaTiO3 formulation: an artificial neural network (ANN) method,” J. Am. Ceram. Soc. 22(5), 1867–1872 (2002).
[Crossref]

J. Appl. Spectrosc. (1)

A. R. Kuznetsov, S. G. Lunter, S. I. Nikitina, A. G. Plyokhin, and Y. K. Fedorov, “Properties of neodymium-doped aluminophosphate laser glasses,” J. Appl. Spectrosc. 56(1), 68–72 (1992).
[Crossref]

J. Chem. Inf. Comput. Sci. (1)

S. Yin, Z. Shuai, and Y. Wang, “A quantitative structure-property relationship study of the glass transition temperature of OLED materials,” J. Chem. Inf. Comput. Sci. 43(3), 970–977 (2003).
[Crossref] [PubMed]

J. Chem. Inf. Model. (1)

M. González-Durruthy, L. C. Alberici, C. Curti, Z. Naal, D. T. Atique-Sawazaki, J. M. Vázquez-Naya, H. González-Díaz, C. R. Munteanu, T. A. S. David, M. V. N. José, G. D. Humberto, and R. M. Cristian, “Experimental–computational study of carbon nanotube effects on mitochondrial respiration: in silico nano-QSPR machine learning models based on new Raman spectra transform with Markov–Shannon entropy invariants,” J. Chem. Inf. Model. 57(5), 1029–1044 (2017).
[Crossref] [PubMed]

J. Chem. Phys. (2)

D. Möncke, E. I. Kamitsos, D. Palles, R. Limbach, A. Winterstein-Beckmann, T. Honma, Z. Yao, T. Rouxel, and L. Wondraczek, “Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties,” J. Chem. Phys. 145(12), 124501 (2016).
[Crossref] [PubMed]

B. N. Nelson and G. J. Exarhos, “Vibrational spectroscopy of cationsite interactions in phosphate glasses,” J. Chem. Phys. 71(7), 2739–2746 (1979).
[Crossref]

J. Mol. Struct. (1)

D. A. Magdas, R. Stefan, D. Toloman, and N. S. Vedeanu, “Copper ions influence on lead-phosphate glass network,” J. Mol. Struct. 1056(4), 314–318 (2014).
[Crossref]

J. Non-Cryst. Solids (7)

E. Metwalli and R. K. Brow, “Modifier effects on the properties and structures of aluminophosphate glasses,” J. Non-Cryst. Solids 289(9), 113–122 (2001).
[Crossref]

K. Meyer, “Characterization of the structure of binary zinc ultraphosphate glasses by infrared and Raman spectroscopy,” J. Non-Cryst. Solids 209(3), 227–239 (1997).
[Crossref]

Y. S. Jiang, S. B. Jiang, and Y. Y. Jiang, “Spectral properfiles of Nd3+ in aluminophosphate glassws,” J. Non-Cryst. Solids 112(1-3), 286–290 (1989).
[Crossref]

R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263(28), 1–28 (2000).
[Crossref]

I. Konidakis, C. P. E. Varsamis, and E. I. Kamitsos, “Effect of synthesis method on the structure and properties of AgPO3-based glasses,” J. Non-Cryst. Solids 357(14), 2684–2689 (2011).
[Crossref]

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263(23), 318–341 (2000).
[Crossref]

N. S. Tagiara, D. Palles, E. D. Simandiras, and E. I. Kamitsos, “Synthesis, thermal and structural properties of pure TeO2 glass and zinc-tellurite glasses,” J. Non-Cryst. Solids 457, 116–125 (2017).
[Crossref]

J. Phys. Chem. C (1)

J. Tsuchida, J. Schneider, M. T. Rinke, and H. Eckert, “Structure of ternary aluminum metaphosphate glasses,” J. Phys. Chem. C 115(44), 21927–21941 (2011).
[Crossref]

J. Raman Spectrosc. (1)

G. Le Saout, P. Simon, F. Fayon, A. Blin, and Y. Vaills, “Raman and infrared study of (PbO) x (P2O5)(1− x) glasses,” J. Raman Spectrosc. 33(6), 740–746 (2002).

Phys. Chem. Glasses (1)

L. L. Velli, C.-P. E. Varsamis, E. I. Kamitsos, D. Möncke, and D. Ehrt, “Structural investigation of metaphosphate glasses,” Phys. Chem. Glasses 46(3), 178–181 (2005).

Phys. Rev. (1)

W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth-doped Y2O3 and LaF3 single crystals,” Phys. Rev. 145(1), 325–337 (1966).
[Crossref]

Phys. Rev. B Condens. Matter (1)

S. Tanabe, T. Hanada, T. Ohyagi, and N. Soga, “Correlation between 151Eu Mössbauer isomer shift and Judd-Ofelt Ω6 parameters of Nd 3+ ions in phosphate and silicate laser glasses,” Phys. Rev. B Condens. Matter 48(14), 10591–10594 (1993).
[Crossref] [PubMed]

Proc. SPIE (1)

J. S. Hayden and S. A. Payne, “Laser and thermophysical properties of Nd-doped phosphate glasses,” Proc. SPIE 1761, 162–173 (1993).
[Crossref]

RSC Advances (1)

A. K. Yadav and P. Singh, “A review of the structures of oxide glasses by Raman spectroscopy,” RSC Advances 5(26), 67583–67609 (2015).
[Crossref]

Rsc. Adv (1)

D. Palles, I. Konidakis, C. P. E. Varsamis, and E. I. Kamitsos, “Vibrational spectroscopic and bond valence study of structure and bonding in Al2O3-containing Agl-AgPO3 glasses,” Rsc. Adv 6(20), 16697–16710 (2016).
[Crossref]

Sens. Actuators A Phys. (1)

D. Guo, Y. Wang, C. Nan, L. Li, and J. Xia, “Application of artificial neural network technique to the formulation design of dielectric ceramics,” Sens. Actuators A Phys. 102(5), 93–98 (2002).
[Crossref]

Other (1)

H. Toratani, PhD thesis, Kyoto University, Kyoto,Japan, 1989.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Raman spectra of KPO3, Al(PO3)3 glasses and KPO3, Al(PO3)3 crystals;(b) Raman spectra of KPO3, Al(PO3)3 and PKAi (i = 3, 6, 9, 12, 15) glasses.
Fig. 2
Fig. 2 Deconvolution Raman spectra of KPO3, Al(PO3)3 and PKAi (i = 3, 6, 9, 12, 15) glasses in the range 850-1400 cm−1.
Fig. 3
Fig. 3 (a) Raman deconvolution band shift; and (b) change in relative intensities as a function of Al2O3 content.
Fig. 4
Fig. 4 Effect of Al2O3 content on (a) glass transition temperature (Tg); (b) glass density (ρ); (c) refractive index (nc) of PKAi (i = 3, 6, 9, 12, 15) glasses.
Fig. 5
Fig. 5 (a) Room absorption spectrum of PKA3; (b) Emission spectrum of PKA3 with excitation wavelength is 808nm.
Fig. 6
Fig. 6 Judde - Ofelt parameters (Ω2, Ω4 and Ω6) as a function of Al2O3 content.
Fig. 7
Fig. 7 Effect of Al2O3 content on (a) fluorescence lifetime (τrad); (b) effective line-width (Δλeff); and (c) emission cross section (σems) of PKAi (i = 3, 6, 9, 12, 15) glasses.
Fig. 8
Fig. 8 Effects of Q21Al tetrahedra on the (a-1, a-2) fluorescence lifetime (τrad), (b-1, b-2) effective line-width (Δλeff), and (c-1, c-2) emission cross section (σems) of PKAi (i = 3, 6, 9, 12, 15) glasses.

Tables (8)

Tables Icon

Table 1 Compositions of xAl2O3-(40-x)K2O-60P2O5 (x = 3, 6, 9, 12, 15) glasses with respect to P2O5, K2O, Al2O3 in mol% and Nd2O3 in wt% obtained from ICP-OES.

Tables Icon

Table 2 Raman band positions identified from this study and band assignments taken from literatures.

Tables Icon

Table 3 Vibration frequencies (v cm−1) and relative intensities (I %) of Raman deconvolution bands of PKAi (i = 3, 6, 9, 12, 15) glasses.

Tables Icon

Table 4 Judde - Ofelt parameters (Ω2, Ω4 and Ω6), fluorescence lifetime (τrad), effective line-width (Δλeff) and emission cross section (σems) of PKAi (i = 3, 6, 9, 12, 15) glasses.

Tables Icon

Table 5 Regression Coefficients (RC) of QSPR models for the different components in the glass, and Tg, ρ, and nc values obtained using the PLS method.

Tables Icon

Table 6 Coefficients of determination (R2), adjust R2 (R2adj), root mean square error (RMSE) and predicted residual sum of squares (PRESS) of QSPR models for the different components in the glass and the physical properties, Tg, ρ, and nc, by PLS method.

Tables Icon

Table 7 Regression Coefficients of QSPR models for the vibration frequencies and the relative intensities of Qn tetrahedra, and values of Tg, ρ, nc of the glasses obtained using the PLS method.

Tables Icon

Table 8 Coefficients of determination (R2)and adjust R2 (R2adj), root mean square error (RMSE), and predicted residual sum of squares (PRESS) obtained from QSPR models of the vibration frequency and relative intensities of Qn tetrahedra, and the values for Tg, ρ, nc of glasses by PLS method.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

W i = ( X T y) i q i
t i =X r i
p i = t i T X t i T t i
q i T = r i T ( X T y) t i T t i
r 1 = W 1
r i = W i p 1 T W i r 1 p 2 T W i r 2 p i1 T W i r i1 i>1
b=R Q T
y=bX+a
I(v)= 2 4 π 3 45× 3 2 c 4 × h I L N ( v 0 v) 4 μv(1 e hv/KT ) [ 45 ( α a ' ) 2 +7 ( γ a ' ) 2 ]
PRESS= i=1 n j=1 d ( y p,ij y ij ) 2
Tg=13. 2439P 2 O 5 +10.0120 3Al 2 O 3 6.70 18K 2 O+1301.216
( R 2 =0.994024, R 2 Adj =0.992028,RMSE=0.231762,PRESS=0.29214 )
Tg=+5.18912 v s ( Q 2 1Al )+1.685579  I( v s ( Q 2 1Al ) )1.14654 v s ( Q 2 0Al )1.45158  I( v s ( Q 2 0Al ) )             0.28019 v a s ( Q 2 )17.1086  I( v a s ( Q 2 ) )2.41032v( O 3 )15.0429  I( v( O 3 ) )550.947
R 2 =0.9991, R 2 adj =0.9988,RMSE=0.7918,PRESS=0.23926

Metrics