Abstract

The localized surface plasmon resonance enhancement of a Cu2O photodetector was realized by Ag nanoparticles (NPs) that were fabricated by electrochemical deposition. A ZnO nanowire was used to accelerate carrier separation. An increase of responsivity was achieved based on the coupling interaction between the surface plasmon resonance in the Ag NPs and the Cu2O film. The photodetector possessed high responsivity (0.27A/W). Compared to the device without Ag NPs, the responsivity was enhanced 20-fold. The excellent comprehensive performance of the Cu2O/ZnO photodetector reveals that localized surface plasmon resonance is an efficient way to improve the performance of Cu2O-based photodetectors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ag nanoparticles@ZnO nanowire composite arrays: an absorption enhanced UV photodetector

Yang Liu, Xianghui Zhang, Jun Su, Haixia Li, Qi Zhang, and Yihua Gao
Opt. Express 22(24) 30148-30155 (2014)

Localized surface plasmon enhanced Ga2O3 solar blind photodetectors

Ruifan Tang, Guanqi Li, Cheng Li, Jinchai Li, Yanfang Zhang, Kai Huang, Jiandong Ye, Cheng Li, Junyong Kang, Rong Zhang, and Youdou Zheng
Opt. Express 28(4) 5731-5740 (2020)

Enhanced ultraviolet emission from Au/Ag-nanoparticles@MgO/ZnO heterostructure light-emitting diodes: A combined effect of exciton- and photon- localized surface plasmon couplings

C. Zhang, H. Y. Xu, W. Z. Liu, L. Yang, J. Zhang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu
Opt. Express 23(12) 15565-15574 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. Makhlouf, O. Messaoudi, A. Souissi, I. Ben Assaker, M. Oueslati, M. Bechelany, and R. Chtourou, “Tuning of Ag doped core-shell ZnO NWs/Cu2O grown by electrochemical deposition,” Mater. Res. Express 2(9), 095002 (2015).
    [Crossref]
  2. H. Tanaka, T. Shimakawa, T. Miyata, H. Sato, and T. Minami, “Effect of AZO film deposition conditions on the photovoltaic properties of AZO-Cu2O heterojunctions,” Appl. Surf. Sci. 244(1–4), 568–572 (2005).
    [Crossref]
  3. Z. Bai and Y. Zhang, “Self-powered UV-visible photodetectors based on ZnO/Cu2O nanowire/electrolyte heterojunctions,” J. Alloys Compd. 675, 325–330 (2016).
    [Crossref]
  4. N. G. Elfadill, M. R. Hashim, K. M. A. Saron, K. Chahrour, M. A. Qaeed, and M. Bououdina, “Ultraviolet-Visible photo-response of p-Cu2O/n-ZnO heterojunction prepared on flexible (PET) substrate,” Mater. Chem. Phys. 156, 54–60 (2015).
    [Crossref]
  5. L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett. 94(11), 113106 (2009).
    [Crossref]
  6. Y. Hou, X. Y. Li, Q. D. Zhao, X. Quan, and G. H. Chen, “Fabrication of Cu2O/TiO2 nanotube heterojunction arrays and investigation of its photoelectrochemical behavior,” Appl. Phys. Lett. 95(9), 093108 (2009).
    [Crossref]
  7. C. M. McShane, W. P. Siripala, and K. S. Choi, “Effect of junction morphology on the performance of polycrystalline Cu2O homojunction solar cells,” J. Phys. Chem. Lett. 1(18), 2666–2670 (2010).
    [Crossref]
  8. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000).
    [Crossref] [PubMed]
  9. K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor,” Appl. Phys. Lett. 93(20), 202107 (2008).
    [Crossref]
  10. K. P. Musselman, A. Wisnet, D. C. Iza, H. C. Hesse, C. Scheu, J. L. MacManus-Driscoll, and L. Schmidt-Mende, “Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells,” Adv. Mater. 22(35), E254–E258 (2010).
    [Crossref] [PubMed]
  11. R. Jia, G. Lin, D. Zhao, Q. Zhang, X. Y. Lin, N. K. Gao, and D. Liu, “Sandwich-structured Cu2O photodetectors enhanced by localized surface plasmon resonances,” Appl. Surf. Sci. 332, 340–345 (2015).
    [Crossref]
  12. G. Kaur, K. L. Yadav, and A. Mitra, “Localized surface plasmon induced enhancement of electron-hole generation with silver metal island at n-Al:ZnO/p-Cu2O heterojunction,” Appl. Phys. Lett. 107(5), 053901 (2015).
    [Crossref]
  13. J. K. Sheu, M. L. Lee, and Y. C. Lin, “Surface Plasmon-Enhanced GaN Metal-Insulator-Semiconductor Ultraviolet detectors with Ag nanoislands embedded in a silicon dioxide gate layer,” IEEE. J. Sel. Top. Quant. 20(6), 137–141 (2014).
    [Crossref]
  14. Z. H. Chen, Y. B. Tang, C. P. Liu, Y. H. Leung, G. D. Yuan, L. M. Chen, Y. Q. Wang, I. Bello, J. A. Zapien, W. J. Zhang, C. S. Lee, and S. T. Lee, “Vertically Aligned ZnO Nanorod Arrays Sentisized with Gold Nanoparticles for Schottky Barrier Photovoltaic Cells,” J. Phys. Chem. C 113(30), 13433–13437 (2009).
    [Crossref]
  15. M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trugler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105(17), 171103 (2014).
    [Crossref]
  16. S. Butun, N. A. Cinel, and E. Ozbay, “LSPR enhanced MSM UV photodetectors,” Nanotechnology 23(44), 444010 (2012).
    [Crossref] [PubMed]
  17. Z. Guo, D. Jiang, M. Zhao, F. Guo, J. N. Pei, R. S. Liu, L. Sun, N. Hu, and G. Y. Zhang, “Surface plasmon enhanced the responsivity of the ZnO/Pt nanoparticles/ZnO sandwich structured photodetector via optimizing the thickness of the top ZnO layer,” Solid-State Electron. 124, 24–27 (2016).
    [Crossref]
  18. M. Pirhashemi and A. Habibi-Yangjeh, “Ultrasonic-assisted preparation of plasmonic ZnO/Ag/Ag2WO4 nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants,” J. Colloid Interface Sci. 491, 216–229 (2017).
    [Crossref] [PubMed]
  19. G. Lin, Q. Zhang, X. Lin, D. F. Zhao, R. Jia, N. K. Gao, Z. Y. Zuo, X. G. Xu, and D. Liu, “Enhanced photoluminescence of gallium phosphide by surface plasmon resonances of metallic nanoparticles,” RSC Advances 5(60), 48275–48280 (2015).
    [Crossref]
  20. S. C. Zhu, Z. G. Yu, L. X. Zhao, J. X. Wang, and J. M. Li, “Enhancement of the modulation bandwidth for GaN-based light-emitting diode by surface plasmons,” Opt. Express 23(11), 13752–13760 (2015).
    [Crossref] [PubMed]
  21. S. J. Park, H. H. Sohee-Jeong, H. H. Park, S. W. Lee, S. Jeon, J. H. Lee, D. G. Choi, J. H. Jeong, and J. H. Choi, “Optimized film processing of nanosilver colloids for photoluminescence enhancement,” J. Nanosci. Nanotechnol. 11(1), 422–426 (2011).
    [Crossref] [PubMed]
  22. S. Ren, G. Zhao, Y. Wang, B. Wang, and Q. Wang, “Enhanced photocatalytic performance of sandwiched ZnO@Ag@Cu2O nanorod films: the distinct role of Ag NPs in the visible light and UV region,” Nanotechnology 26(12), 125403 (2015).
    [Crossref] [PubMed]
  23. Y. Liu, F. Ren, S. Shen, Y. M. Fu, C. Chen, C. Liu, Z. Xing, D. Liu, X. H. Xiao, W. Wu, X. D. Zheng, Y. C. Liu, and C. Z. Jiang, “Efficient enhancement of hydrogen production by Ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell,” Appl. Phys. Lett. 106(12), 123901 (2015).
    [Crossref]
  24. J. Li, H. Li, Y. Xue, H. Fang, and W. Wang, “Facile electrodeposition of environment-friendly Cu2O/ZnO heterojunction for robust photoelectrochemical biosensing,” Sensor. Actuat. Biol. Chem. 191(2), 619–624 (2014).
  25. Z. J. Yang, Z. S. Zhang, L. H. Zhang, Q. Q. Li, Z. H. Hao, and Q. Q. Wang, “Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers,” Opt. Lett. 36(9), 1542–1544 (2011).
    [Crossref] [PubMed]
  26. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref] [PubMed]
  27. J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic Nanoclusters: Near Field Properties of the Fano Resonance Interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
    [Crossref] [PubMed]
  28. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
    [Crossref]
  29. D. Jiang, C. Tian, G. Yang, J. M. Qin, Q. C. Liang, J. X. Zhao, J. H. Hou, and S. Gao, “MgxZn1-xO solar-blind photodetectors fabricated by RF magnetron sputtering with combinatorial targets,” Mater. Res. Bull. 67, 158–161 (2015).
    [Crossref]

2017 (1)

M. Pirhashemi and A. Habibi-Yangjeh, “Ultrasonic-assisted preparation of plasmonic ZnO/Ag/Ag2WO4 nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants,” J. Colloid Interface Sci. 491, 216–229 (2017).
[Crossref] [PubMed]

2016 (2)

Z. Guo, D. Jiang, M. Zhao, F. Guo, J. N. Pei, R. S. Liu, L. Sun, N. Hu, and G. Y. Zhang, “Surface plasmon enhanced the responsivity of the ZnO/Pt nanoparticles/ZnO sandwich structured photodetector via optimizing the thickness of the top ZnO layer,” Solid-State Electron. 124, 24–27 (2016).
[Crossref]

Z. Bai and Y. Zhang, “Self-powered UV-visible photodetectors based on ZnO/Cu2O nanowire/electrolyte heterojunctions,” J. Alloys Compd. 675, 325–330 (2016).
[Crossref]

2015 (9)

N. G. Elfadill, M. R. Hashim, K. M. A. Saron, K. Chahrour, M. A. Qaeed, and M. Bououdina, “Ultraviolet-Visible photo-response of p-Cu2O/n-ZnO heterojunction prepared on flexible (PET) substrate,” Mater. Chem. Phys. 156, 54–60 (2015).
[Crossref]

H. Makhlouf, O. Messaoudi, A. Souissi, I. Ben Assaker, M. Oueslati, M. Bechelany, and R. Chtourou, “Tuning of Ag doped core-shell ZnO NWs/Cu2O grown by electrochemical deposition,” Mater. Res. Express 2(9), 095002 (2015).
[Crossref]

R. Jia, G. Lin, D. Zhao, Q. Zhang, X. Y. Lin, N. K. Gao, and D. Liu, “Sandwich-structured Cu2O photodetectors enhanced by localized surface plasmon resonances,” Appl. Surf. Sci. 332, 340–345 (2015).
[Crossref]

G. Kaur, K. L. Yadav, and A. Mitra, “Localized surface plasmon induced enhancement of electron-hole generation with silver metal island at n-Al:ZnO/p-Cu2O heterojunction,” Appl. Phys. Lett. 107(5), 053901 (2015).
[Crossref]

D. Jiang, C. Tian, G. Yang, J. M. Qin, Q. C. Liang, J. X. Zhao, J. H. Hou, and S. Gao, “MgxZn1-xO solar-blind photodetectors fabricated by RF magnetron sputtering with combinatorial targets,” Mater. Res. Bull. 67, 158–161 (2015).
[Crossref]

G. Lin, Q. Zhang, X. Lin, D. F. Zhao, R. Jia, N. K. Gao, Z. Y. Zuo, X. G. Xu, and D. Liu, “Enhanced photoluminescence of gallium phosphide by surface plasmon resonances of metallic nanoparticles,” RSC Advances 5(60), 48275–48280 (2015).
[Crossref]

S. C. Zhu, Z. G. Yu, L. X. Zhao, J. X. Wang, and J. M. Li, “Enhancement of the modulation bandwidth for GaN-based light-emitting diode by surface plasmons,” Opt. Express 23(11), 13752–13760 (2015).
[Crossref] [PubMed]

S. Ren, G. Zhao, Y. Wang, B. Wang, and Q. Wang, “Enhanced photocatalytic performance of sandwiched ZnO@Ag@Cu2O nanorod films: the distinct role of Ag NPs in the visible light and UV region,” Nanotechnology 26(12), 125403 (2015).
[Crossref] [PubMed]

Y. Liu, F. Ren, S. Shen, Y. M. Fu, C. Chen, C. Liu, Z. Xing, D. Liu, X. H. Xiao, W. Wu, X. D. Zheng, Y. C. Liu, and C. Z. Jiang, “Efficient enhancement of hydrogen production by Ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell,” Appl. Phys. Lett. 106(12), 123901 (2015).
[Crossref]

2014 (3)

J. Li, H. Li, Y. Xue, H. Fang, and W. Wang, “Facile electrodeposition of environment-friendly Cu2O/ZnO heterojunction for robust photoelectrochemical biosensing,” Sensor. Actuat. Biol. Chem. 191(2), 619–624 (2014).

J. K. Sheu, M. L. Lee, and Y. C. Lin, “Surface Plasmon-Enhanced GaN Metal-Insulator-Semiconductor Ultraviolet detectors with Ag nanoislands embedded in a silicon dioxide gate layer,” IEEE. J. Sel. Top. Quant. 20(6), 137–141 (2014).
[Crossref]

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trugler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105(17), 171103 (2014).
[Crossref]

2012 (2)

S. Butun, N. A. Cinel, and E. Ozbay, “LSPR enhanced MSM UV photodetectors,” Nanotechnology 23(44), 444010 (2012).
[Crossref] [PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic Nanoclusters: Near Field Properties of the Fano Resonance Interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

2011 (2)

Z. J. Yang, Z. S. Zhang, L. H. Zhang, Q. Q. Li, Z. H. Hao, and Q. Q. Wang, “Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers,” Opt. Lett. 36(9), 1542–1544 (2011).
[Crossref] [PubMed]

S. J. Park, H. H. Sohee-Jeong, H. H. Park, S. W. Lee, S. Jeon, J. H. Lee, D. G. Choi, J. H. Jeong, and J. H. Choi, “Optimized film processing of nanosilver colloids for photoluminescence enhancement,” J. Nanosci. Nanotechnol. 11(1), 422–426 (2011).
[Crossref] [PubMed]

2010 (2)

K. P. Musselman, A. Wisnet, D. C. Iza, H. C. Hesse, C. Scheu, J. L. MacManus-Driscoll, and L. Schmidt-Mende, “Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells,” Adv. Mater. 22(35), E254–E258 (2010).
[Crossref] [PubMed]

C. M. McShane, W. P. Siripala, and K. S. Choi, “Effect of junction morphology on the performance of polycrystalline Cu2O homojunction solar cells,” J. Phys. Chem. Lett. 1(18), 2666–2670 (2010).
[Crossref]

2009 (3)

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett. 94(11), 113106 (2009).
[Crossref]

Y. Hou, X. Y. Li, Q. D. Zhao, X. Quan, and G. H. Chen, “Fabrication of Cu2O/TiO2 nanotube heterojunction arrays and investigation of its photoelectrochemical behavior,” Appl. Phys. Lett. 95(9), 093108 (2009).
[Crossref]

Z. H. Chen, Y. B. Tang, C. P. Liu, Y. H. Leung, G. D. Yuan, L. M. Chen, Y. Q. Wang, I. Bello, J. A. Zapien, W. J. Zhang, C. S. Lee, and S. T. Lee, “Vertically Aligned ZnO Nanorod Arrays Sentisized with Gold Nanoparticles for Schottky Barrier Photovoltaic Cells,” J. Phys. Chem. C 113(30), 13433–13437 (2009).
[Crossref]

2008 (1)

K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor,” Appl. Phys. Lett. 93(20), 202107 (2008).
[Crossref]

2005 (2)

H. Tanaka, T. Shimakawa, T. Miyata, H. Sato, and T. Minami, “Effect of AZO film deposition conditions on the photovoltaic properties of AZO-Cu2O heterojunctions,” Appl. Surf. Sci. 244(1–4), 568–572 (2005).
[Crossref]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

2000 (1)

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000).
[Crossref] [PubMed]

Bai, Z.

Z. Bai and Y. Zhang, “Self-powered UV-visible photodetectors based on ZnO/Cu2O nanowire/electrolyte heterojunctions,” J. Alloys Compd. 675, 325–330 (2016).
[Crossref]

Bechelany, M.

H. Makhlouf, O. Messaoudi, A. Souissi, I. Ben Assaker, M. Oueslati, M. Bechelany, and R. Chtourou, “Tuning of Ag doped core-shell ZnO NWs/Cu2O grown by electrochemical deposition,” Mater. Res. Express 2(9), 095002 (2015).
[Crossref]

Bello, I.

Z. H. Chen, Y. B. Tang, C. P. Liu, Y. H. Leung, G. D. Yuan, L. M. Chen, Y. Q. Wang, I. Bello, J. A. Zapien, W. J. Zhang, C. S. Lee, and S. T. Lee, “Vertically Aligned ZnO Nanorod Arrays Sentisized with Gold Nanoparticles for Schottky Barrier Photovoltaic Cells,” J. Phys. Chem. C 113(30), 13433–13437 (2009).
[Crossref]

Ben Assaker, I.

H. Makhlouf, O. Messaoudi, A. Souissi, I. Ben Assaker, M. Oueslati, M. Bechelany, and R. Chtourou, “Tuning of Ag doped core-shell ZnO NWs/Cu2O grown by electrochemical deposition,” Mater. Res. Express 2(9), 095002 (2015).
[Crossref]

Bououdina, M.

N. G. Elfadill, M. R. Hashim, K. M. A. Saron, K. Chahrour, M. A. Qaeed, and M. Bououdina, “Ultraviolet-Visible photo-response of p-Cu2O/n-ZnO heterojunction prepared on flexible (PET) substrate,” Mater. Chem. Phys. 156, 54–60 (2015).
[Crossref]

Butun, S.

S. Butun, N. A. Cinel, and E. Ozbay, “LSPR enhanced MSM UV photodetectors,” Nanotechnology 23(44), 444010 (2012).
[Crossref] [PubMed]

Chahrour, K.

N. G. Elfadill, M. R. Hashim, K. M. A. Saron, K. Chahrour, M. A. Qaeed, and M. Bououdina, “Ultraviolet-Visible photo-response of p-Cu2O/n-ZnO heterojunction prepared on flexible (PET) substrate,” Mater. Chem. Phys. 156, 54–60 (2015).
[Crossref]

Chen, C.

Y. Liu, F. Ren, S. Shen, Y. M. Fu, C. Chen, C. Liu, Z. Xing, D. Liu, X. H. Xiao, W. Wu, X. D. Zheng, Y. C. Liu, and C. Z. Jiang, “Efficient enhancement of hydrogen production by Ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell,” Appl. Phys. Lett. 106(12), 123901 (2015).
[Crossref]

Chen, G. H.

Y. Hou, X. Y. Li, Q. D. Zhao, X. Quan, and G. H. Chen, “Fabrication of Cu2O/TiO2 nanotube heterojunction arrays and investigation of its photoelectrochemical behavior,” Appl. Phys. Lett. 95(9), 093108 (2009).
[Crossref]

Chen, L. M.

Z. H. Chen, Y. B. Tang, C. P. Liu, Y. H. Leung, G. D. Yuan, L. M. Chen, Y. Q. Wang, I. Bello, J. A. Zapien, W. J. Zhang, C. S. Lee, and S. T. Lee, “Vertically Aligned ZnO Nanorod Arrays Sentisized with Gold Nanoparticles for Schottky Barrier Photovoltaic Cells,” J. Phys. Chem. C 113(30), 13433–13437 (2009).
[Crossref]

Chen, Z. H.

Z. H. Chen, Y. B. Tang, C. P. Liu, Y. H. Leung, G. D. Yuan, L. M. Chen, Y. Q. Wang, I. Bello, J. A. Zapien, W. J. Zhang, C. S. Lee, and S. T. Lee, “Vertically Aligned ZnO Nanorod Arrays Sentisized with Gold Nanoparticles for Schottky Barrier Photovoltaic Cells,” J. Phys. Chem. C 113(30), 13433–13437 (2009).
[Crossref]

Choi, D. G.

S. J. Park, H. H. Sohee-Jeong, H. H. Park, S. W. Lee, S. Jeon, J. H. Lee, D. G. Choi, J. H. Jeong, and J. H. Choi, “Optimized film processing of nanosilver colloids for photoluminescence enhancement,” J. Nanosci. Nanotechnol. 11(1), 422–426 (2011).
[Crossref] [PubMed]

Choi, J. H.

S. J. Park, H. H. Sohee-Jeong, H. H. Park, S. W. Lee, S. Jeon, J. H. Lee, D. G. Choi, J. H. Jeong, and J. H. Choi, “Optimized film processing of nanosilver colloids for photoluminescence enhancement,” J. Nanosci. Nanotechnol. 11(1), 422–426 (2011).
[Crossref] [PubMed]

Choi, K. S.

C. M. McShane, W. P. Siripala, and K. S. Choi, “Effect of junction morphology on the performance of polycrystalline Cu2O homojunction solar cells,” J. Phys. Chem. Lett. 1(18), 2666–2670 (2010).
[Crossref]

Chtourou, R.

H. Makhlouf, O. Messaoudi, A. Souissi, I. Ben Assaker, M. Oueslati, M. Bechelany, and R. Chtourou, “Tuning of Ag doped core-shell ZnO NWs/Cu2O grown by electrochemical deposition,” Mater. Res. Express 2(9), 095002 (2015).
[Crossref]

Cinel, N. A.

S. Butun, N. A. Cinel, and E. Ozbay, “LSPR enhanced MSM UV photodetectors,” Nanotechnology 23(44), 444010 (2012).
[Crossref] [PubMed]

Ditlbacher, H.

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trugler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105(17), 171103 (2014).
[Crossref]

Dupont, L.

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000).
[Crossref] [PubMed]

Elfadill, N. G.

N. G. Elfadill, M. R. Hashim, K. M. A. Saron, K. Chahrour, M. A. Qaeed, and M. Bououdina, “Ultraviolet-Visible photo-response of p-Cu2O/n-ZnO heterojunction prepared on flexible (PET) substrate,” Mater. Chem. Phys. 156, 54–60 (2015).
[Crossref]

Fang, H.

J. Li, H. Li, Y. Xue, H. Fang, and W. Wang, “Facile electrodeposition of environment-friendly Cu2O/ZnO heterojunction for robust photoelectrochemical biosensing,” Sensor. Actuat. Biol. Chem. 191(2), 619–624 (2014).

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

Fu, Y. M.

Y. Liu, F. Ren, S. Shen, Y. M. Fu, C. Chen, C. Liu, Z. Xing, D. Liu, X. H. Xiao, W. Wu, X. D. Zheng, Y. C. Liu, and C. Z. Jiang, “Efficient enhancement of hydrogen production by Ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell,” Appl. Phys. Lett. 106(12), 123901 (2015).
[Crossref]

Gao, N. K.

G. Lin, Q. Zhang, X. Lin, D. F. Zhao, R. Jia, N. K. Gao, Z. Y. Zuo, X. G. Xu, and D. Liu, “Enhanced photoluminescence of gallium phosphide by surface plasmon resonances of metallic nanoparticles,” RSC Advances 5(60), 48275–48280 (2015).
[Crossref]

R. Jia, G. Lin, D. Zhao, Q. Zhang, X. Y. Lin, N. K. Gao, and D. Liu, “Sandwich-structured Cu2O photodetectors enhanced by localized surface plasmon resonances,” Appl. Surf. Sci. 332, 340–345 (2015).
[Crossref]

Gao, S.

D. Jiang, C. Tian, G. Yang, J. M. Qin, Q. C. Liang, J. X. Zhao, J. H. Hou, and S. Gao, “MgxZn1-xO solar-blind photodetectors fabricated by RF magnetron sputtering with combinatorial targets,” Mater. Res. Bull. 67, 158–161 (2015).
[Crossref]

Grugeon, S.

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000).
[Crossref] [PubMed]

Guo, F.

Z. Guo, D. Jiang, M. Zhao, F. Guo, J. N. Pei, R. S. Liu, L. Sun, N. Hu, and G. Y. Zhang, “Surface plasmon enhanced the responsivity of the ZnO/Pt nanoparticles/ZnO sandwich structured photodetector via optimizing the thickness of the top ZnO layer,” Solid-State Electron. 124, 24–27 (2016).
[Crossref]

Guo, Z.

Z. Guo, D. Jiang, M. Zhao, F. Guo, J. N. Pei, R. S. Liu, L. Sun, N. Hu, and G. Y. Zhang, “Surface plasmon enhanced the responsivity of the ZnO/Pt nanoparticles/ZnO sandwich structured photodetector via optimizing the thickness of the top ZnO layer,” Solid-State Electron. 124, 24–27 (2016).
[Crossref]

Habibi-Yangjeh, A.

M. Pirhashemi and A. Habibi-Yangjeh, “Ultrasonic-assisted preparation of plasmonic ZnO/Ag/Ag2WO4 nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants,” J. Colloid Interface Sci. 491, 216–229 (2017).
[Crossref] [PubMed]

Halas, N. J.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic Nanoclusters: Near Field Properties of the Fano Resonance Interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Hao, Y. F.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett. 94(11), 113106 (2009).
[Crossref]

Hao, Z. H.

Hashim, M. R.

N. G. Elfadill, M. R. Hashim, K. M. A. Saron, K. Chahrour, M. A. Qaeed, and M. Bououdina, “Ultraviolet-Visible photo-response of p-Cu2O/n-ZnO heterojunction prepared on flexible (PET) substrate,” Mater. Chem. Phys. 156, 54–60 (2015).
[Crossref]

Hesse, H. C.

K. P. Musselman, A. Wisnet, D. C. Iza, H. C. Hesse, C. Scheu, J. L. MacManus-Driscoll, and L. Schmidt-Mende, “Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells,” Adv. Mater. 22(35), E254–E258 (2010).
[Crossref] [PubMed]

Hirano, M.

K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor,” Appl. Phys. Lett. 93(20), 202107 (2008).
[Crossref]

Hohenau, A.

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trugler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105(17), 171103 (2014).
[Crossref]

Hohenester, U.

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trugler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105(17), 171103 (2014).
[Crossref]

Hosono, H.

K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor,” Appl. Phys. Lett. 93(20), 202107 (2008).
[Crossref]

Hou, J. H.

D. Jiang, C. Tian, G. Yang, J. M. Qin, Q. C. Liang, J. X. Zhao, J. H. Hou, and S. Gao, “MgxZn1-xO solar-blind photodetectors fabricated by RF magnetron sputtering with combinatorial targets,” Mater. Res. Bull. 67, 158–161 (2015).
[Crossref]

Hou, Y.

Y. Hou, X. Y. Li, Q. D. Zhao, X. Quan, and G. H. Chen, “Fabrication of Cu2O/TiO2 nanotube heterojunction arrays and investigation of its photoelectrochemical behavior,” Appl. Phys. Lett. 95(9), 093108 (2009).
[Crossref]

Hu, N.

Z. Guo, D. Jiang, M. Zhao, F. Guo, J. N. Pei, R. S. Liu, L. Sun, N. Hu, and G. Y. Zhang, “Surface plasmon enhanced the responsivity of the ZnO/Pt nanoparticles/ZnO sandwich structured photodetector via optimizing the thickness of the top ZnO layer,” Solid-State Electron. 124, 24–27 (2016).
[Crossref]

Huang, W.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett. 94(11), 113106 (2009).
[Crossref]

Iza, D. C.

K. P. Musselman, A. Wisnet, D. C. Iza, H. C. Hesse, C. Scheu, J. L. MacManus-Driscoll, and L. Schmidt-Mende, “Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells,” Adv. Mater. 22(35), E254–E258 (2010).
[Crossref] [PubMed]

Jeon, S.

S. J. Park, H. H. Sohee-Jeong, H. H. Park, S. W. Lee, S. Jeon, J. H. Lee, D. G. Choi, J. H. Jeong, and J. H. Choi, “Optimized film processing of nanosilver colloids for photoluminescence enhancement,” J. Nanosci. Nanotechnol. 11(1), 422–426 (2011).
[Crossref] [PubMed]

Jeong, J. H.

S. J. Park, H. H. Sohee-Jeong, H. H. Park, S. W. Lee, S. Jeon, J. H. Lee, D. G. Choi, J. H. Jeong, and J. H. Choi, “Optimized film processing of nanosilver colloids for photoluminescence enhancement,” J. Nanosci. Nanotechnol. 11(1), 422–426 (2011).
[Crossref] [PubMed]

Jia, R.

G. Lin, Q. Zhang, X. Lin, D. F. Zhao, R. Jia, N. K. Gao, Z. Y. Zuo, X. G. Xu, and D. Liu, “Enhanced photoluminescence of gallium phosphide by surface plasmon resonances of metallic nanoparticles,” RSC Advances 5(60), 48275–48280 (2015).
[Crossref]

R. Jia, G. Lin, D. Zhao, Q. Zhang, X. Y. Lin, N. K. Gao, and D. Liu, “Sandwich-structured Cu2O photodetectors enhanced by localized surface plasmon resonances,” Appl. Surf. Sci. 332, 340–345 (2015).
[Crossref]

Jiang, C. Z.

Y. Liu, F. Ren, S. Shen, Y. M. Fu, C. Chen, C. Liu, Z. Xing, D. Liu, X. H. Xiao, W. Wu, X. D. Zheng, Y. C. Liu, and C. Z. Jiang, “Efficient enhancement of hydrogen production by Ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell,” Appl. Phys. Lett. 106(12), 123901 (2015).
[Crossref]

Jiang, D.

Z. Guo, D. Jiang, M. Zhao, F. Guo, J. N. Pei, R. S. Liu, L. Sun, N. Hu, and G. Y. Zhang, “Surface plasmon enhanced the responsivity of the ZnO/Pt nanoparticles/ZnO sandwich structured photodetector via optimizing the thickness of the top ZnO layer,” Solid-State Electron. 124, 24–27 (2016).
[Crossref]

D. Jiang, C. Tian, G. Yang, J. M. Qin, Q. C. Liang, J. X. Zhao, J. H. Hou, and S. Gao, “MgxZn1-xO solar-blind photodetectors fabricated by RF magnetron sputtering with combinatorial targets,” Mater. Res. Bull. 67, 158–161 (2015).
[Crossref]

Kamiya, T.

K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor,” Appl. Phys. Lett. 93(20), 202107 (2008).
[Crossref]

Kaur, G.

G. Kaur, K. L. Yadav, and A. Mitra, “Localized surface plasmon induced enhancement of electron-hole generation with silver metal island at n-Al:ZnO/p-Cu2O heterojunction,” Appl. Phys. Lett. 107(5), 053901 (2015).
[Crossref]

Krenn, J. R.

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trugler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105(17), 171103 (2014).
[Crossref]

Krug, M. K.

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trugler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105(17), 171103 (2014).
[Crossref]

Laruelle, S.

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000).
[Crossref] [PubMed]

Lassiter, J. B.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic Nanoclusters: Near Field Properties of the Fano Resonance Interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

Lee, C. S.

Z. H. Chen, Y. B. Tang, C. P. Liu, Y. H. Leung, G. D. Yuan, L. M. Chen, Y. Q. Wang, I. Bello, J. A. Zapien, W. J. Zhang, C. S. Lee, and S. T. Lee, “Vertically Aligned ZnO Nanorod Arrays Sentisized with Gold Nanoparticles for Schottky Barrier Photovoltaic Cells,” J. Phys. Chem. C 113(30), 13433–13437 (2009).
[Crossref]

Lee, J. H.

S. J. Park, H. H. Sohee-Jeong, H. H. Park, S. W. Lee, S. Jeon, J. H. Lee, D. G. Choi, J. H. Jeong, and J. H. Choi, “Optimized film processing of nanosilver colloids for photoluminescence enhancement,” J. Nanosci. Nanotechnol. 11(1), 422–426 (2011).
[Crossref] [PubMed]

Lee, M. L.

J. K. Sheu, M. L. Lee, and Y. C. Lin, “Surface Plasmon-Enhanced GaN Metal-Insulator-Semiconductor Ultraviolet detectors with Ag nanoislands embedded in a silicon dioxide gate layer,” IEEE. J. Sel. Top. Quant. 20(6), 137–141 (2014).
[Crossref]

Lee, S. T.

Z. H. Chen, Y. B. Tang, C. P. Liu, Y. H. Leung, G. D. Yuan, L. M. Chen, Y. Q. Wang, I. Bello, J. A. Zapien, W. J. Zhang, C. S. Lee, and S. T. Lee, “Vertically Aligned ZnO Nanorod Arrays Sentisized with Gold Nanoparticles for Schottky Barrier Photovoltaic Cells,” J. Phys. Chem. C 113(30), 13433–13437 (2009).
[Crossref]

Lee, S. W.

S. J. Park, H. H. Sohee-Jeong, H. H. Park, S. W. Lee, S. Jeon, J. H. Lee, D. G. Choi, J. H. Jeong, and J. H. Choi, “Optimized film processing of nanosilver colloids for photoluminescence enhancement,” J. Nanosci. Nanotechnol. 11(1), 422–426 (2011).
[Crossref] [PubMed]

Leung, Y. H.

Z. H. Chen, Y. B. Tang, C. P. Liu, Y. H. Leung, G. D. Yuan, L. M. Chen, Y. Q. Wang, I. Bello, J. A. Zapien, W. J. Zhang, C. S. Lee, and S. T. Lee, “Vertically Aligned ZnO Nanorod Arrays Sentisized with Gold Nanoparticles for Schottky Barrier Photovoltaic Cells,” J. Phys. Chem. C 113(30), 13433–13437 (2009).
[Crossref]

Li, C. M.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett. 94(11), 113106 (2009).
[Crossref]

Li, H.

J. Li, H. Li, Y. Xue, H. Fang, and W. Wang, “Facile electrodeposition of environment-friendly Cu2O/ZnO heterojunction for robust photoelectrochemical biosensing,” Sensor. Actuat. Biol. Chem. 191(2), 619–624 (2014).

Li, J.

J. Li, H. Li, Y. Xue, H. Fang, and W. Wang, “Facile electrodeposition of environment-friendly Cu2O/ZnO heterojunction for robust photoelectrochemical biosensing,” Sensor. Actuat. Biol. Chem. 191(2), 619–624 (2014).

Li, J. M.

Li, Q. Q.

Li, X. Y.

Y. Hou, X. Y. Li, Q. D. Zhao, X. Quan, and G. H. Chen, “Fabrication of Cu2O/TiO2 nanotube heterojunction arrays and investigation of its photoelectrochemical behavior,” Appl. Phys. Lett. 95(9), 093108 (2009).
[Crossref]

Liang, Q. C.

D. Jiang, C. Tian, G. Yang, J. M. Qin, Q. C. Liang, J. X. Zhao, J. H. Hou, and S. Gao, “MgxZn1-xO solar-blind photodetectors fabricated by RF magnetron sputtering with combinatorial targets,” Mater. Res. Bull. 67, 158–161 (2015).
[Crossref]

Liao, L.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett. 94(11), 113106 (2009).
[Crossref]

Lin, G.

R. Jia, G. Lin, D. Zhao, Q. Zhang, X. Y. Lin, N. K. Gao, and D. Liu, “Sandwich-structured Cu2O photodetectors enhanced by localized surface plasmon resonances,” Appl. Surf. Sci. 332, 340–345 (2015).
[Crossref]

G. Lin, Q. Zhang, X. Lin, D. F. Zhao, R. Jia, N. K. Gao, Z. Y. Zuo, X. G. Xu, and D. Liu, “Enhanced photoluminescence of gallium phosphide by surface plasmon resonances of metallic nanoparticles,” RSC Advances 5(60), 48275–48280 (2015).
[Crossref]

Lin, X.

G. Lin, Q. Zhang, X. Lin, D. F. Zhao, R. Jia, N. K. Gao, Z. Y. Zuo, X. G. Xu, and D. Liu, “Enhanced photoluminescence of gallium phosphide by surface plasmon resonances of metallic nanoparticles,” RSC Advances 5(60), 48275–48280 (2015).
[Crossref]

Lin, X. Y.

R. Jia, G. Lin, D. Zhao, Q. Zhang, X. Y. Lin, N. K. Gao, and D. Liu, “Sandwich-structured Cu2O photodetectors enhanced by localized surface plasmon resonances,” Appl. Surf. Sci. 332, 340–345 (2015).
[Crossref]

Lin, Y. C.

J. K. Sheu, M. L. Lee, and Y. C. Lin, “Surface Plasmon-Enhanced GaN Metal-Insulator-Semiconductor Ultraviolet detectors with Ag nanoislands embedded in a silicon dioxide gate layer,” IEEE. J. Sel. Top. Quant. 20(6), 137–141 (2014).
[Crossref]

Liu, C.

Y. Liu, F. Ren, S. Shen, Y. M. Fu, C. Chen, C. Liu, Z. Xing, D. Liu, X. H. Xiao, W. Wu, X. D. Zheng, Y. C. Liu, and C. Z. Jiang, “Efficient enhancement of hydrogen production by Ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell,” Appl. Phys. Lett. 106(12), 123901 (2015).
[Crossref]

Liu, C. P.

Z. H. Chen, Y. B. Tang, C. P. Liu, Y. H. Leung, G. D. Yuan, L. M. Chen, Y. Q. Wang, I. Bello, J. A. Zapien, W. J. Zhang, C. S. Lee, and S. T. Lee, “Vertically Aligned ZnO Nanorod Arrays Sentisized with Gold Nanoparticles for Schottky Barrier Photovoltaic Cells,” J. Phys. Chem. C 113(30), 13433–13437 (2009).
[Crossref]

Liu, D.

Y. Liu, F. Ren, S. Shen, Y. M. Fu, C. Chen, C. Liu, Z. Xing, D. Liu, X. H. Xiao, W. Wu, X. D. Zheng, Y. C. Liu, and C. Z. Jiang, “Efficient enhancement of hydrogen production by Ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell,” Appl. Phys. Lett. 106(12), 123901 (2015).
[Crossref]

G. Lin, Q. Zhang, X. Lin, D. F. Zhao, R. Jia, N. K. Gao, Z. Y. Zuo, X. G. Xu, and D. Liu, “Enhanced photoluminescence of gallium phosphide by surface plasmon resonances of metallic nanoparticles,” RSC Advances 5(60), 48275–48280 (2015).
[Crossref]

R. Jia, G. Lin, D. Zhao, Q. Zhang, X. Y. Lin, N. K. Gao, and D. Liu, “Sandwich-structured Cu2O photodetectors enhanced by localized surface plasmon resonances,” Appl. Surf. Sci. 332, 340–345 (2015).
[Crossref]

Liu, J. P.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett. 94(11), 113106 (2009).
[Crossref]

Liu, R. S.

Z. Guo, D. Jiang, M. Zhao, F. Guo, J. N. Pei, R. S. Liu, L. Sun, N. Hu, and G. Y. Zhang, “Surface plasmon enhanced the responsivity of the ZnO/Pt nanoparticles/ZnO sandwich structured photodetector via optimizing the thickness of the top ZnO layer,” Solid-State Electron. 124, 24–27 (2016).
[Crossref]

Liu, Y.

Y. Liu, F. Ren, S. Shen, Y. M. Fu, C. Chen, C. Liu, Z. Xing, D. Liu, X. H. Xiao, W. Wu, X. D. Zheng, Y. C. Liu, and C. Z. Jiang, “Efficient enhancement of hydrogen production by Ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell,” Appl. Phys. Lett. 106(12), 123901 (2015).
[Crossref]

Liu, Y. C.

Y. Liu, F. Ren, S. Shen, Y. M. Fu, C. Chen, C. Liu, Z. Xing, D. Liu, X. H. Xiao, W. Wu, X. D. Zheng, Y. C. Liu, and C. Z. Jiang, “Efficient enhancement of hydrogen production by Ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell,” Appl. Phys. Lett. 106(12), 123901 (2015).
[Crossref]

MacManus-Driscoll, J. L.

K. P. Musselman, A. Wisnet, D. C. Iza, H. C. Hesse, C. Scheu, J. L. MacManus-Driscoll, and L. Schmidt-Mende, “Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells,” Adv. Mater. 22(35), E254–E258 (2010).
[Crossref] [PubMed]

Makhlouf, H.

H. Makhlouf, O. Messaoudi, A. Souissi, I. Ben Assaker, M. Oueslati, M. Bechelany, and R. Chtourou, “Tuning of Ag doped core-shell ZnO NWs/Cu2O grown by electrochemical deposition,” Mater. Res. Express 2(9), 095002 (2015).
[Crossref]

Matsuzaki, K.

K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor,” Appl. Phys. Lett. 93(20), 202107 (2008).
[Crossref]

McShane, C. M.

C. M. McShane, W. P. Siripala, and K. S. Choi, “Effect of junction morphology on the performance of polycrystalline Cu2O homojunction solar cells,” J. Phys. Chem. Lett. 1(18), 2666–2670 (2010).
[Crossref]

Messaoudi, O.

H. Makhlouf, O. Messaoudi, A. Souissi, I. Ben Assaker, M. Oueslati, M. Bechelany, and R. Chtourou, “Tuning of Ag doped core-shell ZnO NWs/Cu2O grown by electrochemical deposition,” Mater. Res. Express 2(9), 095002 (2015).
[Crossref]

Minami, T.

H. Tanaka, T. Shimakawa, T. Miyata, H. Sato, and T. Minami, “Effect of AZO film deposition conditions on the photovoltaic properties of AZO-Cu2O heterojunctions,” Appl. Surf. Sci. 244(1–4), 568–572 (2005).
[Crossref]

Mitra, A.

G. Kaur, K. L. Yadav, and A. Mitra, “Localized surface plasmon induced enhancement of electron-hole generation with silver metal island at n-Al:ZnO/p-Cu2O heterojunction,” Appl. Phys. Lett. 107(5), 053901 (2015).
[Crossref]

Miyata, T.

H. Tanaka, T. Shimakawa, T. Miyata, H. Sato, and T. Minami, “Effect of AZO film deposition conditions on the photovoltaic properties of AZO-Cu2O heterojunctions,” Appl. Surf. Sci. 244(1–4), 568–572 (2005).
[Crossref]

Musselman, K. P.

K. P. Musselman, A. Wisnet, D. C. Iza, H. C. Hesse, C. Scheu, J. L. MacManus-Driscoll, and L. Schmidt-Mende, “Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells,” Adv. Mater. 22(35), E254–E258 (2010).
[Crossref] [PubMed]

Nomura, K.

K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor,” Appl. Phys. Lett. 93(20), 202107 (2008).
[Crossref]

Nordlander, P.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic Nanoclusters: Near Field Properties of the Fano Resonance Interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Oueslati, M.

H. Makhlouf, O. Messaoudi, A. Souissi, I. Ben Assaker, M. Oueslati, M. Bechelany, and R. Chtourou, “Tuning of Ag doped core-shell ZnO NWs/Cu2O grown by electrochemical deposition,” Mater. Res. Express 2(9), 095002 (2015).
[Crossref]

Ozbay, E.

S. Butun, N. A. Cinel, and E. Ozbay, “LSPR enhanced MSM UV photodetectors,” Nanotechnology 23(44), 444010 (2012).
[Crossref] [PubMed]

Park, H. H.

S. J. Park, H. H. Sohee-Jeong, H. H. Park, S. W. Lee, S. Jeon, J. H. Lee, D. G. Choi, J. H. Jeong, and J. H. Choi, “Optimized film processing of nanosilver colloids for photoluminescence enhancement,” J. Nanosci. Nanotechnol. 11(1), 422–426 (2011).
[Crossref] [PubMed]

Park, S. J.

S. J. Park, H. H. Sohee-Jeong, H. H. Park, S. W. Lee, S. Jeon, J. H. Lee, D. G. Choi, J. H. Jeong, and J. H. Choi, “Optimized film processing of nanosilver colloids for photoluminescence enhancement,” J. Nanosci. Nanotechnol. 11(1), 422–426 (2011).
[Crossref] [PubMed]

Pei, J. N.

Z. Guo, D. Jiang, M. Zhao, F. Guo, J. N. Pei, R. S. Liu, L. Sun, N. Hu, and G. Y. Zhang, “Surface plasmon enhanced the responsivity of the ZnO/Pt nanoparticles/ZnO sandwich structured photodetector via optimizing the thickness of the top ZnO layer,” Solid-State Electron. 124, 24–27 (2016).
[Crossref]

Pirhashemi, M.

M. Pirhashemi and A. Habibi-Yangjeh, “Ultrasonic-assisted preparation of plasmonic ZnO/Ag/Ag2WO4 nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants,” J. Colloid Interface Sci. 491, 216–229 (2017).
[Crossref] [PubMed]

Poizot, P.

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000).
[Crossref] [PubMed]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Qaeed, M. A.

N. G. Elfadill, M. R. Hashim, K. M. A. Saron, K. Chahrour, M. A. Qaeed, and M. Bououdina, “Ultraviolet-Visible photo-response of p-Cu2O/n-ZnO heterojunction prepared on flexible (PET) substrate,” Mater. Chem. Phys. 156, 54–60 (2015).
[Crossref]

Qin, J. M.

D. Jiang, C. Tian, G. Yang, J. M. Qin, Q. C. Liang, J. X. Zhao, J. H. Hou, and S. Gao, “MgxZn1-xO solar-blind photodetectors fabricated by RF magnetron sputtering with combinatorial targets,” Mater. Res. Bull. 67, 158–161 (2015).
[Crossref]

Quan, X.

Y. Hou, X. Y. Li, Q. D. Zhao, X. Quan, and G. H. Chen, “Fabrication of Cu2O/TiO2 nanotube heterojunction arrays and investigation of its photoelectrochemical behavior,” Appl. Phys. Lett. 95(9), 093108 (2009).
[Crossref]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Reisecker, M.

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trugler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105(17), 171103 (2014).
[Crossref]

Ren, F.

Y. Liu, F. Ren, S. Shen, Y. M. Fu, C. Chen, C. Liu, Z. Xing, D. Liu, X. H. Xiao, W. Wu, X. D. Zheng, Y. C. Liu, and C. Z. Jiang, “Efficient enhancement of hydrogen production by Ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell,” Appl. Phys. Lett. 106(12), 123901 (2015).
[Crossref]

Ren, S.

S. Ren, G. Zhao, Y. Wang, B. Wang, and Q. Wang, “Enhanced photocatalytic performance of sandwiched ZnO@Ag@Cu2O nanorod films: the distinct role of Ag NPs in the visible light and UV region,” Nanotechnology 26(12), 125403 (2015).
[Crossref] [PubMed]

Saron, K. M. A.

N. G. Elfadill, M. R. Hashim, K. M. A. Saron, K. Chahrour, M. A. Qaeed, and M. Bououdina, “Ultraviolet-Visible photo-response of p-Cu2O/n-ZnO heterojunction prepared on flexible (PET) substrate,” Mater. Chem. Phys. 156, 54–60 (2015).
[Crossref]

Sato, H.

H. Tanaka, T. Shimakawa, T. Miyata, H. Sato, and T. Minami, “Effect of AZO film deposition conditions on the photovoltaic properties of AZO-Cu2O heterojunctions,” Appl. Surf. Sci. 244(1–4), 568–572 (2005).
[Crossref]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

Scheu, C.

K. P. Musselman, A. Wisnet, D. C. Iza, H. C. Hesse, C. Scheu, J. L. MacManus-Driscoll, and L. Schmidt-Mende, “Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells,” Adv. Mater. 22(35), E254–E258 (2010).
[Crossref] [PubMed]

Schmidt-Mende, L.

K. P. Musselman, A. Wisnet, D. C. Iza, H. C. Hesse, C. Scheu, J. L. MacManus-Driscoll, and L. Schmidt-Mende, “Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells,” Adv. Mater. 22(35), E254–E258 (2010).
[Crossref] [PubMed]

Shen, S.

Y. Liu, F. Ren, S. Shen, Y. M. Fu, C. Chen, C. Liu, Z. Xing, D. Liu, X. H. Xiao, W. Wu, X. D. Zheng, Y. C. Liu, and C. Z. Jiang, “Efficient enhancement of hydrogen production by Ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell,” Appl. Phys. Lett. 106(12), 123901 (2015).
[Crossref]

Shen, Z. X.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett. 94(11), 113106 (2009).
[Crossref]

Sheu, J. K.

J. K. Sheu, M. L. Lee, and Y. C. Lin, “Surface Plasmon-Enhanced GaN Metal-Insulator-Semiconductor Ultraviolet detectors with Ag nanoislands embedded in a silicon dioxide gate layer,” IEEE. J. Sel. Top. Quant. 20(6), 137–141 (2014).
[Crossref]

Shimakawa, T.

H. Tanaka, T. Shimakawa, T. Miyata, H. Sato, and T. Minami, “Effect of AZO film deposition conditions on the photovoltaic properties of AZO-Cu2O heterojunctions,” Appl. Surf. Sci. 244(1–4), 568–572 (2005).
[Crossref]

Siripala, W. P.

C. M. McShane, W. P. Siripala, and K. S. Choi, “Effect of junction morphology on the performance of polycrystalline Cu2O homojunction solar cells,” J. Phys. Chem. Lett. 1(18), 2666–2670 (2010).
[Crossref]

Sobhani, H.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic Nanoclusters: Near Field Properties of the Fano Resonance Interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

Sohee-Jeong, H. H.

S. J. Park, H. H. Sohee-Jeong, H. H. Park, S. W. Lee, S. Jeon, J. H. Lee, D. G. Choi, J. H. Jeong, and J. H. Choi, “Optimized film processing of nanosilver colloids for photoluminescence enhancement,” J. Nanosci. Nanotechnol. 11(1), 422–426 (2011).
[Crossref] [PubMed]

Souissi, A.

H. Makhlouf, O. Messaoudi, A. Souissi, I. Ben Assaker, M. Oueslati, M. Bechelany, and R. Chtourou, “Tuning of Ag doped core-shell ZnO NWs/Cu2O grown by electrochemical deposition,” Mater. Res. Express 2(9), 095002 (2015).
[Crossref]

Sun, L.

Z. Guo, D. Jiang, M. Zhao, F. Guo, J. N. Pei, R. S. Liu, L. Sun, N. Hu, and G. Y. Zhang, “Surface plasmon enhanced the responsivity of the ZnO/Pt nanoparticles/ZnO sandwich structured photodetector via optimizing the thickness of the top ZnO layer,” Solid-State Electron. 124, 24–27 (2016).
[Crossref]

Tanaka, H.

H. Tanaka, T. Shimakawa, T. Miyata, H. Sato, and T. Minami, “Effect of AZO film deposition conditions on the photovoltaic properties of AZO-Cu2O heterojunctions,” Appl. Surf. Sci. 244(1–4), 568–572 (2005).
[Crossref]

Tang, Y. B.

Z. H. Chen, Y. B. Tang, C. P. Liu, Y. H. Leung, G. D. Yuan, L. M. Chen, Y. Q. Wang, I. Bello, J. A. Zapien, W. J. Zhang, C. S. Lee, and S. T. Lee, “Vertically Aligned ZnO Nanorod Arrays Sentisized with Gold Nanoparticles for Schottky Barrier Photovoltaic Cells,” J. Phys. Chem. C 113(30), 13433–13437 (2009).
[Crossref]

Tarascon, J. M.

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000).
[Crossref] [PubMed]

Thong, J. T. L.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett. 94(11), 113106 (2009).
[Crossref]

Tian, C.

D. Jiang, C. Tian, G. Yang, J. M. Qin, Q. C. Liang, J. X. Zhao, J. H. Hou, and S. Gao, “MgxZn1-xO solar-blind photodetectors fabricated by RF magnetron sputtering with combinatorial targets,” Mater. Res. Bull. 67, 158–161 (2015).
[Crossref]

Trugler, A.

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trugler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105(17), 171103 (2014).
[Crossref]

Van Dorpe, P.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic Nanoclusters: Near Field Properties of the Fano Resonance Interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

Wang, B.

S. Ren, G. Zhao, Y. Wang, B. Wang, and Q. Wang, “Enhanced photocatalytic performance of sandwiched ZnO@Ag@Cu2O nanorod films: the distinct role of Ag NPs in the visible light and UV region,” Nanotechnology 26(12), 125403 (2015).
[Crossref] [PubMed]

Wang, J. X.

Wang, L.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett. 94(11), 113106 (2009).
[Crossref]

Wang, Q.

S. Ren, G. Zhao, Y. Wang, B. Wang, and Q. Wang, “Enhanced photocatalytic performance of sandwiched ZnO@Ag@Cu2O nanorod films: the distinct role of Ag NPs in the visible light and UV region,” Nanotechnology 26(12), 125403 (2015).
[Crossref] [PubMed]

Wang, Q. Q.

Wang, W.

J. Li, H. Li, Y. Xue, H. Fang, and W. Wang, “Facile electrodeposition of environment-friendly Cu2O/ZnO heterojunction for robust photoelectrochemical biosensing,” Sensor. Actuat. Biol. Chem. 191(2), 619–624 (2014).

Wang, Y.

S. Ren, G. Zhao, Y. Wang, B. Wang, and Q. Wang, “Enhanced photocatalytic performance of sandwiched ZnO@Ag@Cu2O nanorod films: the distinct role of Ag NPs in the visible light and UV region,” Nanotechnology 26(12), 125403 (2015).
[Crossref] [PubMed]

Wang, Y. Q.

Z. H. Chen, Y. B. Tang, C. P. Liu, Y. H. Leung, G. D. Yuan, L. M. Chen, Y. Q. Wang, I. Bello, J. A. Zapien, W. J. Zhang, C. S. Lee, and S. T. Lee, “Vertically Aligned ZnO Nanorod Arrays Sentisized with Gold Nanoparticles for Schottky Barrier Photovoltaic Cells,” J. Phys. Chem. C 113(30), 13433–13437 (2009).
[Crossref]

Wen, F.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic Nanoclusters: Near Field Properties of the Fano Resonance Interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

Wisnet, A.

K. P. Musselman, A. Wisnet, D. C. Iza, H. C. Hesse, C. Scheu, J. L. MacManus-Driscoll, and L. Schmidt-Mende, “Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells,” Adv. Mater. 22(35), E254–E258 (2010).
[Crossref] [PubMed]

Wu, T.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett. 94(11), 113106 (2009).
[Crossref]

Wu, W.

Y. Liu, F. Ren, S. Shen, Y. M. Fu, C. Chen, C. Liu, Z. Xing, D. Liu, X. H. Xiao, W. Wu, X. D. Zheng, Y. C. Liu, and C. Z. Jiang, “Efficient enhancement of hydrogen production by Ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell,” Appl. Phys. Lett. 106(12), 123901 (2015).
[Crossref]

Xiao, X. H.

Y. Liu, F. Ren, S. Shen, Y. M. Fu, C. Chen, C. Liu, Z. Xing, D. Liu, X. H. Xiao, W. Wu, X. D. Zheng, Y. C. Liu, and C. Z. Jiang, “Efficient enhancement of hydrogen production by Ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell,” Appl. Phys. Lett. 106(12), 123901 (2015).
[Crossref]

Xing, G. Z.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett. 94(11), 113106 (2009).
[Crossref]

Xing, Z.

Y. Liu, F. Ren, S. Shen, Y. M. Fu, C. Chen, C. Liu, Z. Xing, D. Liu, X. H. Xiao, W. Wu, X. D. Zheng, Y. C. Liu, and C. Z. Jiang, “Efficient enhancement of hydrogen production by Ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell,” Appl. Phys. Lett. 106(12), 123901 (2015).
[Crossref]

Xu, X. G.

G. Lin, Q. Zhang, X. Lin, D. F. Zhao, R. Jia, N. K. Gao, Z. Y. Zuo, X. G. Xu, and D. Liu, “Enhanced photoluminescence of gallium phosphide by surface plasmon resonances of metallic nanoparticles,” RSC Advances 5(60), 48275–48280 (2015).
[Crossref]

Xue, Y.

J. Li, H. Li, Y. Xue, H. Fang, and W. Wang, “Facile electrodeposition of environment-friendly Cu2O/ZnO heterojunction for robust photoelectrochemical biosensing,” Sensor. Actuat. Biol. Chem. 191(2), 619–624 (2014).

Yadav, K. L.

G. Kaur, K. L. Yadav, and A. Mitra, “Localized surface plasmon induced enhancement of electron-hole generation with silver metal island at n-Al:ZnO/p-Cu2O heterojunction,” Appl. Phys. Lett. 107(5), 053901 (2015).
[Crossref]

Yan, B.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett. 94(11), 113106 (2009).
[Crossref]

Yanagi, H.

K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor,” Appl. Phys. Lett. 93(20), 202107 (2008).
[Crossref]

Yang, G.

D. Jiang, C. Tian, G. Yang, J. M. Qin, Q. C. Liang, J. X. Zhao, J. H. Hou, and S. Gao, “MgxZn1-xO solar-blind photodetectors fabricated by RF magnetron sputtering with combinatorial targets,” Mater. Res. Bull. 67, 158–161 (2015).
[Crossref]

Yang, Z. J.

Ye, J.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic Nanoclusters: Near Field Properties of the Fano Resonance Interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

Yu, E. T.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

Yu, T.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett. 94(11), 113106 (2009).
[Crossref]

Yu, Z. G.

Yuan, G. D.

Z. H. Chen, Y. B. Tang, C. P. Liu, Y. H. Leung, G. D. Yuan, L. M. Chen, Y. Q. Wang, I. Bello, J. A. Zapien, W. J. Zhang, C. S. Lee, and S. T. Lee, “Vertically Aligned ZnO Nanorod Arrays Sentisized with Gold Nanoparticles for Schottky Barrier Photovoltaic Cells,” J. Phys. Chem. C 113(30), 13433–13437 (2009).
[Crossref]

Zapien, J. A.

Z. H. Chen, Y. B. Tang, C. P. Liu, Y. H. Leung, G. D. Yuan, L. M. Chen, Y. Q. Wang, I. Bello, J. A. Zapien, W. J. Zhang, C. S. Lee, and S. T. Lee, “Vertically Aligned ZnO Nanorod Arrays Sentisized with Gold Nanoparticles for Schottky Barrier Photovoltaic Cells,” J. Phys. Chem. C 113(30), 13433–13437 (2009).
[Crossref]

Zhang, G. Y.

Z. Guo, D. Jiang, M. Zhao, F. Guo, J. N. Pei, R. S. Liu, L. Sun, N. Hu, and G. Y. Zhang, “Surface plasmon enhanced the responsivity of the ZnO/Pt nanoparticles/ZnO sandwich structured photodetector via optimizing the thickness of the top ZnO layer,” Solid-State Electron. 124, 24–27 (2016).
[Crossref]

Zhang, L. H.

Zhang, Q.

G. Lin, Q. Zhang, X. Lin, D. F. Zhao, R. Jia, N. K. Gao, Z. Y. Zuo, X. G. Xu, and D. Liu, “Enhanced photoluminescence of gallium phosphide by surface plasmon resonances of metallic nanoparticles,” RSC Advances 5(60), 48275–48280 (2015).
[Crossref]

R. Jia, G. Lin, D. Zhao, Q. Zhang, X. Y. Lin, N. K. Gao, and D. Liu, “Sandwich-structured Cu2O photodetectors enhanced by localized surface plasmon resonances,” Appl. Surf. Sci. 332, 340–345 (2015).
[Crossref]

Zhang, W. J.

Z. H. Chen, Y. B. Tang, C. P. Liu, Y. H. Leung, G. D. Yuan, L. M. Chen, Y. Q. Wang, I. Bello, J. A. Zapien, W. J. Zhang, C. S. Lee, and S. T. Lee, “Vertically Aligned ZnO Nanorod Arrays Sentisized with Gold Nanoparticles for Schottky Barrier Photovoltaic Cells,” J. Phys. Chem. C 113(30), 13433–13437 (2009).
[Crossref]

Zhang, Y.

Z. Bai and Y. Zhang, “Self-powered UV-visible photodetectors based on ZnO/Cu2O nanowire/electrolyte heterojunctions,” J. Alloys Compd. 675, 325–330 (2016).
[Crossref]

Zhang, Z. S.

Zhao, B. C.

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett. 94(11), 113106 (2009).
[Crossref]

Zhao, D.

R. Jia, G. Lin, D. Zhao, Q. Zhang, X. Y. Lin, N. K. Gao, and D. Liu, “Sandwich-structured Cu2O photodetectors enhanced by localized surface plasmon resonances,” Appl. Surf. Sci. 332, 340–345 (2015).
[Crossref]

Zhao, D. F.

G. Lin, Q. Zhang, X. Lin, D. F. Zhao, R. Jia, N. K. Gao, Z. Y. Zuo, X. G. Xu, and D. Liu, “Enhanced photoluminescence of gallium phosphide by surface plasmon resonances of metallic nanoparticles,” RSC Advances 5(60), 48275–48280 (2015).
[Crossref]

Zhao, G.

S. Ren, G. Zhao, Y. Wang, B. Wang, and Q. Wang, “Enhanced photocatalytic performance of sandwiched ZnO@Ag@Cu2O nanorod films: the distinct role of Ag NPs in the visible light and UV region,” Nanotechnology 26(12), 125403 (2015).
[Crossref] [PubMed]

Zhao, J. X.

D. Jiang, C. Tian, G. Yang, J. M. Qin, Q. C. Liang, J. X. Zhao, J. H. Hou, and S. Gao, “MgxZn1-xO solar-blind photodetectors fabricated by RF magnetron sputtering with combinatorial targets,” Mater. Res. Bull. 67, 158–161 (2015).
[Crossref]

Zhao, L. X.

Zhao, M.

Z. Guo, D. Jiang, M. Zhao, F. Guo, J. N. Pei, R. S. Liu, L. Sun, N. Hu, and G. Y. Zhang, “Surface plasmon enhanced the responsivity of the ZnO/Pt nanoparticles/ZnO sandwich structured photodetector via optimizing the thickness of the top ZnO layer,” Solid-State Electron. 124, 24–27 (2016).
[Crossref]

Zhao, Q. D.

Y. Hou, X. Y. Li, Q. D. Zhao, X. Quan, and G. H. Chen, “Fabrication of Cu2O/TiO2 nanotube heterojunction arrays and investigation of its photoelectrochemical behavior,” Appl. Phys. Lett. 95(9), 093108 (2009).
[Crossref]

Zheng, X. D.

Y. Liu, F. Ren, S. Shen, Y. M. Fu, C. Chen, C. Liu, Z. Xing, D. Liu, X. H. Xiao, W. Wu, X. D. Zheng, Y. C. Liu, and C. Z. Jiang, “Efficient enhancement of hydrogen production by Ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell,” Appl. Phys. Lett. 106(12), 123901 (2015).
[Crossref]

Zhu, S. C.

Zuo, Z. Y.

G. Lin, Q. Zhang, X. Lin, D. F. Zhao, R. Jia, N. K. Gao, Z. Y. Zuo, X. G. Xu, and D. Liu, “Enhanced photoluminescence of gallium phosphide by surface plasmon resonances of metallic nanoparticles,” RSC Advances 5(60), 48275–48280 (2015).
[Crossref]

Adv. Mater. (1)

K. P. Musselman, A. Wisnet, D. C. Iza, H. C. Hesse, C. Scheu, J. L. MacManus-Driscoll, and L. Schmidt-Mende, “Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells,” Adv. Mater. 22(35), E254–E258 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (7)

G. Kaur, K. L. Yadav, and A. Mitra, “Localized surface plasmon induced enhancement of electron-hole generation with silver metal island at n-Al:ZnO/p-Cu2O heterojunction,” Appl. Phys. Lett. 107(5), 053901 (2015).
[Crossref]

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trugler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105(17), 171103 (2014).
[Crossref]

L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, “P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires,” Appl. Phys. Lett. 94(11), 113106 (2009).
[Crossref]

Y. Hou, X. Y. Li, Q. D. Zhao, X. Quan, and G. H. Chen, “Fabrication of Cu2O/TiO2 nanotube heterojunction arrays and investigation of its photoelectrochemical behavior,” Appl. Phys. Lett. 95(9), 093108 (2009).
[Crossref]

K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor,” Appl. Phys. Lett. 93(20), 202107 (2008).
[Crossref]

Y. Liu, F. Ren, S. Shen, Y. M. Fu, C. Chen, C. Liu, Z. Xing, D. Liu, X. H. Xiao, W. Wu, X. D. Zheng, Y. C. Liu, and C. Z. Jiang, “Efficient enhancement of hydrogen production by Ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell,” Appl. Phys. Lett. 106(12), 123901 (2015).
[Crossref]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

Appl. Surf. Sci. (2)

H. Tanaka, T. Shimakawa, T. Miyata, H. Sato, and T. Minami, “Effect of AZO film deposition conditions on the photovoltaic properties of AZO-Cu2O heterojunctions,” Appl. Surf. Sci. 244(1–4), 568–572 (2005).
[Crossref]

R. Jia, G. Lin, D. Zhao, Q. Zhang, X. Y. Lin, N. K. Gao, and D. Liu, “Sandwich-structured Cu2O photodetectors enhanced by localized surface plasmon resonances,” Appl. Surf. Sci. 332, 340–345 (2015).
[Crossref]

IEEE. J. Sel. Top. Quant. (1)

J. K. Sheu, M. L. Lee, and Y. C. Lin, “Surface Plasmon-Enhanced GaN Metal-Insulator-Semiconductor Ultraviolet detectors with Ag nanoislands embedded in a silicon dioxide gate layer,” IEEE. J. Sel. Top. Quant. 20(6), 137–141 (2014).
[Crossref]

J. Alloys Compd. (1)

Z. Bai and Y. Zhang, “Self-powered UV-visible photodetectors based on ZnO/Cu2O nanowire/electrolyte heterojunctions,” J. Alloys Compd. 675, 325–330 (2016).
[Crossref]

J. Colloid Interface Sci. (1)

M. Pirhashemi and A. Habibi-Yangjeh, “Ultrasonic-assisted preparation of plasmonic ZnO/Ag/Ag2WO4 nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants,” J. Colloid Interface Sci. 491, 216–229 (2017).
[Crossref] [PubMed]

J. Nanosci. Nanotechnol. (1)

S. J. Park, H. H. Sohee-Jeong, H. H. Park, S. W. Lee, S. Jeon, J. H. Lee, D. G. Choi, J. H. Jeong, and J. H. Choi, “Optimized film processing of nanosilver colloids for photoluminescence enhancement,” J. Nanosci. Nanotechnol. 11(1), 422–426 (2011).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

Z. H. Chen, Y. B. Tang, C. P. Liu, Y. H. Leung, G. D. Yuan, L. M. Chen, Y. Q. Wang, I. Bello, J. A. Zapien, W. J. Zhang, C. S. Lee, and S. T. Lee, “Vertically Aligned ZnO Nanorod Arrays Sentisized with Gold Nanoparticles for Schottky Barrier Photovoltaic Cells,” J. Phys. Chem. C 113(30), 13433–13437 (2009).
[Crossref]

J. Phys. Chem. Lett. (1)

C. M. McShane, W. P. Siripala, and K. S. Choi, “Effect of junction morphology on the performance of polycrystalline Cu2O homojunction solar cells,” J. Phys. Chem. Lett. 1(18), 2666–2670 (2010).
[Crossref]

Mater. Chem. Phys. (1)

N. G. Elfadill, M. R. Hashim, K. M. A. Saron, K. Chahrour, M. A. Qaeed, and M. Bououdina, “Ultraviolet-Visible photo-response of p-Cu2O/n-ZnO heterojunction prepared on flexible (PET) substrate,” Mater. Chem. Phys. 156, 54–60 (2015).
[Crossref]

Mater. Res. Bull. (1)

D. Jiang, C. Tian, G. Yang, J. M. Qin, Q. C. Liang, J. X. Zhao, J. H. Hou, and S. Gao, “MgxZn1-xO solar-blind photodetectors fabricated by RF magnetron sputtering with combinatorial targets,” Mater. Res. Bull. 67, 158–161 (2015).
[Crossref]

Mater. Res. Express (1)

H. Makhlouf, O. Messaoudi, A. Souissi, I. Ben Assaker, M. Oueslati, M. Bechelany, and R. Chtourou, “Tuning of Ag doped core-shell ZnO NWs/Cu2O grown by electrochemical deposition,” Mater. Res. Express 2(9), 095002 (2015).
[Crossref]

Nano Lett. (1)

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic Nanoclusters: Near Field Properties of the Fano Resonance Interrogated with SERS,” Nano Lett. 12(3), 1660–1667 (2012).
[Crossref] [PubMed]

Nanotechnology (2)

S. Ren, G. Zhao, Y. Wang, B. Wang, and Q. Wang, “Enhanced photocatalytic performance of sandwiched ZnO@Ag@Cu2O nanorod films: the distinct role of Ag NPs in the visible light and UV region,” Nanotechnology 26(12), 125403 (2015).
[Crossref] [PubMed]

S. Butun, N. A. Cinel, and E. Ozbay, “LSPR enhanced MSM UV photodetectors,” Nanotechnology 23(44), 444010 (2012).
[Crossref] [PubMed]

Nature (1)

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature 407(6803), 496–499 (2000).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

RSC Advances (1)

G. Lin, Q. Zhang, X. Lin, D. F. Zhao, R. Jia, N. K. Gao, Z. Y. Zuo, X. G. Xu, and D. Liu, “Enhanced photoluminescence of gallium phosphide by surface plasmon resonances of metallic nanoparticles,” RSC Advances 5(60), 48275–48280 (2015).
[Crossref]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Sensor. Actuat. Biol. Chem. (1)

J. Li, H. Li, Y. Xue, H. Fang, and W. Wang, “Facile electrodeposition of environment-friendly Cu2O/ZnO heterojunction for robust photoelectrochemical biosensing,” Sensor. Actuat. Biol. Chem. 191(2), 619–624 (2014).

Solid-State Electron. (1)

Z. Guo, D. Jiang, M. Zhao, F. Guo, J. N. Pei, R. S. Liu, L. Sun, N. Hu, and G. Y. Zhang, “Surface plasmon enhanced the responsivity of the ZnO/Pt nanoparticles/ZnO sandwich structured photodetector via optimizing the thickness of the top ZnO layer,” Solid-State Electron. 124, 24–27 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) The corresponding XRD patterns of Cu2O/ZnO; the inset is the SEM images of Cu2O/ZnO on ITO with the top and cross-section, respectively. (b) The UV-visible spectra of Cu2O/ZnO, the inset is the plot of (αhυ)2 vs. for the Cu2O/ZnO films.
Fig. 2
Fig. 2 (a) Extinction spectra of Ag NPs, (b) The absorption spectra of Cu2O/ZnO films with and without Ag NPs, the inset is SEM images of Ag NPs.
Fig. 3
Fig. 3 (a) I-V characteristics of the Cu2O/ZnO and Cu2O/Ag/ZnO photodetector, the insert is current-voltage curve between two In electrode on Cu2O. (b) Spectral response of the Cu2O/ZnO and Cu2O/Ag/ZnO photodetector at 2V bias.
Fig. 4
Fig. 4 Spectral response of (a) Cu2O/ZnO and (b) Cu2O/Ag/ZnO photodetectors, (c) Peak responsivity and (d) Detectivity of Cu2O/ZnO and Cu2O/Ag/ZnO photodetectors as a function of the bias voltage.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

αhν= ( hν E g ) 1 2
D * = A 1/2 R ( 4 k 0 T/ R dark +2q I dark ) 1/2

Metrics