Abstract

During the exploration of nonlinear crystal, such as BaMgF4 crystal for all-solid-state lasers in the vacuum ultraviolet region, many problems emerged in the scattering centers. These were caused by immature crystal-growth technology, which may bring difficulties to the periodic poling process for quasi-phase-matching. In previous studies, research has shown that nonlinear random materials can also be used for frequency conversion. In this paper, a random nonlinear process was observed when the fundamental wave is illuminated onto the scratch of the BaMgF4 nanocrystal powder film. Then, the second-harmonic waves scattered from the nonlinear turbid media are re-collected to a forward direction using feedback wavefront shaping. The method shows a repeated way to improve the conversion efficiency, which may be viable to improve the second order conversion efficiency of BaMgF4 at other wavelengths, especially in the VUV regime. Additionally, more interesting applications in random nonlinear material, such as nanocrystal ceramics, can be expected in the future.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Measurement of the electro-optic coefficient of a BaMgF4 single crystal

Zhuo Wang, Hailang Dai, Yuanlin Zheng, and Xianfeng Chen
Opt. Mater. Express 7(2) 360-365 (2017)

Measurement of second-order nonlinear optical coefficients of BaMgF4

Junjie Chen, Xianfeng Chen, Yanzhi Ma, Yuanlin Zheng, Anhua Wu, Hongjun Li, Linwen Jiang, and Jun Xu
J. Opt. Soc. Am. B 29(4) 665-668 (2012)

Periodically poled BaMgF4 for ultraviolet frequency generation

S. C. Buchter, T. Y. Fan, V. Liberman, J. J. Zayhowski, M. Rothschild, E. J. Mason, A. Cassanho, H. P. Jenssen, and J. H. Burnett
Opt. Lett. 26(21) 1693-1695 (2001)

References

  • View by:
  • |
  • |
  • |

  1. L.J. Cox, Solid-State Laser Engineering (Springer, 1997).
  2. J. J. Chen, X. F. Chen, Y. Z. Ma, Y. L. Zheng, A. H. Wu, H. J. Li, L. W. Jiang, and J. Xu, “Measurement of second-order nonlinear optical coefficients of BaMgF4,” J. Opt. Soc. Am. B 29(4), 665–668 (2012).
    [Crossref]
  3. T. Kanai, X. Wang, S. Adachi, S. Watanabe, and C. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Express 17(10), 8696–8703 (2009).
    [Crossref] [PubMed]
  4. S. C. Buchter, T. Y. Fan, V. Liberman, J. J. Zayhowski, M. Rothschild, E. J. Mason, A. Cassanho, H. P. Jenssen, and J. H. Burnett, “Periodically poled BaMgF4 for ultraviolet frequency generation,” Opt. Lett. 26(21), 1693–1695 (2001).
    [Crossref] [PubMed]
  5. K. Shimamura, E. G. Villora, H. R. Zeng, M. Nakamura, S. Takekawa, and K. Kitamura, “Ferroelectric properties and poling of BaMgF4 for ultraviolet all solid-state lasers,” Appl. Phys. Lett. 89(23), 232911 (2006).
    [Crossref]
  6. E. G. Víllora, K. Shimamura, K. Sumiya, and H. Ishibashi, “Birefringent- and quasi phase-matching with BaMgF4 for vacuum-UV/UV and mid-IR all solid-state lasers,” Opt. Express 17(15), 12362–12378 (2009).
    [Crossref] [PubMed]
  7. M. Halugka, H. Kuzmany, M. Vybornov, P. Rogl, and P. Fejdi, “A double-temperature-gradient technique for the growth of single-crystal fullerites from the vapor phase,” Appl. Phys., A Mater. Sci. Process. 56(3), 161–167 (1993).
    [Crossref]
  8. A. Lipchin and R. A. Brown, “Comparison of three turbulence models for simulation of melt convection in Czochralski crystal growth of silicon,” J. Cryst. Growth 205(1–2), 71–91 (1999).
    [Crossref]
  9. A. H. Wu, Z. Wang, L. B. Su, D. P. Jiang, Y. Q. Zou, J. Xu, J. Chen, Y. Ma, X. Chen, and Z. Hu, “Crystal growth and frequency conversion of BaMgF4 single crystal by temperature gradient technique,” Opt. Mater. 38, 238–241 (2014).
    [Crossref]
  10. M. N. Valdez, H. Th. Spanke, and N. A. Spaldin, “Ab initio study of the ferroelectric strain dependence and 180◦ domain walls in the barium metal fluorides BaMgF4 and BaZnF4,” Phys. Rev. B 93(6), 064112 (2016).
    [Crossref]
  11. Y. Qiao, Y. Peng, Y. Zheng, F. Ye, and X. Chen, “Second-harmonic focusing by a nonlinear turbid medium via feedback-based wavefront shaping,” Opt. Lett. 42(10), 1895–1898 (2017).
    [Crossref] [PubMed]
  12. N. Garcia and A. Z. Genack, “Anomalous photon diffusion at the threshold of the Anderson localization transition,” Phys. Rev. Lett. 66(14), 1850–1853 (1991).
    [Crossref] [PubMed]
  13. S. Fujihara, Y. Kishiki, and T. Kimura, “Sol-gel processing of BaMgF4-Eu2+ thin films and their violet luminescence,” J. Alloys Compd. 333(1), 76–80 (2002).
    [Crossref]
  14. M. Taheri, H. Abdizadeh, and M. R. Golobostanfard, “Formation of urchin-like ZnO nanostructures by sol-gel electrophoretic deposition for photocatalytic application,” J. Alloys Compd. 725, 291–301 (2017).
    [Crossref]
  15. L. P. Wan, Z. Y. Chen, H. L. Huang, and J. X. Pu, “Focusing light into desired patterns through turbid media by feedback-based wavefront shaping,” Appl. Phys. B 122(7), 204 (2016).
    [Crossref]
  16. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
    [Crossref]
  17. S. Zhu, Z. Shen, B. Jiang, and X. Chen, “Random lasing at the edge of a TiO2 nanotube thin film,” Appl. Opt. 55(19), 5091–5094 (2016).
    [Crossref] [PubMed]
  18. E. Yu. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
    [Crossref]
  19. E. V. Makeev and S. E. Skipetrov, “Second harmonic generation in suspensions of spherical particles,” Opt. Commun. 224(1-3), 139–147 (2003).
    [Crossref]
  20. K. F. Ferris and S. M. Risser, “Surface defect enhancement of local electric fields in dielectric media,” Chem. Phys. Lett. 234(4–6), 359–366 (1991).
  21. X. J. Liu, C. Song, F. Zeng, and F. Pan, “Donor defects enhanced ferromagnetism in Co ZnO films,” Thin Solid Films 516(23), 8757–8761 (2008).
    [Crossref]
  22. B. B. Straumal, A. A. Mazilkin, S. G. Protasova, P. B. Straumal, A. A. Myatiev, G. Schütz, E. J. Goering, T. Tietze, and B. Baretzky, “Grain boundaries as the controlling factor for the ferromagnetic behaviour of Co-doped ZnO,” Philos. Mag. 93(10–12), 1371–1383 (2013).
    [Crossref]

2017 (2)

Y. Qiao, Y. Peng, Y. Zheng, F. Ye, and X. Chen, “Second-harmonic focusing by a nonlinear turbid medium via feedback-based wavefront shaping,” Opt. Lett. 42(10), 1895–1898 (2017).
[Crossref] [PubMed]

M. Taheri, H. Abdizadeh, and M. R. Golobostanfard, “Formation of urchin-like ZnO nanostructures by sol-gel electrophoretic deposition for photocatalytic application,” J. Alloys Compd. 725, 291–301 (2017).
[Crossref]

2016 (3)

L. P. Wan, Z. Y. Chen, H. L. Huang, and J. X. Pu, “Focusing light into desired patterns through turbid media by feedback-based wavefront shaping,” Appl. Phys. B 122(7), 204 (2016).
[Crossref]

S. Zhu, Z. Shen, B. Jiang, and X. Chen, “Random lasing at the edge of a TiO2 nanotube thin film,” Appl. Opt. 55(19), 5091–5094 (2016).
[Crossref] [PubMed]

M. N. Valdez, H. Th. Spanke, and N. A. Spaldin, “Ab initio study of the ferroelectric strain dependence and 180◦ domain walls in the barium metal fluorides BaMgF4 and BaZnF4,” Phys. Rev. B 93(6), 064112 (2016).
[Crossref]

2014 (1)

A. H. Wu, Z. Wang, L. B. Su, D. P. Jiang, Y. Q. Zou, J. Xu, J. Chen, Y. Ma, X. Chen, and Z. Hu, “Crystal growth and frequency conversion of BaMgF4 single crystal by temperature gradient technique,” Opt. Mater. 38, 238–241 (2014).
[Crossref]

2013 (1)

B. B. Straumal, A. A. Mazilkin, S. G. Protasova, P. B. Straumal, A. A. Myatiev, G. Schütz, E. J. Goering, T. Tietze, and B. Baretzky, “Grain boundaries as the controlling factor for the ferromagnetic behaviour of Co-doped ZnO,” Philos. Mag. 93(10–12), 1371–1383 (2013).
[Crossref]

2012 (1)

2010 (1)

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

2009 (2)

2008 (1)

X. J. Liu, C. Song, F. Zeng, and F. Pan, “Donor defects enhanced ferromagnetism in Co ZnO films,” Thin Solid Films 516(23), 8757–8761 (2008).
[Crossref]

2006 (1)

K. Shimamura, E. G. Villora, H. R. Zeng, M. Nakamura, S. Takekawa, and K. Kitamura, “Ferroelectric properties and poling of BaMgF4 for ultraviolet all solid-state lasers,” Appl. Phys. Lett. 89(23), 232911 (2006).
[Crossref]

2003 (1)

E. V. Makeev and S. E. Skipetrov, “Second harmonic generation in suspensions of spherical particles,” Opt. Commun. 224(1-3), 139–147 (2003).
[Crossref]

2002 (1)

S. Fujihara, Y. Kishiki, and T. Kimura, “Sol-gel processing of BaMgF4-Eu2+ thin films and their violet luminescence,” J. Alloys Compd. 333(1), 76–80 (2002).
[Crossref]

2001 (2)

E. Yu. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

S. C. Buchter, T. Y. Fan, V. Liberman, J. J. Zayhowski, M. Rothschild, E. J. Mason, A. Cassanho, H. P. Jenssen, and J. H. Burnett, “Periodically poled BaMgF4 for ultraviolet frequency generation,” Opt. Lett. 26(21), 1693–1695 (2001).
[Crossref] [PubMed]

1999 (1)

A. Lipchin and R. A. Brown, “Comparison of three turbulence models for simulation of melt convection in Czochralski crystal growth of silicon,” J. Cryst. Growth 205(1–2), 71–91 (1999).
[Crossref]

1993 (1)

M. Halugka, H. Kuzmany, M. Vybornov, P. Rogl, and P. Fejdi, “A double-temperature-gradient technique for the growth of single-crystal fullerites from the vapor phase,” Appl. Phys., A Mater. Sci. Process. 56(3), 161–167 (1993).
[Crossref]

1991 (2)

K. F. Ferris and S. M. Risser, “Surface defect enhancement of local electric fields in dielectric media,” Chem. Phys. Lett. 234(4–6), 359–366 (1991).

N. Garcia and A. Z. Genack, “Anomalous photon diffusion at the threshold of the Anderson localization transition,” Phys. Rev. Lett. 66(14), 1850–1853 (1991).
[Crossref] [PubMed]

Abdizadeh, H.

M. Taheri, H. Abdizadeh, and M. R. Golobostanfard, “Formation of urchin-like ZnO nanostructures by sol-gel electrophoretic deposition for photocatalytic application,” J. Alloys Compd. 725, 291–301 (2017).
[Crossref]

Adachi, S.

Baretzky, B.

B. B. Straumal, A. A. Mazilkin, S. G. Protasova, P. B. Straumal, A. A. Myatiev, G. Schütz, E. J. Goering, T. Tietze, and B. Baretzky, “Grain boundaries as the controlling factor for the ferromagnetic behaviour of Co-doped ZnO,” Philos. Mag. 93(10–12), 1371–1383 (2013).
[Crossref]

Brown, R. A.

A. Lipchin and R. A. Brown, “Comparison of three turbulence models for simulation of melt convection in Czochralski crystal growth of silicon,” J. Cryst. Growth 205(1–2), 71–91 (1999).
[Crossref]

Buchter, S. C.

Burnett, J. H.

Cassanho, A.

Chen, C.

Chen, J.

A. H. Wu, Z. Wang, L. B. Su, D. P. Jiang, Y. Q. Zou, J. Xu, J. Chen, Y. Ma, X. Chen, and Z. Hu, “Crystal growth and frequency conversion of BaMgF4 single crystal by temperature gradient technique,” Opt. Mater. 38, 238–241 (2014).
[Crossref]

Chen, J. J.

Chen, X.

Chen, X. F.

Chen, Z. Y.

L. P. Wan, Z. Y. Chen, H. L. Huang, and J. X. Pu, “Focusing light into desired patterns through turbid media by feedback-based wavefront shaping,” Appl. Phys. B 122(7), 204 (2016).
[Crossref]

Chirkin, A. S.

E. Yu. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Fan, T. Y.

Fejdi, P.

M. Halugka, H. Kuzmany, M. Vybornov, P. Rogl, and P. Fejdi, “A double-temperature-gradient technique for the growth of single-crystal fullerites from the vapor phase,” Appl. Phys., A Mater. Sci. Process. 56(3), 161–167 (1993).
[Crossref]

Ferris, K. F.

K. F. Ferris and S. M. Risser, “Surface defect enhancement of local electric fields in dielectric media,” Chem. Phys. Lett. 234(4–6), 359–366 (1991).

Fujihara, S.

S. Fujihara, Y. Kishiki, and T. Kimura, “Sol-gel processing of BaMgF4-Eu2+ thin films and their violet luminescence,” J. Alloys Compd. 333(1), 76–80 (2002).
[Crossref]

Garcia, N.

N. Garcia and A. Z. Genack, “Anomalous photon diffusion at the threshold of the Anderson localization transition,” Phys. Rev. Lett. 66(14), 1850–1853 (1991).
[Crossref] [PubMed]

Genack, A. Z.

N. Garcia and A. Z. Genack, “Anomalous photon diffusion at the threshold of the Anderson localization transition,” Phys. Rev. Lett. 66(14), 1850–1853 (1991).
[Crossref] [PubMed]

Goering, E. J.

B. B. Straumal, A. A. Mazilkin, S. G. Protasova, P. B. Straumal, A. A. Myatiev, G. Schütz, E. J. Goering, T. Tietze, and B. Baretzky, “Grain boundaries as the controlling factor for the ferromagnetic behaviour of Co-doped ZnO,” Philos. Mag. 93(10–12), 1371–1383 (2013).
[Crossref]

Golobostanfard, M. R.

M. Taheri, H. Abdizadeh, and M. R. Golobostanfard, “Formation of urchin-like ZnO nanostructures by sol-gel electrophoretic deposition for photocatalytic application,” J. Alloys Compd. 725, 291–301 (2017).
[Crossref]

Halugka, M.

M. Halugka, H. Kuzmany, M. Vybornov, P. Rogl, and P. Fejdi, “A double-temperature-gradient technique for the growth of single-crystal fullerites from the vapor phase,” Appl. Phys., A Mater. Sci. Process. 56(3), 161–167 (1993).
[Crossref]

Hu, Z.

A. H. Wu, Z. Wang, L. B. Su, D. P. Jiang, Y. Q. Zou, J. Xu, J. Chen, Y. Ma, X. Chen, and Z. Hu, “Crystal growth and frequency conversion of BaMgF4 single crystal by temperature gradient technique,” Opt. Mater. 38, 238–241 (2014).
[Crossref]

Huang, H. L.

L. P. Wan, Z. Y. Chen, H. L. Huang, and J. X. Pu, “Focusing light into desired patterns through turbid media by feedback-based wavefront shaping,” Appl. Phys. B 122(7), 204 (2016).
[Crossref]

Ishibashi, H.

Jenssen, H. P.

Jiang, B.

Jiang, D. P.

A. H. Wu, Z. Wang, L. B. Su, D. P. Jiang, Y. Q. Zou, J. Xu, J. Chen, Y. Ma, X. Chen, and Z. Hu, “Crystal growth and frequency conversion of BaMgF4 single crystal by temperature gradient technique,” Opt. Mater. 38, 238–241 (2014).
[Crossref]

Jiang, L. W.

Kaminskii, A. A.

E. Yu. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Kanai, T.

Kimura, T.

S. Fujihara, Y. Kishiki, and T. Kimura, “Sol-gel processing of BaMgF4-Eu2+ thin films and their violet luminescence,” J. Alloys Compd. 333(1), 76–80 (2002).
[Crossref]

Kishiki, Y.

S. Fujihara, Y. Kishiki, and T. Kimura, “Sol-gel processing of BaMgF4-Eu2+ thin films and their violet luminescence,” J. Alloys Compd. 333(1), 76–80 (2002).
[Crossref]

Kitamura, K.

K. Shimamura, E. G. Villora, H. R. Zeng, M. Nakamura, S. Takekawa, and K. Kitamura, “Ferroelectric properties and poling of BaMgF4 for ultraviolet all solid-state lasers,” Appl. Phys. Lett. 89(23), 232911 (2006).
[Crossref]

Kuzmany, H.

M. Halugka, H. Kuzmany, M. Vybornov, P. Rogl, and P. Fejdi, “A double-temperature-gradient technique for the growth of single-crystal fullerites from the vapor phase,” Appl. Phys., A Mater. Sci. Process. 56(3), 161–167 (1993).
[Crossref]

Lagendijk, A.

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

Li, H. J.

Liberman, V.

Lipchin, A.

A. Lipchin and R. A. Brown, “Comparison of three turbulence models for simulation of melt convection in Czochralski crystal growth of silicon,” J. Cryst. Growth 205(1–2), 71–91 (1999).
[Crossref]

Liu, X. J.

X. J. Liu, C. Song, F. Zeng, and F. Pan, “Donor defects enhanced ferromagnetism in Co ZnO films,” Thin Solid Films 516(23), 8757–8761 (2008).
[Crossref]

Ma, Y.

A. H. Wu, Z. Wang, L. B. Su, D. P. Jiang, Y. Q. Zou, J. Xu, J. Chen, Y. Ma, X. Chen, and Z. Hu, “Crystal growth and frequency conversion of BaMgF4 single crystal by temperature gradient technique,” Opt. Mater. 38, 238–241 (2014).
[Crossref]

Ma, Y. Z.

Makeev, E. V.

E. V. Makeev and S. E. Skipetrov, “Second harmonic generation in suspensions of spherical particles,” Opt. Commun. 224(1-3), 139–147 (2003).
[Crossref]

Mason, E. J.

Mazilkin, A. A.

B. B. Straumal, A. A. Mazilkin, S. G. Protasova, P. B. Straumal, A. A. Myatiev, G. Schütz, E. J. Goering, T. Tietze, and B. Baretzky, “Grain boundaries as the controlling factor for the ferromagnetic behaviour of Co-doped ZnO,” Philos. Mag. 93(10–12), 1371–1383 (2013).
[Crossref]

Morozov, E. Yu.

E. Yu. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Mosk, A. P.

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

Myatiev, A. A.

B. B. Straumal, A. A. Mazilkin, S. G. Protasova, P. B. Straumal, A. A. Myatiev, G. Schütz, E. J. Goering, T. Tietze, and B. Baretzky, “Grain boundaries as the controlling factor for the ferromagnetic behaviour of Co-doped ZnO,” Philos. Mag. 93(10–12), 1371–1383 (2013).
[Crossref]

Nakamura, M.

K. Shimamura, E. G. Villora, H. R. Zeng, M. Nakamura, S. Takekawa, and K. Kitamura, “Ferroelectric properties and poling of BaMgF4 for ultraviolet all solid-state lasers,” Appl. Phys. Lett. 89(23), 232911 (2006).
[Crossref]

Pan, F.

X. J. Liu, C. Song, F. Zeng, and F. Pan, “Donor defects enhanced ferromagnetism in Co ZnO films,” Thin Solid Films 516(23), 8757–8761 (2008).
[Crossref]

Peng, Y.

Protasova, S. G.

B. B. Straumal, A. A. Mazilkin, S. G. Protasova, P. B. Straumal, A. A. Myatiev, G. Schütz, E. J. Goering, T. Tietze, and B. Baretzky, “Grain boundaries as the controlling factor for the ferromagnetic behaviour of Co-doped ZnO,” Philos. Mag. 93(10–12), 1371–1383 (2013).
[Crossref]

Pu, J. X.

L. P. Wan, Z. Y. Chen, H. L. Huang, and J. X. Pu, “Focusing light into desired patterns through turbid media by feedback-based wavefront shaping,” Appl. Phys. B 122(7), 204 (2016).
[Crossref]

Qiao, Y.

Risser, S. M.

K. F. Ferris and S. M. Risser, “Surface defect enhancement of local electric fields in dielectric media,” Chem. Phys. Lett. 234(4–6), 359–366 (1991).

Rogl, P.

M. Halugka, H. Kuzmany, M. Vybornov, P. Rogl, and P. Fejdi, “A double-temperature-gradient technique for the growth of single-crystal fullerites from the vapor phase,” Appl. Phys., A Mater. Sci. Process. 56(3), 161–167 (1993).
[Crossref]

Rothschild, M.

Schütz, G.

B. B. Straumal, A. A. Mazilkin, S. G. Protasova, P. B. Straumal, A. A. Myatiev, G. Schütz, E. J. Goering, T. Tietze, and B. Baretzky, “Grain boundaries as the controlling factor for the ferromagnetic behaviour of Co-doped ZnO,” Philos. Mag. 93(10–12), 1371–1383 (2013).
[Crossref]

Shen, Z.

Shimamura, K.

E. G. Víllora, K. Shimamura, K. Sumiya, and H. Ishibashi, “Birefringent- and quasi phase-matching with BaMgF4 for vacuum-UV/UV and mid-IR all solid-state lasers,” Opt. Express 17(15), 12362–12378 (2009).
[Crossref] [PubMed]

K. Shimamura, E. G. Villora, H. R. Zeng, M. Nakamura, S. Takekawa, and K. Kitamura, “Ferroelectric properties and poling of BaMgF4 for ultraviolet all solid-state lasers,” Appl. Phys. Lett. 89(23), 232911 (2006).
[Crossref]

Skipetrov, S. E.

E. V. Makeev and S. E. Skipetrov, “Second harmonic generation in suspensions of spherical particles,” Opt. Commun. 224(1-3), 139–147 (2003).
[Crossref]

Song, C.

X. J. Liu, C. Song, F. Zeng, and F. Pan, “Donor defects enhanced ferromagnetism in Co ZnO films,” Thin Solid Films 516(23), 8757–8761 (2008).
[Crossref]

Spaldin, N. A.

M. N. Valdez, H. Th. Spanke, and N. A. Spaldin, “Ab initio study of the ferroelectric strain dependence and 180◦ domain walls in the barium metal fluorides BaMgF4 and BaZnF4,” Phys. Rev. B 93(6), 064112 (2016).
[Crossref]

Spanke, H. Th.

M. N. Valdez, H. Th. Spanke, and N. A. Spaldin, “Ab initio study of the ferroelectric strain dependence and 180◦ domain walls in the barium metal fluorides BaMgF4 and BaZnF4,” Phys. Rev. B 93(6), 064112 (2016).
[Crossref]

Straumal, B. B.

B. B. Straumal, A. A. Mazilkin, S. G. Protasova, P. B. Straumal, A. A. Myatiev, G. Schütz, E. J. Goering, T. Tietze, and B. Baretzky, “Grain boundaries as the controlling factor for the ferromagnetic behaviour of Co-doped ZnO,” Philos. Mag. 93(10–12), 1371–1383 (2013).
[Crossref]

Straumal, P. B.

B. B. Straumal, A. A. Mazilkin, S. G. Protasova, P. B. Straumal, A. A. Myatiev, G. Schütz, E. J. Goering, T. Tietze, and B. Baretzky, “Grain boundaries as the controlling factor for the ferromagnetic behaviour of Co-doped ZnO,” Philos. Mag. 93(10–12), 1371–1383 (2013).
[Crossref]

Su, L. B.

A. H. Wu, Z. Wang, L. B. Su, D. P. Jiang, Y. Q. Zou, J. Xu, J. Chen, Y. Ma, X. Chen, and Z. Hu, “Crystal growth and frequency conversion of BaMgF4 single crystal by temperature gradient technique,” Opt. Mater. 38, 238–241 (2014).
[Crossref]

Sumiya, K.

Taheri, M.

M. Taheri, H. Abdizadeh, and M. R. Golobostanfard, “Formation of urchin-like ZnO nanostructures by sol-gel electrophoretic deposition for photocatalytic application,” J. Alloys Compd. 725, 291–301 (2017).
[Crossref]

Takekawa, S.

K. Shimamura, E. G. Villora, H. R. Zeng, M. Nakamura, S. Takekawa, and K. Kitamura, “Ferroelectric properties and poling of BaMgF4 for ultraviolet all solid-state lasers,” Appl. Phys. Lett. 89(23), 232911 (2006).
[Crossref]

Tietze, T.

B. B. Straumal, A. A. Mazilkin, S. G. Protasova, P. B. Straumal, A. A. Myatiev, G. Schütz, E. J. Goering, T. Tietze, and B. Baretzky, “Grain boundaries as the controlling factor for the ferromagnetic behaviour of Co-doped ZnO,” Philos. Mag. 93(10–12), 1371–1383 (2013).
[Crossref]

Valdez, M. N.

M. N. Valdez, H. Th. Spanke, and N. A. Spaldin, “Ab initio study of the ferroelectric strain dependence and 180◦ domain walls in the barium metal fluorides BaMgF4 and BaZnF4,” Phys. Rev. B 93(6), 064112 (2016).
[Crossref]

Vellekoop, I. M.

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

Villora, E. G.

K. Shimamura, E. G. Villora, H. R. Zeng, M. Nakamura, S. Takekawa, and K. Kitamura, “Ferroelectric properties and poling of BaMgF4 for ultraviolet all solid-state lasers,” Appl. Phys. Lett. 89(23), 232911 (2006).
[Crossref]

Víllora, E. G.

Vybornov, M.

M. Halugka, H. Kuzmany, M. Vybornov, P. Rogl, and P. Fejdi, “A double-temperature-gradient technique for the growth of single-crystal fullerites from the vapor phase,” Appl. Phys., A Mater. Sci. Process. 56(3), 161–167 (1993).
[Crossref]

Wan, L. P.

L. P. Wan, Z. Y. Chen, H. L. Huang, and J. X. Pu, “Focusing light into desired patterns through turbid media by feedback-based wavefront shaping,” Appl. Phys. B 122(7), 204 (2016).
[Crossref]

Wang, X.

Wang, Z.

A. H. Wu, Z. Wang, L. B. Su, D. P. Jiang, Y. Q. Zou, J. Xu, J. Chen, Y. Ma, X. Chen, and Z. Hu, “Crystal growth and frequency conversion of BaMgF4 single crystal by temperature gradient technique,” Opt. Mater. 38, 238–241 (2014).
[Crossref]

Watanabe, S.

Wu, A. H.

A. H. Wu, Z. Wang, L. B. Su, D. P. Jiang, Y. Q. Zou, J. Xu, J. Chen, Y. Ma, X. Chen, and Z. Hu, “Crystal growth and frequency conversion of BaMgF4 single crystal by temperature gradient technique,” Opt. Mater. 38, 238–241 (2014).
[Crossref]

J. J. Chen, X. F. Chen, Y. Z. Ma, Y. L. Zheng, A. H. Wu, H. J. Li, L. W. Jiang, and J. Xu, “Measurement of second-order nonlinear optical coefficients of BaMgF4,” J. Opt. Soc. Am. B 29(4), 665–668 (2012).
[Crossref]

Xu, J.

A. H. Wu, Z. Wang, L. B. Su, D. P. Jiang, Y. Q. Zou, J. Xu, J. Chen, Y. Ma, X. Chen, and Z. Hu, “Crystal growth and frequency conversion of BaMgF4 single crystal by temperature gradient technique,” Opt. Mater. 38, 238–241 (2014).
[Crossref]

J. J. Chen, X. F. Chen, Y. Z. Ma, Y. L. Zheng, A. H. Wu, H. J. Li, L. W. Jiang, and J. Xu, “Measurement of second-order nonlinear optical coefficients of BaMgF4,” J. Opt. Soc. Am. B 29(4), 665–668 (2012).
[Crossref]

Ye, F.

Yusupov, D. B.

E. Yu. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Zayhowski, J. J.

Zeng, F.

X. J. Liu, C. Song, F. Zeng, and F. Pan, “Donor defects enhanced ferromagnetism in Co ZnO films,” Thin Solid Films 516(23), 8757–8761 (2008).
[Crossref]

Zeng, H. R.

K. Shimamura, E. G. Villora, H. R. Zeng, M. Nakamura, S. Takekawa, and K. Kitamura, “Ferroelectric properties and poling of BaMgF4 for ultraviolet all solid-state lasers,” Appl. Phys. Lett. 89(23), 232911 (2006).
[Crossref]

Zheng, Y.

Zheng, Y. L.

Zhu, S.

Zou, Y. Q.

A. H. Wu, Z. Wang, L. B. Su, D. P. Jiang, Y. Q. Zou, J. Xu, J. Chen, Y. Ma, X. Chen, and Z. Hu, “Crystal growth and frequency conversion of BaMgF4 single crystal by temperature gradient technique,” Opt. Mater. 38, 238–241 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

L. P. Wan, Z. Y. Chen, H. L. Huang, and J. X. Pu, “Focusing light into desired patterns through turbid media by feedback-based wavefront shaping,” Appl. Phys. B 122(7), 204 (2016).
[Crossref]

Appl. Phys. Lett. (1)

K. Shimamura, E. G. Villora, H. R. Zeng, M. Nakamura, S. Takekawa, and K. Kitamura, “Ferroelectric properties and poling of BaMgF4 for ultraviolet all solid-state lasers,” Appl. Phys. Lett. 89(23), 232911 (2006).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

M. Halugka, H. Kuzmany, M. Vybornov, P. Rogl, and P. Fejdi, “A double-temperature-gradient technique for the growth of single-crystal fullerites from the vapor phase,” Appl. Phys., A Mater. Sci. Process. 56(3), 161–167 (1993).
[Crossref]

Chem. Phys. Lett. (1)

K. F. Ferris and S. M. Risser, “Surface defect enhancement of local electric fields in dielectric media,” Chem. Phys. Lett. 234(4–6), 359–366 (1991).

J. Alloys Compd. (2)

S. Fujihara, Y. Kishiki, and T. Kimura, “Sol-gel processing of BaMgF4-Eu2+ thin films and their violet luminescence,” J. Alloys Compd. 333(1), 76–80 (2002).
[Crossref]

M. Taheri, H. Abdizadeh, and M. R. Golobostanfard, “Formation of urchin-like ZnO nanostructures by sol-gel electrophoretic deposition for photocatalytic application,” J. Alloys Compd. 725, 291–301 (2017).
[Crossref]

J. Cryst. Growth (1)

A. Lipchin and R. A. Brown, “Comparison of three turbulence models for simulation of melt convection in Czochralski crystal growth of silicon,” J. Cryst. Growth 205(1–2), 71–91 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

E. Yu. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Nat. Photonics (1)

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

Opt. Commun. (1)

E. V. Makeev and S. E. Skipetrov, “Second harmonic generation in suspensions of spherical particles,” Opt. Commun. 224(1-3), 139–147 (2003).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (1)

A. H. Wu, Z. Wang, L. B. Su, D. P. Jiang, Y. Q. Zou, J. Xu, J. Chen, Y. Ma, X. Chen, and Z. Hu, “Crystal growth and frequency conversion of BaMgF4 single crystal by temperature gradient technique,” Opt. Mater. 38, 238–241 (2014).
[Crossref]

Philos. Mag. (1)

B. B. Straumal, A. A. Mazilkin, S. G. Protasova, P. B. Straumal, A. A. Myatiev, G. Schütz, E. J. Goering, T. Tietze, and B. Baretzky, “Grain boundaries as the controlling factor for the ferromagnetic behaviour of Co-doped ZnO,” Philos. Mag. 93(10–12), 1371–1383 (2013).
[Crossref]

Phys. Rev. B (1)

M. N. Valdez, H. Th. Spanke, and N. A. Spaldin, “Ab initio study of the ferroelectric strain dependence and 180◦ domain walls in the barium metal fluorides BaMgF4 and BaZnF4,” Phys. Rev. B 93(6), 064112 (2016).
[Crossref]

Phys. Rev. Lett. (1)

N. Garcia and A. Z. Genack, “Anomalous photon diffusion at the threshold of the Anderson localization transition,” Phys. Rev. Lett. 66(14), 1850–1853 (1991).
[Crossref] [PubMed]

Thin Solid Films (1)

X. J. Liu, C. Song, F. Zeng, and F. Pan, “Donor defects enhanced ferromagnetism in Co ZnO films,” Thin Solid Films 516(23), 8757–8761 (2008).
[Crossref]

Other (1)

L.J. Cox, Solid-State Laser Engineering (Springer, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) A SEM image of the BMF particles with maximum size of ~10 μm (scale bar, 50 μm). (b)the Electrophoretic Deposition Method (c) the picture of BMF nanocrystal film sample. (d) an SEM image of the film sample (scale bar, 2 μm).
Fig. 2
Fig. 2 The concept of SHG focusing via feedback-based wave-front shaping.
Fig. 3
Fig. 3 the schematic diagram of the primary optical setup. λ / 2 , half-wave plate; beam-blooming lens system: L1(a\b), f1(a\b) = 40, 200 mm; beam-scaling lens system: L2(a\b) and L3(a\b), f2(a\b) = 100, 40 mm, f3(a\b) = 200, 50 mm; M, mirror; DM, dichroic mirror; F, filter.
Fig. 4
Fig. 4 (a)(c)(e) pictures before optimization (b) The SH focus after 200 generations of optimization while the pixels were divided into 160 × 90 segments. (d) The SH focus after 300 generations of optimization while the pixels were divided into 160 × 90 segments. (f) The SH focus after 300 generations of optimization while the pixels were divided into 240 × 135 segments.
Fig. 5
Fig. 5 (a) The enhancement factor η of the SHG at the focused location was estimated to be 15 after 200 generations while the pixels were divided into 160 × 90 segments. (b) η was estimated to be 15 after 300 generations while the pixels were divided into 160 × 90 segments. (c) η was estimated to be 30 after 300 generations while the pixels were divided into 240 × 135 segments.
Fig. 6
Fig. 6 The blue line shows the intensity of the SH signal when the FW focuses on the temper part of the BMF nanocrystal film. The red line shows the intensity of the SH signal when the FW moves to a scratch of this film. The microscopic image of the scratch is also shown in this figure (scale bar, 100 μm).
Fig. 7
Fig. 7 The intensity of both the FW wave and SHG was randomly enhanced at the scratch.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I p o l y I 0 L ,

Metrics