Abstract

We experimentally and theoretically investigate the nonlinear electromagnetic properties of light-tunneling heterostructures embedded with a varactor-loaded electromagnetically-induced-transparency (EIT)-like highly dispersive meta-molecule. We illustrate that when an EIT-like meta-molecule is hired at the interface of ε-negative medium and µ-negative medium, the Q-factor and corresponding local fields of tunneling modes can be greatly boosted. Further study reveals that the electromagnetic (EM) field confinement along the propagating direction provided by the heterostructures, and the in-plane localization originated from the EIT-like meta-molecule, give rise to the three-dimensional enhancement of sub-wavelength EM localization corporately. Moreover, such a configuration can generate an extremely high transmission contrast up to 12 dB between two bistable states in its transmission with a bistability threshold low to −4.7 dBm. These advantages are not at the cost of extra device volume and drastic reduction of transmittance.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear properties of photonic crystal cavity with embedded electromagnetic-induced-transparency-like meta-atoms

Yongqiang Chen, Kejia Zhu, Yunhui Li, Yu Fang, Quanying Wu, Yong Sun, and Hong Chen
Opt. Mater. Express 7(8) 3034-3040 (2017)

Subwavelength electromagnetic switch: Bistable wave transmission of side-coupling nonlinear meta-atom

Yaqiong Ding, Chunhua Xue, Yong Sun, Haitao Jiang, Yunhui Li, Hongqiang Li, and Hong Chen
Opt. Express 20(22) 24813-24818 (2012)

Highly efficient all-optical diode action based on light-tunneling heterostructures

Chunhua Xue, Haitao Jiang, and Hong Chen
Opt. Express 18(7) 7479-7487 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
    [Crossref] [PubMed]
  2. I. S. Nefedov, V. N. Gusyatnikov, and P. K. Kashkarov, “Low-threshold photonic band-gap optical logic gates,” Laser Phys. 10, 640 (2000).
  3. S. F. Mingaleev and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-crystal waveguides,” J. Opt. Soc. Am. B 19(9), 2241–2249 (2002).
    [Crossref]
  4. M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
    [Crossref] [PubMed]
  5. A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
    [Crossref]
  6. H. Nihei and A. Okamoto, “Switching time of optical memory devices composed of photonic crystals with an impurity three-level atom,” Jpn. J. Appl. Phys. 40(12), 6835–6840 (2001).
    [Crossref]
  7. G. Assanto, Z. Wang, D. J. Hagan, and E. W. Van Stryland, “All-optical modulation via nonlinear cascading in type-ii 2nd-harmonic generation,” Appl. Phys. Lett. 67(15), 2120–2122 (1995).
    [Crossref]
  8. V. Grigoriev and F. Biancalana, “Nonreciprocal switching thresholds in coupled nonlinear microcavities,” Opt. Lett. 36(11), 2131–2133 (2011).
    [Crossref] [PubMed]
  9. C. Wang, C. Z. Zhou, and Z. Y. Li, “On-chip optical diode based on silicon photonic crystal heterojunctions,” Opt. Express 19(27), 26948–26955 (2011).
    [Crossref] [PubMed]
  10. A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag. 51(10), 2558–2571 (2003).
    [Crossref]
  11. J. Y. Guo, H. Chen, H. Q. Li, and Y. W. Zhang, “Effective permittivity and permeability of one-dimensional dielectric photonic crystal within a band gap,” Chin. Phys. B 17(7), 2544–2552 (2008).
    [Crossref]
  12. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
    [Crossref]
  13. M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
    [Crossref]
  14. L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
    [Crossref]
  15. C. Symonds, A. Lemaitre, E. Homeyer, J. C. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
    [Crossref]
  16. L. J. Dong, H. T. Jiang, H. Chen, and Y. L. Shi, “Enhancement of Faraday rotation effect in heterostructures with magneto-optical metals,” J. Appl. Phys. 107(9), 093101 (2010).
    [Crossref]
  17. C. H. Xue, H. T. Jiang, and H. Chen, “Nonlinear resonance-enhanced excitation of surface plasmon polaritons,” Opt. Lett. 36(6), 855–857 (2011).
    [Crossref] [PubMed]
  18. H. Lu, Y. H. Li, T. H. Feng, S. H. Wang, C. H. Xue, X. B. Kang, G. Q. Du, H. T. Jiang, and H. Chen, “Optical Tamm states in hetero-structures with highly dispersive planar plasmonic metamaterials,” Appl. Phys. Lett. 102(11), 111909 (2013).
    [Crossref]
  19. Y. Q. Chen, K. J. Zhu, Y. H. Li, Y. Fang, Q. Y. Wu, Y. Sun, and H. Chen, “Nonlinear properties of photonic crystal cavity with embedded electromagnetic-induced-transparency-like meta-atoms,” Opt. Mater. Express 7(8), 3034–3040 (2017).
    [Crossref]
  20. Y. Lai, Y. Wu, P. Sheng, and Z. Q. Zhang, “Hybrid elastic solids,” Nat. Mater. 10(8), 620–624 (2011).
    [Crossref] [PubMed]
  21. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  22. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref] [PubMed]
  23. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
    [Crossref] [PubMed]
  24. J. Shao, J. Q. Li, J. Li, Y. K. Wang, Z. G. Dong, P. Chen, R. X. Wu, and Y. Zhai, “Analogue of electromagnetically induced transparency by doubly degenerate modes in a U-shaped metamaterial,” Appl. Phys. Lett. 102(3), 034106 (2013).
    [Crossref]
  25. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
    [Crossref] [PubMed]
  26. Y. F. Ma, Z. Y. Li, Y. M. Yang, R. Huang, R. Singh, S. Zhang, J. Q. Gu, Z. Tian, J. G. Han, and W. L. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
    [Crossref]
  27. S. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
    [Crossref]
  28. X. Lu, J. Shi, R. Liu, and C. Guan, “Highly-dispersive electromagnetic induced transparency in planar symmetric metamaterials,” Opt. Express 20(16), 17581–17590 (2012).
    [Crossref] [PubMed]
  29. V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B Condens. Matter Mater. Phys. 80(3), 035104 (2009).
    [Crossref]
  30. Y. Sun, Y. W. Tong, C. H. Xue, Y. Q. Ding, Y. H. Li, H. T. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
    [Crossref]
  31. B. D. Clader, S. M. Hendrickson, R. M. Camacho, and B. C. Jacobs, “All-optical microdisk switch using EIT,” Opt. Express 21(5), 6169–6179 (2013).
    [Crossref] [PubMed]
  32. Y. Fan, Z. Wei, J. Han, X. Liu, and H. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys. 44(42), 425303 (2011).
    [Crossref]
  33. Y. Fan, J. Han, Z. Wei, C. Wu, Y. Cao, X. Yu, and H. Li, “Subwavelength electromagnetic diode: one-way response of cascading nonlinear meta-atoms,” Appl. Phys. Lett. 98(15), 151903 (2011).
    [Crossref]
  34. A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16(16), 12084–12089 (2008).
    [Crossref] [PubMed]

2017 (1)

2013 (4)

J. Shao, J. Q. Li, J. Li, Y. K. Wang, Z. G. Dong, P. Chen, R. X. Wu, and Y. Zhai, “Analogue of electromagnetically induced transparency by doubly degenerate modes in a U-shaped metamaterial,” Appl. Phys. Lett. 102(3), 034106 (2013).
[Crossref]

Y. Sun, Y. W. Tong, C. H. Xue, Y. Q. Ding, Y. H. Li, H. T. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

B. D. Clader, S. M. Hendrickson, R. M. Camacho, and B. C. Jacobs, “All-optical microdisk switch using EIT,” Opt. Express 21(5), 6169–6179 (2013).
[Crossref] [PubMed]

H. Lu, Y. H. Li, T. H. Feng, S. H. Wang, C. H. Xue, X. B. Kang, G. Q. Du, H. T. Jiang, and H. Chen, “Optical Tamm states in hetero-structures with highly dispersive planar plasmonic metamaterials,” Appl. Phys. Lett. 102(11), 111909 (2013).
[Crossref]

2012 (1)

2011 (7)

2010 (1)

L. J. Dong, H. T. Jiang, H. Chen, and Y. L. Shi, “Enhancement of Faraday rotation effect in heterostructures with magneto-optical metals,” J. Appl. Phys. 107(9), 093101 (2010).
[Crossref]

2009 (5)

C. Symonds, A. Lemaitre, E. Homeyer, J. C. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

S. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
[Crossref]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B Condens. Matter Mater. Phys. 80(3), 035104 (2009).
[Crossref]

2008 (5)

A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16(16), 12084–12089 (2008).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

J. Y. Guo, H. Chen, H. Q. Li, and Y. W. Zhang, “Effective permittivity and permeability of one-dimensional dielectric photonic crystal within a band gap,” Chin. Phys. B 17(7), 2544–2552 (2008).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

2007 (1)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

2006 (1)

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

2005 (1)

L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[Crossref]

2003 (2)

A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag. 51(10), 2558–2571 (2003).
[Crossref]

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

2002 (2)

S. F. Mingaleev and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-crystal waveguides,” J. Opt. Soc. Am. B 19(9), 2241–2249 (2002).
[Crossref]

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[Crossref] [PubMed]

2001 (1)

H. Nihei and A. Okamoto, “Switching time of optical memory devices composed of photonic crystals with an impurity three-level atom,” Jpn. J. Appl. Phys. 40(12), 6835–6840 (2001).
[Crossref]

2000 (1)

I. S. Nefedov, V. N. Gusyatnikov, and P. K. Kashkarov, “Low-threshold photonic band-gap optical logic gates,” Laser Phys. 10, 640 (2000).

1995 (1)

G. Assanto, Z. Wang, D. J. Hagan, and E. W. Van Stryland, “All-optical modulation via nonlinear cascading in type-ii 2nd-harmonic generation,” Appl. Phys. Lett. 67(15), 2120–2122 (1995).
[Crossref]

Abram, R. A.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Akimov, A. V.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Alù, A.

A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag. 51(10), 2558–2571 (2003).
[Crossref]

Assanto, G.

G. Assanto, Z. Wang, D. J. Hagan, and E. W. Van Stryland, “All-optical modulation via nonlinear cascading in type-ii 2nd-harmonic generation,” Appl. Phys. Lett. 67(15), 2120–2122 (1995).
[Crossref]

Bellessa, J.

C. Symonds, A. Lemaitre, E. Homeyer, J. C. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

Ben Bakir, B.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

Bettiol, A. A.

S. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
[Crossref]

Biancalana, F.

Brand, S.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Camacho, R. M.

Cao, Y.

Y. Fan, J. Han, Z. Wei, C. Wu, Y. Cao, X. Yu, and H. Li, “Subwavelength electromagnetic diode: one-way response of cascading nonlinear meta-atoms,” Appl. Phys. Lett. 98(15), 151903 (2011).
[Crossref]

Chamberlain, J. M.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Chan, C. T.

L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[Crossref]

Chen, H.

Y. Q. Chen, K. J. Zhu, Y. H. Li, Y. Fang, Q. Y. Wu, Y. Sun, and H. Chen, “Nonlinear properties of photonic crystal cavity with embedded electromagnetic-induced-transparency-like meta-atoms,” Opt. Mater. Express 7(8), 3034–3040 (2017).
[Crossref]

H. Lu, Y. H. Li, T. H. Feng, S. H. Wang, C. H. Xue, X. B. Kang, G. Q. Du, H. T. Jiang, and H. Chen, “Optical Tamm states in hetero-structures with highly dispersive planar plasmonic metamaterials,” Appl. Phys. Lett. 102(11), 111909 (2013).
[Crossref]

Y. Sun, Y. W. Tong, C. H. Xue, Y. Q. Ding, Y. H. Li, H. T. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

C. H. Xue, H. T. Jiang, and H. Chen, “Nonlinear resonance-enhanced excitation of surface plasmon polaritons,” Opt. Lett. 36(6), 855–857 (2011).
[Crossref] [PubMed]

L. J. Dong, H. T. Jiang, H. Chen, and Y. L. Shi, “Enhancement of Faraday rotation effect in heterostructures with magneto-optical metals,” J. Appl. Phys. 107(9), 093101 (2010).
[Crossref]

J. Y. Guo, H. Chen, H. Q. Li, and Y. W. Zhang, “Effective permittivity and permeability of one-dimensional dielectric photonic crystal within a band gap,” Chin. Phys. B 17(7), 2544–2552 (2008).
[Crossref]

Chen, P.

J. Shao, J. Q. Li, J. Li, Y. K. Wang, Z. G. Dong, P. Chen, R. X. Wu, and Y. Zhai, “Analogue of electromagnetically induced transparency by doubly degenerate modes in a U-shaped metamaterial,” Appl. Phys. Lett. 102(3), 034106 (2013).
[Crossref]

Chen, Y. Q.

Chiam, S.

S. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
[Crossref]

Clader, B. D.

De La Rue, R. M.

Di Cioccio, L.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

Dijkhuis, J. I.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Ding, Y. Q.

Y. Sun, Y. W. Tong, C. H. Xue, Y. Q. Ding, Y. H. Li, H. T. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

Dong, L. J.

L. J. Dong, H. T. Jiang, H. Chen, and Y. L. Shi, “Enhancement of Faraday rotation effect in heterostructures with magneto-optical metals,” J. Appl. Phys. 107(9), 093101 (2010).
[Crossref]

Dong, Z. G.

J. Shao, J. Q. Li, J. Li, Y. K. Wang, Z. G. Dong, P. Chen, R. X. Wu, and Y. Zhai, “Analogue of electromagnetically induced transparency by doubly degenerate modes in a U-shaped metamaterial,” Appl. Phys. Lett. 102(3), 034106 (2013).
[Crossref]

Du, G. Q.

H. Lu, Y. H. Li, T. H. Feng, S. H. Wang, C. H. Xue, X. B. Kang, G. Q. Du, H. T. Jiang, and H. Chen, “Optical Tamm states in hetero-structures with highly dispersive planar plasmonic metamaterials,” Appl. Phys. Lett. 102(11), 111909 (2013).
[Crossref]

Economou, E. N.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Egorov, A. Y.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Engheta, N.

A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag. 51(10), 2558–2571 (2003).
[Crossref]

Fan, Y.

Y. Fan, Z. Wei, J. Han, X. Liu, and H. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys. 44(42), 425303 (2011).
[Crossref]

Y. Fan, J. Han, Z. Wei, C. Wu, Y. Cao, X. Yu, and H. Li, “Subwavelength electromagnetic diode: one-way response of cascading nonlinear meta-atoms,” Appl. Phys. Lett. 98(15), 151903 (2011).
[Crossref]

Fang, Y.

Fedeli, J. M.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Feng, T. H.

H. Lu, Y. H. Li, T. H. Feng, S. H. Wang, C. H. Xue, X. B. Kang, G. Q. Du, H. T. Jiang, and H. Chen, “Optical Tamm states in hetero-structures with highly dispersive planar plasmonic metamaterials,” Appl. Phys. Lett. 102(11), 111909 (2013).
[Crossref]

Fink, Y.

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[Crossref] [PubMed]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Giessen, H.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Golubev, V. G.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Grigoriev, V.

Gu, J. Q.

Guan, C.

Guo, J. Y.

J. Y. Guo, H. Chen, H. Q. Li, and Y. W. Zhang, “Effective permittivity and permeability of one-dimensional dielectric photonic crystal within a band gap,” Chin. Phys. B 17(7), 2544–2552 (2008).
[Crossref]

Gusyatnikov, V. N.

I. S. Nefedov, V. N. Gusyatnikov, and P. K. Kashkarov, “Low-threshold photonic band-gap optical logic gates,” Laser Phys. 10, 640 (2000).

Hagan, D. J.

G. Assanto, Z. Wang, D. J. Hagan, and E. W. Van Stryland, “All-optical modulation via nonlinear cascading in type-ii 2nd-harmonic generation,” Appl. Phys. Lett. 67(15), 2120–2122 (1995).
[Crossref]

Han, J.

Y. Fan, J. Han, Z. Wei, C. Wu, Y. Cao, X. Yu, and H. Li, “Subwavelength electromagnetic diode: one-way response of cascading nonlinear meta-atoms,” Appl. Phys. Lett. 98(15), 151903 (2011).
[Crossref]

Y. Fan, Z. Wei, J. Han, X. Liu, and H. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys. 44(42), 425303 (2011).
[Crossref]

Han, J. G.

Hendrickson, S. M.

Homeyer, E.

C. Symonds, A. Lemaitre, E. Homeyer, J. C. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

Huang, R.

Ibanescu, M.

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[Crossref] [PubMed]

Iorsh, I.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Jacobs, B. C.

Jiang, H. T.

Y. Sun, Y. W. Tong, C. H. Xue, Y. Q. Ding, Y. H. Li, H. T. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

H. Lu, Y. H. Li, T. H. Feng, S. H. Wang, C. H. Xue, X. B. Kang, G. Q. Du, H. T. Jiang, and H. Chen, “Optical Tamm states in hetero-structures with highly dispersive planar plasmonic metamaterials,” Appl. Phys. Lett. 102(11), 111909 (2013).
[Crossref]

C. H. Xue, H. T. Jiang, and H. Chen, “Nonlinear resonance-enhanced excitation of surface plasmon polaritons,” Opt. Lett. 36(6), 855–857 (2011).
[Crossref] [PubMed]

L. J. Dong, H. T. Jiang, H. Chen, and Y. L. Shi, “Enhancement of Faraday rotation effect in heterostructures with magneto-optical metals,” J. Appl. Phys. 107(9), 093101 (2010).
[Crossref]

Joannopoulos, J. D.

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[Crossref] [PubMed]

Johnson, N. P.

Johnson, S. G.

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[Crossref] [PubMed]

Kaliteevski, M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Kalitteevski, M. A.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Kang, X. B.

H. Lu, Y. H. Li, T. H. Feng, S. H. Wang, C. H. Xue, X. B. Kang, G. Q. Du, H. T. Jiang, and H. Chen, “Optical Tamm states in hetero-structures with highly dispersive planar plasmonic metamaterials,” Appl. Phys. Lett. 102(11), 111909 (2013).
[Crossref]

Kashkarov, P. K.

I. S. Nefedov, V. N. Gusyatnikov, and P. K. Kashkarov, “Low-threshold photonic band-gap optical logic gates,” Laser Phys. 10, 640 (2000).

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Kavokin, A. V.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Kerst, R.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Kivshar, Y. S.

Koschny, T.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Kurdyukov, D. A.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Lai, Y.

Y. Lai, Y. Wu, P. Sheng, and Z. Q. Zhang, “Hybrid elastic solids,” Nat. Mater. 10(8), 620–624 (2011).
[Crossref] [PubMed]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Lederer, F.

S. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
[Crossref]

Lemaitre, A.

C. Symonds, A. Lemaitre, E. Homeyer, J. C. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

Letartre, X.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

Levenson, A.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

Li, H.

Y. Fan, J. Han, Z. Wei, C. Wu, Y. Cao, X. Yu, and H. Li, “Subwavelength electromagnetic diode: one-way response of cascading nonlinear meta-atoms,” Appl. Phys. Lett. 98(15), 151903 (2011).
[Crossref]

Y. Fan, Z. Wei, J. Han, X. Liu, and H. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys. 44(42), 425303 (2011).
[Crossref]

Li, H. Q.

J. Y. Guo, H. Chen, H. Q. Li, and Y. W. Zhang, “Effective permittivity and permeability of one-dimensional dielectric photonic crystal within a band gap,” Chin. Phys. B 17(7), 2544–2552 (2008).
[Crossref]

Li, J.

J. Shao, J. Q. Li, J. Li, Y. K. Wang, Z. G. Dong, P. Chen, R. X. Wu, and Y. Zhai, “Analogue of electromagnetically induced transparency by doubly degenerate modes in a U-shaped metamaterial,” Appl. Phys. Lett. 102(3), 034106 (2013).
[Crossref]

Li, J. Q.

J. Shao, J. Q. Li, J. Li, Y. K. Wang, Z. G. Dong, P. Chen, R. X. Wu, and Y. Zhai, “Analogue of electromagnetically induced transparency by doubly degenerate modes in a U-shaped metamaterial,” Appl. Phys. Lett. 102(3), 034106 (2013).
[Crossref]

Li, Y. H.

Y. Q. Chen, K. J. Zhu, Y. H. Li, Y. Fang, Q. Y. Wu, Y. Sun, and H. Chen, “Nonlinear properties of photonic crystal cavity with embedded electromagnetic-induced-transparency-like meta-atoms,” Opt. Mater. Express 7(8), 3034–3040 (2017).
[Crossref]

H. Lu, Y. H. Li, T. H. Feng, S. H. Wang, C. H. Xue, X. B. Kang, G. Q. Du, H. T. Jiang, and H. Chen, “Optical Tamm states in hetero-structures with highly dispersive planar plasmonic metamaterials,” Appl. Phys. Lett. 102(11), 111909 (2013).
[Crossref]

Y. Sun, Y. W. Tong, C. H. Xue, Y. Q. Ding, Y. H. Li, H. T. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

Li, Z. Y.

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Liu, R.

Liu, X.

Y. Fan, Z. Wei, J. Han, X. Liu, and H. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys. 44(42), 425303 (2011).
[Crossref]

Lu, H.

H. Lu, Y. H. Li, T. H. Feng, S. H. Wang, C. H. Xue, X. B. Kang, G. Q. Du, H. T. Jiang, and H. Chen, “Optical Tamm states in hetero-structures with highly dispersive planar plasmonic metamaterials,” Appl. Phys. Lett. 102(11), 111909 (2013).
[Crossref]

Lu, X.

Ma, Y. F.

Mazurenko, D. A.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Mikhrin, V. S.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Mingaleev, S. F.

Monnier, P.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

Nefedov, I. S.

I. S. Nefedov, V. N. Gusyatnikov, and P. K. Kashkarov, “Low-threshold photonic band-gap optical logic gates,” Laser Phys. 10, 640 (2000).

Nihei, H.

H. Nihei and A. Okamoto, “Switching time of optical memory devices composed of photonic crystals with an impurity three-level atom,” Jpn. J. Appl. Phys. 40(12), 6835–6840 (2001).
[Crossref]

Okamoto, A.

H. Nihei and A. Okamoto, “Switching time of optical memory devices composed of photonic crystals with an impurity three-level atom,” Jpn. J. Appl. Phys. 40(12), 6835–6840 (2001).
[Crossref]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Paspalakis, E.

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B Condens. Matter Mater. Phys. 80(3), 035104 (2009).
[Crossref]

Pevtsov, A. B.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Plenet, J. C.

C. Symonds, A. Lemaitre, E. Homeyer, J. C. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Raineri, F.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

Raj, R.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

Rockstuhl, C.

S. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
[Crossref]

Sasin, M. E.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Seassal, C.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

Seisyan, R. P.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Sel’kin, A. V.

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

Shao, J.

J. Shao, J. Q. Li, J. Li, Y. K. Wang, Z. G. Dong, P. Chen, R. X. Wu, and Y. Zhai, “Analogue of electromagnetically induced transparency by doubly degenerate modes in a U-shaped metamaterial,” Appl. Phys. Lett. 102(3), 034106 (2013).
[Crossref]

Shelykh, I. A.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Sheng, P.

Y. Lai, Y. Wu, P. Sheng, and Z. Q. Zhang, “Hybrid elastic solids,” Nat. Mater. 10(8), 620–624 (2011).
[Crossref] [PubMed]

L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[Crossref]

Shi, J.

Shi, Y. L.

L. J. Dong, H. T. Jiang, H. Chen, and Y. L. Shi, “Enhancement of Faraday rotation effect in heterostructures with magneto-optical metals,” J. Appl. Phys. 107(9), 093101 (2010).
[Crossref]

Singh, R.

Y. F. Ma, Z. Y. Li, Y. M. Yang, R. Huang, R. Singh, S. Zhang, J. Q. Gu, Z. Tian, J. G. Han, and W. L. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

S. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
[Crossref]

Soljacic, M.

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[Crossref] [PubMed]

Sorel, M.

Soukoulis, C. M.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Sun, Y.

Y. Q. Chen, K. J. Zhu, Y. H. Li, Y. Fang, Q. Y. Wu, Y. Sun, and H. Chen, “Nonlinear properties of photonic crystal cavity with embedded electromagnetic-induced-transparency-like meta-atoms,” Opt. Mater. Express 7(8), 3034–3040 (2017).
[Crossref]

Y. Sun, Y. W. Tong, C. H. Xue, Y. Q. Ding, Y. H. Li, H. T. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

Symonds, C.

C. Symonds, A. Lemaitre, E. Homeyer, J. C. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

Tassin, P.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Tian, Z.

Tong, Y. W.

Y. Sun, Y. W. Tong, C. H. Xue, Y. Q. Ding, Y. H. Li, H. T. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

Van Stryland, E. W.

G. Assanto, Z. Wang, D. J. Hagan, and E. W. Van Stryland, “All-optical modulation via nonlinear cascading in type-ii 2nd-harmonic generation,” Appl. Phys. Lett. 67(15), 2120–2122 (1995).
[Crossref]

Vasil’ev, A. P.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Vecchi, G.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

Viktorovitch, P.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

Vitanov, N. V.

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B Condens. Matter Mater. Phys. 80(3), 035104 (2009).
[Crossref]

Wang, C.

Wang, S. H.

H. Lu, Y. H. Li, T. H. Feng, S. H. Wang, C. H. Xue, X. B. Kang, G. Q. Du, H. T. Jiang, and H. Chen, “Optical Tamm states in hetero-structures with highly dispersive planar plasmonic metamaterials,” Appl. Phys. Lett. 102(11), 111909 (2013).
[Crossref]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Wang, Y. K.

J. Shao, J. Q. Li, J. Li, Y. K. Wang, Z. G. Dong, P. Chen, R. X. Wu, and Y. Zhai, “Analogue of electromagnetically induced transparency by doubly degenerate modes in a U-shaped metamaterial,” Appl. Phys. Lett. 102(3), 034106 (2013).
[Crossref]

Wang, Z.

G. Assanto, Z. Wang, D. J. Hagan, and E. W. Van Stryland, “All-optical modulation via nonlinear cascading in type-ii 2nd-harmonic generation,” Appl. Phys. Lett. 67(15), 2120–2122 (1995).
[Crossref]

Wei, Z.

Y. Fan, Z. Wei, J. Han, X. Liu, and H. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys. 44(42), 425303 (2011).
[Crossref]

Y. Fan, J. Han, Z. Wei, C. Wu, Y. Cao, X. Yu, and H. Li, “Subwavelength electromagnetic diode: one-way response of cascading nonlinear meta-atoms,” Appl. Phys. Lett. 98(15), 151903 (2011).
[Crossref]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Wen, W. J.

L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[Crossref]

Wu, C.

Y. Fan, J. Han, Z. Wei, C. Wu, Y. Cao, X. Yu, and H. Li, “Subwavelength electromagnetic diode: one-way response of cascading nonlinear meta-atoms,” Appl. Phys. Lett. 98(15), 151903 (2011).
[Crossref]

Wu, Q. Y.

Wu, R. X.

J. Shao, J. Q. Li, J. Li, Y. K. Wang, Z. G. Dong, P. Chen, R. X. Wu, and Y. Zhai, “Analogue of electromagnetically induced transparency by doubly degenerate modes in a U-shaped metamaterial,” Appl. Phys. Lett. 102(3), 034106 (2013).
[Crossref]

Wu, Y.

Y. Lai, Y. Wu, P. Sheng, and Z. Q. Zhang, “Hybrid elastic solids,” Nat. Mater. 10(8), 620–624 (2011).
[Crossref] [PubMed]

Xue, C. H.

H. Lu, Y. H. Li, T. H. Feng, S. H. Wang, C. H. Xue, X. B. Kang, G. Q. Du, H. T. Jiang, and H. Chen, “Optical Tamm states in hetero-structures with highly dispersive planar plasmonic metamaterials,” Appl. Phys. Lett. 102(11), 111909 (2013).
[Crossref]

Y. Sun, Y. W. Tong, C. H. Xue, Y. Q. Ding, Y. H. Li, H. T. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

C. H. Xue, H. T. Jiang, and H. Chen, “Nonlinear resonance-enhanced excitation of surface plasmon polaritons,” Opt. Lett. 36(6), 855–857 (2011).
[Crossref] [PubMed]

Yacomotti, A. M.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

Yang, Y. M.

Yannopapas, V.

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B Condens. Matter Mater. Phys. 80(3), 035104 (2009).
[Crossref]

Yu, X.

Y. Fan, J. Han, Z. Wei, C. Wu, Y. Cao, X. Yu, and H. Li, “Subwavelength electromagnetic diode: one-way response of cascading nonlinear meta-atoms,” Appl. Phys. Lett. 98(15), 151903 (2011).
[Crossref]

Zain, A. R. M.

Zhai, Y.

J. Shao, J. Q. Li, J. Li, Y. K. Wang, Z. G. Dong, P. Chen, R. X. Wu, and Y. Zhai, “Analogue of electromagnetically induced transparency by doubly degenerate modes in a U-shaped metamaterial,” Appl. Phys. Lett. 102(3), 034106 (2013).
[Crossref]

Zhang, L.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

Zhang, S.

Zhang, W.

S. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
[Crossref]

Zhang, W. L.

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, Y. W.

J. Y. Guo, H. Chen, H. Q. Li, and Y. W. Zhang, “Effective permittivity and permeability of one-dimensional dielectric photonic crystal within a band gap,” Chin. Phys. B 17(7), 2544–2552 (2008).
[Crossref]

Zhang, Z. Q.

Y. Lai, Y. Wu, P. Sheng, and Z. Q. Zhang, “Hybrid elastic solids,” Nat. Mater. 10(8), 620–624 (2011).
[Crossref] [PubMed]

Zheludev, N. I.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Zhou, C. Z.

Zhou, L.

L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[Crossref]

Zhu, K. J.

Appl. Phys. Lett. (8)

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

C. Symonds, A. Lemaitre, E. Homeyer, J. C. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

H. Lu, Y. H. Li, T. H. Feng, S. H. Wang, C. H. Xue, X. B. Kang, G. Q. Du, H. T. Jiang, and H. Chen, “Optical Tamm states in hetero-structures with highly dispersive planar plasmonic metamaterials,” Appl. Phys. Lett. 102(11), 111909 (2013).
[Crossref]

J. Shao, J. Q. Li, J. Li, Y. K. Wang, Z. G. Dong, P. Chen, R. X. Wu, and Y. Zhai, “Analogue of electromagnetically induced transparency by doubly degenerate modes in a U-shaped metamaterial,” Appl. Phys. Lett. 102(3), 034106 (2013).
[Crossref]

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two dimensional photonic crystal,” Appl. Phys. Lett. 88(23), 231107 (2006).
[Crossref]

G. Assanto, Z. Wang, D. J. Hagan, and E. W. Van Stryland, “All-optical modulation via nonlinear cascading in type-ii 2nd-harmonic generation,” Appl. Phys. Lett. 67(15), 2120–2122 (1995).
[Crossref]

Y. Sun, Y. W. Tong, C. H. Xue, Y. Q. Ding, Y. H. Li, H. T. Jiang, and H. Chen, “Electromagnetic diode based on nonlinear electromagnetically induced transparency in metamaterials,” Appl. Phys. Lett. 103(9), 091904 (2013).
[Crossref]

Y. Fan, J. Han, Z. Wei, C. Wu, Y. Cao, X. Yu, and H. Li, “Subwavelength electromagnetic diode: one-way response of cascading nonlinear meta-atoms,” Appl. Phys. Lett. 98(15), 151903 (2011).
[Crossref]

Chin. Phys. B (1)

J. Y. Guo, H. Chen, H. Q. Li, and Y. W. Zhang, “Effective permittivity and permeability of one-dimensional dielectric photonic crystal within a band gap,” Chin. Phys. B 17(7), 2544–2552 (2008).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag. 51(10), 2558–2571 (2003).
[Crossref]

J. Appl. Phys. (1)

L. J. Dong, H. T. Jiang, H. Chen, and Y. L. Shi, “Enhancement of Faraday rotation effect in heterostructures with magneto-optical metals,” J. Appl. Phys. 107(9), 093101 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

Y. Fan, Z. Wei, J. Han, X. Liu, and H. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys. 44(42), 425303 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Nihei and A. Okamoto, “Switching time of optical memory devices composed of photonic crystals with an impurity three-level atom,” Jpn. J. Appl. Phys. 40(12), 6835–6840 (2001).
[Crossref]

Laser Phys. (1)

I. S. Nefedov, V. N. Gusyatnikov, and P. K. Kashkarov, “Low-threshold photonic band-gap optical logic gates,” Laser Phys. 10, 640 (2000).

Nat. Mater. (2)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Y. Lai, Y. Wu, P. Sheng, and Z. Q. Zhang, “Hybrid elastic solids,” Nat. Mater. 10(8), 620–624 (2011).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (2)

Phys. Rev. B Condens. Matter Mater. Phys. (3)

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B Condens. Matter Mater. Phys. 80(3), 035104 (2009).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

S. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. Soljacić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91(21), 213903 (2003).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[Crossref] [PubMed]

L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Photograph of the microstrip light-tunneling heterostructure (ABA)4-(BAB)4. The local detailed structural parameters are shown in the inset.
Fig. 2
Fig. 2 The simulated and measured transmissions for individual MNG medium, individual ENG medium, and the composite ENG-MNG heterostructure are shown by the red dotted lines, the blue dashed lines, and the black solid lines, respectively.
Fig. 3
Fig. 3 Photograph of light-tunneling heterostructure with embedded EIT-like meta-molecule. The inset shows the detailed schematic of the EIT-like meta-molecule.
Fig. 4
Fig. 4 Calculated transmission spectra for individual bright meta-atom, individual dark meta-atom, and the EIT-like meta-molecule.
Fig. 5
Fig. 5 The simulated and measured transmission spectra for individual ENG-MNG heterostructure (blue dashed line), individual EIT-like meta-molecule (red dotted line), and ENG-MNG heterostructure with EIT-like meta-molecule loading (dark solid line).
Fig. 6
Fig. 6 Normalized electrical energy density distributions at 726 MHz of (a) individual ENG-MNG heterostructure, (b) individual EIT-like meta-molecule (c) ENG-MNG heterostructure with EIT-like meta-molecule loading (the above distributions are depicted from top view).
Fig. 7
Fig. 7 Measured transmission of the ENG-MNG heterostructure with EIT-like meta-molecule loading under different input power changing from −20 dBm to 9 dBm.
Fig. 8
Fig. 8 The bistable hysteresis loops in bidirectional frequency sweeping (from 700 MHz to 780 MHz) at four typical input power intensities. The achieved threshold of bistability is only −4.7 dBm.
Fig. 9
Fig. 9 Measured transmission (in dB) at 640 MHz, 660 MHz, 680 MHz, 700MHz, 720 MHz, and 740MHz versus input power on the sample (from −5 dBm to 15 dBm). The black triangle and red inverted-triangle are respected to increasing and decreasing sweep of input power, respectively.

Metrics