Abstract

Artificially structured metallic meshes have been widely used in optical transparent devices for electromagnetic interference (EMI) shielding. Traditional meshes have drawbacks such as poor imaging quality from the centralized diffraction distribution and the inferior EMI shielding efficiency. Here, we propose a petal-shaped metallic mesh with anomalistic closed-loop pattern that can effectively improve the EMI shielding efficiency by reducing the equivalent period of the mesh and, meanwhile, suppress the stray light and achieve uniform optical diffraction. By experimentally testing the EMI shielding and diffraction performance of such mesh samples, a Ku-band shielding efficiency (SE) larger than 24 dB with the maximum SE of 32.1 dB at 12.2 GHz is obtained, which is 8 dB higher than that of the classical square mesh, and an optical transmittance as high as 73.4% is achieved at the visible wavelength of 632.8 nm. Petal-shaped metallic mesh with such excellent performance may play important roles in various applications of optical transparent windows.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding

Zhou-ying Jiang, Wenbin Huang, Lin-sen Chen, and Yan-hua Liu
Opt. Express 27(17) 24194-24206 (2019)

Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding

Heyan Wang, Zhengang Lu, Yeshu Liu, Jiubin Tan, Limin Ma, and Shen Lin
Opt. Lett. 42(8) 1620-1623 (2017)

References

  • View by:
  • |
  • |
  • |

  1. X. Zhang, G. Ji, W. Liu, B. Quan, X. Liang, C. Shang, Y. Cheng, and Y. Du, “Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material,” Nanoscale 7(30), 12932–12942 (2015).
    [Crossref] [PubMed]
  2. J. Han, X. Wang, Y. Qiu, J. Zhu, and P. A. Hue, “Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding,” Carbon 87, 206–214 (2015).
    [Crossref]
  3. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” in APS March Meeting, American Physical Society (Academic, 2009), pp. 706.
  4. H. Xu, L. B. Hu, S. M. Anlage, and G. Gruner, “Microwave shielding of transparent and conducting single-walled carbon nanotube films,” Appl. Phys. Lett. 90(18), 3533–3545 (2007).
    [Crossref]
  5. H. Mesfin, A. C. Baudouin, S. Hermans, A. Delcorte, I. Huynen, and C. Bailly, “Frequency selective microwave absorption induced by controlled orientation of graphene-like nanoplatelets in thin polymer films,” Appl. Phys. Lett. 105(10), 103105 (2014).
    [Crossref]
  6. F. Capasso, “Active metasurfaces for advanced wavefront engineering and waveguiding,” presented at the MURI Annual Review Meeting, Harvard University, USA, 5 Dec. 2014.
  7. M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng. 32(5), 911–925 (1993).
    [Crossref]
  8. M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, R. K. Li, and Y. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
    [Crossref] [PubMed]
  9. S. K. Hong, K. Y. Kim, T. Y. Kim, J. H. Kim, S. W. Park, J. H. Kim, and B. J. Cho, “Electromagnetic interference shielding effectiveness of monolayer graphene,” Nanotechnology 23(45), 455704 (2012).
    [Crossref] [PubMed]
  10. J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, and W. Zheng, “A Facile Preparation of Lightweight Microcellular Polyetherimide/Graphene Composite Foams for Electromagnetic Interference Shielding,” ACS Appl. Mater. Interfaces 5(7), 2677–2684 (2013).
    [Crossref] [PubMed]
  11. T. Zhou, X. Wang, and T. Wang, “Cure reaction of multi‐walled carbon nanotubes/diglycidyl ether of bisphenol A/2‐ethyl‐4‐methylimidazole (MWCNTs/DGEBA/EMI‐2,4) nanocomposites: effect of carboxylic functionalization of MWCNTs,” Polym. Int. 58(4), 445–452 (2009).
    [Crossref]
  12. R. Kumar, H. K. Choudhary, S. P. Pawar, S. Bose, and B. Sahoo, “Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption,” Phys. Chem. Chem. Phys. 19(34), 23268–23279 (2017).
    [Crossref] [PubMed]
  13. N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
    [Crossref] [PubMed]
  14. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref] [PubMed]
  15. Z. Tagay and C. Valagiannopoulos, “Highly selective transmission and absorption from metasurfaces of periodically corrugated cylindrical particles,” Phys. Rev. B 98(11), 115306 (2018).
    [Crossref]
  16. J. Li, C. Shen, A. Díaz-Rubio, S. A. Tretyakov, and S. A. Cummer, “Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts,” Nat. Commun. 9(1), 1342 (2018).
    [Crossref] [PubMed]
  17. J. L. Huang, B. S. Yau, C. Y. Chen, W. T. Lo, and D. F. Lii, “The electromagnetic shielding effectiveness of indium tin oxide films,” Ceram. Int. 27(3), 363–365 (2001).
    [Crossref]
  18. Y. S. Kim, Y. S. Jeon, and S. S. Kim, “Fabrication of Indium Tin Oxide (ITO) Transparent Thin Films and Their Microwave Shielding Properties,” Proc. SPIE 8548, 85482L (1999).
  19. J. Kutsch, A. Laroche, and L. Fehrenbacher, “Spinel domes with integrated electromagnetic interference protection,” SPIE Security and Defense. (Academic, 2013), pp. 8761–8770.
  20. R. J. Noll, “Some trade issues for EMI windows,” Proc. SPIE 2286, 403–410 (1994).
    [Crossref]
  21. C. H. Kim and Y. Lee, “Fabrication and measurement of the performance of a printed EMI shielding mesh filter on PET film,” Int. J. Precis. Eng. Manuf. 12(1), 161–164 (2011).
    [Crossref]
  22. Z. Lu, H. Wang, J. Tan, and S. Lin, “Microwave shielding enhancement of high-transparency, double-layer, submillimeter-period metallic mesh,” Appl. Phys. Lett. 105(24), 103105 (2014).
    [Crossref]
  23. J. Tan and Z. Lu, “Contiguous metallic rings: an inductive mesh with high transmissivity, strong electromagnetic shielding, and uniformly distributed stray light,” Opt. Express 15(3), 790–796 (2007).
    [Crossref] [PubMed]
  24. Z. Lu, J. Tan, J. Qi, Z. Fan, and L. Zhang, “Modeling Fraunhofer diffractive characteristics for modulation transfer function analysis of tilted ring metallic mesh,” Opt. Commun. 284(16-17), 3855–3861 (2011).
    [Crossref]
  25. H. Wang, Z. Lu, and J. Tan, “Generation of uniform diffraction pattern and high EMI shielding performance by metallic mesh composed of ring and rotated sub-ring arrays,” Opt. Express 24(20), 22989–23000 (2016).
    [Crossref] [PubMed]
  26. H. Wang, Z. Lu, Y. Liu, J. Tan, L. Ma, and S. Lin, “Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding,” Opt. Lett. 42(8), 1620–1623 (2017).
    [Crossref] [PubMed]
  27. J. I. Halman, K. A. Ramsey, M. Thomas, and A. Griffin, “Predicted and measured transmission and diffraction by a metallic mesh coating,” Proc. SPIE 7302, 7302 (2009).
    [Crossref]
  28. Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma, P. Jin, and J. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
    [Crossref] [PubMed]
  29. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
    [Crossref]
  30. C. A. Valagiannopoulos, “Arbitrary currents on circular cylinder with inhomogeneous cladding and RCS optimization,” J. Electromagn. Waves Appl. 21(5), 665–680 (2007).
    [Crossref]
  31. D. M. Pozar, Microwave Engineering (Academic Press, 2005), 4th ed.
  32. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2005), 3rd ed.

2018 (2)

Z. Tagay and C. Valagiannopoulos, “Highly selective transmission and absorption from metasurfaces of periodically corrugated cylindrical particles,” Phys. Rev. B 98(11), 115306 (2018).
[Crossref]

J. Li, C. Shen, A. Díaz-Rubio, S. A. Tretyakov, and S. A. Cummer, “Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts,” Nat. Commun. 9(1), 1342 (2018).
[Crossref] [PubMed]

2017 (2)

R. Kumar, H. K. Choudhary, S. P. Pawar, S. Bose, and B. Sahoo, “Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption,” Phys. Chem. Chem. Phys. 19(34), 23268–23279 (2017).
[Crossref] [PubMed]

H. Wang, Z. Lu, Y. Liu, J. Tan, L. Ma, and S. Lin, “Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding,” Opt. Lett. 42(8), 1620–1623 (2017).
[Crossref] [PubMed]

2016 (2)

Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma, P. Jin, and J. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref] [PubMed]

H. Wang, Z. Lu, and J. Tan, “Generation of uniform diffraction pattern and high EMI shielding performance by metallic mesh composed of ring and rotated sub-ring arrays,” Opt. Express 24(20), 22989–23000 (2016).
[Crossref] [PubMed]

2015 (2)

X. Zhang, G. Ji, W. Liu, B. Quan, X. Liang, C. Shang, Y. Cheng, and Y. Du, “Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material,” Nanoscale 7(30), 12932–12942 (2015).
[Crossref] [PubMed]

J. Han, X. Wang, Y. Qiu, J. Zhu, and P. A. Hue, “Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding,” Carbon 87, 206–214 (2015).
[Crossref]

2014 (2)

H. Mesfin, A. C. Baudouin, S. Hermans, A. Delcorte, I. Huynen, and C. Bailly, “Frequency selective microwave absorption induced by controlled orientation of graphene-like nanoplatelets in thin polymer films,” Appl. Phys. Lett. 105(10), 103105 (2014).
[Crossref]

Z. Lu, H. Wang, J. Tan, and S. Lin, “Microwave shielding enhancement of high-transparency, double-layer, submillimeter-period metallic mesh,” Appl. Phys. Lett. 105(24), 103105 (2014).
[Crossref]

2013 (2)

J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, and W. Zheng, “A Facile Preparation of Lightweight Microcellular Polyetherimide/Graphene Composite Foams for Electromagnetic Interference Shielding,” ACS Appl. Mater. Interfaces 5(7), 2677–2684 (2013).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

2012 (2)

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, R. K. Li, and Y. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref] [PubMed]

S. K. Hong, K. Y. Kim, T. Y. Kim, J. H. Kim, S. W. Park, J. H. Kim, and B. J. Cho, “Electromagnetic interference shielding effectiveness of monolayer graphene,” Nanotechnology 23(45), 455704 (2012).
[Crossref] [PubMed]

2011 (2)

C. H. Kim and Y. Lee, “Fabrication and measurement of the performance of a printed EMI shielding mesh filter on PET film,” Int. J. Precis. Eng. Manuf. 12(1), 161–164 (2011).
[Crossref]

Z. Lu, J. Tan, J. Qi, Z. Fan, and L. Zhang, “Modeling Fraunhofer diffractive characteristics for modulation transfer function analysis of tilted ring metallic mesh,” Opt. Commun. 284(16-17), 3855–3861 (2011).
[Crossref]

2009 (2)

J. I. Halman, K. A. Ramsey, M. Thomas, and A. Griffin, “Predicted and measured transmission and diffraction by a metallic mesh coating,” Proc. SPIE 7302, 7302 (2009).
[Crossref]

T. Zhou, X. Wang, and T. Wang, “Cure reaction of multi‐walled carbon nanotubes/diglycidyl ether of bisphenol A/2‐ethyl‐4‐methylimidazole (MWCNTs/DGEBA/EMI‐2,4) nanocomposites: effect of carboxylic functionalization of MWCNTs,” Polym. Int. 58(4), 445–452 (2009).
[Crossref]

2007 (3)

H. Xu, L. B. Hu, S. M. Anlage, and G. Gruner, “Microwave shielding of transparent and conducting single-walled carbon nanotube films,” Appl. Phys. Lett. 90(18), 3533–3545 (2007).
[Crossref]

J. Tan and Z. Lu, “Contiguous metallic rings: an inductive mesh with high transmissivity, strong electromagnetic shielding, and uniformly distributed stray light,” Opt. Express 15(3), 790–796 (2007).
[Crossref] [PubMed]

C. A. Valagiannopoulos, “Arbitrary currents on circular cylinder with inhomogeneous cladding and RCS optimization,” J. Electromagn. Waves Appl. 21(5), 665–680 (2007).
[Crossref]

2006 (1)

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref] [PubMed]

2001 (1)

J. L. Huang, B. S. Yau, C. Y. Chen, W. T. Lo, and D. F. Lii, “The electromagnetic shielding effectiveness of indium tin oxide films,” Ceram. Int. 27(3), 363–365 (2001).
[Crossref]

1999 (1)

Y. S. Kim, Y. S. Jeon, and S. S. Kim, “Fabrication of Indium Tin Oxide (ITO) Transparent Thin Films and Their Microwave Shielding Properties,” Proc. SPIE 8548, 85482L (1999).

1994 (1)

R. J. Noll, “Some trade issues for EMI windows,” Proc. SPIE 2286, 403–410 (1994).
[Crossref]

1993 (1)

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng. 32(5), 911–925 (1993).
[Crossref]

1967 (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
[Crossref]

Anlage, S. M.

H. Xu, L. B. Hu, S. M. Anlage, and G. Gruner, “Microwave shielding of transparent and conducting single-walled carbon nanotube films,” Appl. Phys. Lett. 90(18), 3533–3545 (2007).
[Crossref]

Bailly, C.

H. Mesfin, A. C. Baudouin, S. Hermans, A. Delcorte, I. Huynen, and C. Bailly, “Frequency selective microwave absorption induced by controlled orientation of graphene-like nanoplatelets in thin polymer films,” Appl. Phys. Lett. 105(10), 103105 (2014).
[Crossref]

Baudouin, A. C.

H. Mesfin, A. C. Baudouin, S. Hermans, A. Delcorte, I. Huynen, and C. Bailly, “Frequency selective microwave absorption induced by controlled orientation of graphene-like nanoplatelets in thin polymer films,” Appl. Phys. Lett. 105(10), 103105 (2014).
[Crossref]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Bose, S.

R. Kumar, H. K. Choudhary, S. P. Pawar, S. Bose, and B. Sahoo, “Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption,” Phys. Chem. Chem. Phys. 19(34), 23268–23279 (2017).
[Crossref] [PubMed]

Chapman, J. E.

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng. 32(5), 911–925 (1993).
[Crossref]

Chase, R. C.

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng. 32(5), 911–925 (1993).
[Crossref]

Chen, C. Y.

J. L. Huang, B. S. Yau, C. Y. Chen, W. T. Lo, and D. F. Lii, “The electromagnetic shielding effectiveness of indium tin oxide films,” Ceram. Int. 27(3), 363–365 (2001).
[Crossref]

Chen, Y.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref] [PubMed]

Cheng, Y.

X. Zhang, G. Ji, W. Liu, B. Quan, X. Liang, C. Shang, Y. Cheng, and Y. Du, “Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material,” Nanoscale 7(30), 12932–12942 (2015).
[Crossref] [PubMed]

Cho, B. J.

S. K. Hong, K. Y. Kim, T. Y. Kim, J. H. Kim, S. W. Park, J. H. Kim, and B. J. Cho, “Electromagnetic interference shielding effectiveness of monolayer graphene,” Nanotechnology 23(45), 455704 (2012).
[Crossref] [PubMed]

Choudhary, H. K.

R. Kumar, H. K. Choudhary, S. P. Pawar, S. Bose, and B. Sahoo, “Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption,” Phys. Chem. Chem. Phys. 19(34), 23268–23279 (2017).
[Crossref] [PubMed]

Cummer, S. A.

J. Li, C. Shen, A. Díaz-Rubio, S. A. Tretyakov, and S. A. Cummer, “Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts,” Nat. Commun. 9(1), 1342 (2018).
[Crossref] [PubMed]

Delcorte, A.

H. Mesfin, A. C. Baudouin, S. Hermans, A. Delcorte, I. Huynen, and C. Bailly, “Frequency selective microwave absorption induced by controlled orientation of graphene-like nanoplatelets in thin polymer films,” Appl. Phys. Lett. 105(10), 103105 (2014).
[Crossref]

Díaz-Rubio, A.

J. Li, C. Shen, A. Díaz-Rubio, S. A. Tretyakov, and S. A. Cummer, “Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts,” Nat. Commun. 9(1), 1342 (2018).
[Crossref] [PubMed]

Dong, Y.

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, R. K. Li, and Y. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref] [PubMed]

Du, F.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref] [PubMed]

Du, Y.

X. Zhang, G. Ji, W. Liu, B. Quan, X. Liang, C. Shang, Y. Cheng, and Y. Du, “Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material,” Nanoscale 7(30), 12932–12942 (2015).
[Crossref] [PubMed]

Eklund, P. C.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref] [PubMed]

Fan, Z.

Z. Lu, J. Tan, J. Qi, Z. Fan, and L. Zhang, “Modeling Fraunhofer diffractive characteristics for modulation transfer function analysis of tilted ring metallic mesh,” Opt. Commun. 284(16-17), 3855–3861 (2011).
[Crossref]

Feng, W.

J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, and W. Zheng, “A Facile Preparation of Lightweight Microcellular Polyetherimide/Graphene Composite Foams for Electromagnetic Interference Shielding,” ACS Appl. Mater. Interfaces 5(7), 2677–2684 (2013).
[Crossref] [PubMed]

Fu, H.

Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma, P. Jin, and J. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref] [PubMed]

Gao, H.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref] [PubMed]

Gao, J.

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, R. K. Li, and Y. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref] [PubMed]

Griffin, A.

J. I. Halman, K. A. Ramsey, M. Thomas, and A. Griffin, “Predicted and measured transmission and diffraction by a metallic mesh coating,” Proc. SPIE 7302, 7302 (2009).
[Crossref]

Gruner, G.

H. Xu, L. B. Hu, S. M. Anlage, and G. Gruner, “Microwave shielding of transparent and conducting single-walled carbon nanotube films,” Appl. Phys. Lett. 90(18), 3533–3545 (2007).
[Crossref]

Halman, J. I.

J. I. Halman, K. A. Ramsey, M. Thomas, and A. Griffin, “Predicted and measured transmission and diffraction by a metallic mesh coating,” Proc. SPIE 7302, 7302 (2009).
[Crossref]

Han, J.

J. Han, X. Wang, Y. Qiu, J. Zhu, and P. A. Hue, “Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding,” Carbon 87, 206–214 (2015).
[Crossref]

Han, Y.

Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma, P. Jin, and J. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref] [PubMed]

He, X.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref] [PubMed]

Hermans, S.

H. Mesfin, A. C. Baudouin, S. Hermans, A. Delcorte, I. Huynen, and C. Bailly, “Frequency selective microwave absorption induced by controlled orientation of graphene-like nanoplatelets in thin polymer films,” Appl. Phys. Lett. 105(10), 103105 (2014).
[Crossref]

Hong, S. K.

S. K. Hong, K. Y. Kim, T. Y. Kim, J. H. Kim, S. W. Park, J. H. Kim, and B. J. Cho, “Electromagnetic interference shielding effectiveness of monolayer graphene,” Nanotechnology 23(45), 455704 (2012).
[Crossref] [PubMed]

Hu, L. B.

H. Xu, L. B. Hu, S. M. Anlage, and G. Gruner, “Microwave shielding of transparent and conducting single-walled carbon nanotube films,” Appl. Phys. Lett. 90(18), 3533–3545 (2007).
[Crossref]

Hu, M.

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, R. K. Li, and Y. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref] [PubMed]

Huang, J. L.

J. L. Huang, B. S. Yau, C. Y. Chen, W. T. Lo, and D. F. Lii, “The electromagnetic shielding effectiveness of indium tin oxide films,” Ceram. Int. 27(3), 363–365 (2001).
[Crossref]

Huang, Y.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref] [PubMed]

Hue, P. A.

J. Han, X. Wang, Y. Qiu, J. Zhu, and P. A. Hue, “Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding,” Carbon 87, 206–214 (2015).
[Crossref]

Huynen, I.

H. Mesfin, A. C. Baudouin, S. Hermans, A. Delcorte, I. Huynen, and C. Bailly, “Frequency selective microwave absorption induced by controlled orientation of graphene-like nanoplatelets in thin polymer films,” Appl. Phys. Lett. 105(10), 103105 (2014).
[Crossref]

Jeon, Y. S.

Y. S. Kim, Y. S. Jeon, and S. S. Kim, “Fabrication of Indium Tin Oxide (ITO) Transparent Thin Films and Their Microwave Shielding Properties,” Proc. SPIE 8548, 85482L (1999).

Ji, G.

X. Zhang, G. Ji, W. Liu, B. Quan, X. Liang, C. Shang, Y. Cheng, and Y. Du, “Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material,” Nanoscale 7(30), 12932–12942 (2015).
[Crossref] [PubMed]

Jin, P.

Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma, P. Jin, and J. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref] [PubMed]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Kim, C. H.

C. H. Kim and Y. Lee, “Fabrication and measurement of the performance of a printed EMI shielding mesh filter on PET film,” Int. J. Precis. Eng. Manuf. 12(1), 161–164 (2011).
[Crossref]

Kim, J. H.

S. K. Hong, K. Y. Kim, T. Y. Kim, J. H. Kim, S. W. Park, J. H. Kim, and B. J. Cho, “Electromagnetic interference shielding effectiveness of monolayer graphene,” Nanotechnology 23(45), 455704 (2012).
[Crossref] [PubMed]

S. K. Hong, K. Y. Kim, T. Y. Kim, J. H. Kim, S. W. Park, J. H. Kim, and B. J. Cho, “Electromagnetic interference shielding effectiveness of monolayer graphene,” Nanotechnology 23(45), 455704 (2012).
[Crossref] [PubMed]

Kim, K. Y.

S. K. Hong, K. Y. Kim, T. Y. Kim, J. H. Kim, S. W. Park, J. H. Kim, and B. J. Cho, “Electromagnetic interference shielding effectiveness of monolayer graphene,” Nanotechnology 23(45), 455704 (2012).
[Crossref] [PubMed]

Kim, S. S.

Y. S. Kim, Y. S. Jeon, and S. S. Kim, “Fabrication of Indium Tin Oxide (ITO) Transparent Thin Films and Their Microwave Shielding Properties,” Proc. SPIE 8548, 85482L (1999).

Kim, T. Y.

S. K. Hong, K. Y. Kim, T. Y. Kim, J. H. Kim, S. W. Park, J. H. Kim, and B. J. Cho, “Electromagnetic interference shielding effectiveness of monolayer graphene,” Nanotechnology 23(45), 455704 (2012).
[Crossref] [PubMed]

Kim, Y. S.

Y. S. Kim, Y. S. Jeon, and S. S. Kim, “Fabrication of Indium Tin Oxide (ITO) Transparent Thin Films and Their Microwave Shielding Properties,” Proc. SPIE 8548, 85482L (1999).

Kohin, M.

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng. 32(5), 911–925 (1993).
[Crossref]

Kumar, R.

R. Kumar, H. K. Choudhary, S. P. Pawar, S. Bose, and B. Sahoo, “Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption,” Phys. Chem. Chem. Phys. 19(34), 23268–23279 (2017).
[Crossref] [PubMed]

Lee, Y.

C. H. Kim and Y. Lee, “Fabrication and measurement of the performance of a printed EMI shielding mesh filter on PET film,” Int. J. Precis. Eng. Manuf. 12(1), 161–164 (2011).
[Crossref]

Li, F.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref] [PubMed]

Li, J.

J. Li, C. Shen, A. Díaz-Rubio, S. A. Tretyakov, and S. A. Cummer, “Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts,” Nat. Commun. 9(1), 1342 (2018).
[Crossref] [PubMed]

Li, K.

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, R. K. Li, and Y. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref] [PubMed]

Li, N.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref] [PubMed]

Li, R. K.

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, R. K. Li, and Y. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref] [PubMed]

Li, Y.

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, R. K. Li, and Y. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref] [PubMed]

Liang, X.

X. Zhang, G. Ji, W. Liu, B. Quan, X. Liang, C. Shang, Y. Cheng, and Y. Du, “Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material,” Nanoscale 7(30), 12932–12942 (2015).
[Crossref] [PubMed]

Lii, D. F.

J. L. Huang, B. S. Yau, C. Y. Chen, W. T. Lo, and D. F. Lii, “The electromagnetic shielding effectiveness of indium tin oxide films,” Ceram. Int. 27(3), 363–365 (2001).
[Crossref]

Lin, J.

Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma, P. Jin, and J. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref] [PubMed]

Lin, S.

H. Wang, Z. Lu, Y. Liu, J. Tan, L. Ma, and S. Lin, “Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding,” Opt. Lett. 42(8), 1620–1623 (2017).
[Crossref] [PubMed]

Z. Lu, H. Wang, J. Tan, and S. Lin, “Microwave shielding enhancement of high-transparency, double-layer, submillimeter-period metallic mesh,” Appl. Phys. Lett. 105(24), 103105 (2014).
[Crossref]

Lin, X.

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref] [PubMed]

Ling, J.

J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, and W. Zheng, “A Facile Preparation of Lightweight Microcellular Polyetherimide/Graphene Composite Foams for Electromagnetic Interference Shielding,” ACS Appl. Mater. Interfaces 5(7), 2677–2684 (2013).
[Crossref] [PubMed]

Liu, W.

X. Zhang, G. Ji, W. Liu, B. Quan, X. Liang, C. Shang, Y. Cheng, and Y. Du, “Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material,” Nanoscale 7(30), 12932–12942 (2015).
[Crossref] [PubMed]

Liu, Y.

H. Wang, Z. Lu, Y. Liu, J. Tan, L. Ma, and S. Lin, “Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding,” Opt. Lett. 42(8), 1620–1623 (2017).
[Crossref] [PubMed]

Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma, P. Jin, and J. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref] [PubMed]

Lo, W. T.

J. L. Huang, B. S. Yau, C. Y. Chen, W. T. Lo, and D. F. Lii, “The electromagnetic shielding effectiveness of indium tin oxide films,” Ceram. Int. 27(3), 363–365 (2001).
[Crossref]

Lu, Z.

Ma, L.

Ma, Y.

Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma, P. Jin, and J. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref] [PubMed]

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref] [PubMed]

Mesfin, H.

H. Mesfin, A. C. Baudouin, S. Hermans, A. Delcorte, I. Huynen, and C. Bailly, “Frequency selective microwave absorption induced by controlled orientation of graphene-like nanoplatelets in thin polymer films,” Appl. Phys. Lett. 105(10), 103105 (2014).
[Crossref]

Noll, R. J.

R. J. Noll, “Some trade issues for EMI windows,” Proc. SPIE 2286, 403–410 (1994).
[Crossref]

Park, S. W.

S. K. Hong, K. Y. Kim, T. Y. Kim, J. H. Kim, S. W. Park, J. H. Kim, and B. J. Cho, “Electromagnetic interference shielding effectiveness of monolayer graphene,” Nanotechnology 23(45), 455704 (2012).
[Crossref] [PubMed]

Pawar, S. P.

R. Kumar, H. K. Choudhary, S. P. Pawar, S. Bose, and B. Sahoo, “Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption,” Phys. Chem. Chem. Phys. 19(34), 23268–23279 (2017).
[Crossref] [PubMed]

Qi, J.

Z. Lu, J. Tan, J. Qi, Z. Fan, and L. Zhang, “Modeling Fraunhofer diffractive characteristics for modulation transfer function analysis of tilted ring metallic mesh,” Opt. Commun. 284(16-17), 3855–3861 (2011).
[Crossref]

Qiu, Y.

J. Han, X. Wang, Y. Qiu, J. Zhu, and P. A. Hue, “Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding,” Carbon 87, 206–214 (2015).
[Crossref]

Quan, B.

X. Zhang, G. Ji, W. Liu, B. Quan, X. Liang, C. Shang, Y. Cheng, and Y. Du, “Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material,” Nanoscale 7(30), 12932–12942 (2015).
[Crossref] [PubMed]

Ramsey, K. A.

J. I. Halman, K. A. Ramsey, M. Thomas, and A. Griffin, “Predicted and measured transmission and diffraction by a metallic mesh coating,” Proc. SPIE 7302, 7302 (2009).
[Crossref]

Sahoo, B.

R. Kumar, H. K. Choudhary, S. P. Pawar, S. Bose, and B. Sahoo, “Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption,” Phys. Chem. Chem. Phys. 19(34), 23268–23279 (2017).
[Crossref] [PubMed]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Shan, G.

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, R. K. Li, and Y. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref] [PubMed]

Shang, C.

X. Zhang, G. Ji, W. Liu, B. Quan, X. Liang, C. Shang, Y. Cheng, and Y. Du, “Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material,” Nanoscale 7(30), 12932–12942 (2015).
[Crossref] [PubMed]

Shen, B.

J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, and W. Zheng, “A Facile Preparation of Lightweight Microcellular Polyetherimide/Graphene Composite Foams for Electromagnetic Interference Shielding,” ACS Appl. Mater. Interfaces 5(7), 2677–2684 (2013).
[Crossref] [PubMed]

Shen, C.

J. Li, C. Shen, A. Díaz-Rubio, S. A. Tretyakov, and S. A. Cummer, “Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts,” Nat. Commun. 9(1), 1342 (2018).
[Crossref] [PubMed]

Tagay, Z.

Z. Tagay and C. Valagiannopoulos, “Highly selective transmission and absorption from metasurfaces of periodically corrugated cylindrical particles,” Phys. Rev. B 98(11), 115306 (2018).
[Crossref]

Tan, J.

H. Wang, Z. Lu, Y. Liu, J. Tan, L. Ma, and S. Lin, “Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding,” Opt. Lett. 42(8), 1620–1623 (2017).
[Crossref] [PubMed]

H. Wang, Z. Lu, and J. Tan, “Generation of uniform diffraction pattern and high EMI shielding performance by metallic mesh composed of ring and rotated sub-ring arrays,” Opt. Express 24(20), 22989–23000 (2016).
[Crossref] [PubMed]

Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma, P. Jin, and J. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref] [PubMed]

Z. Lu, H. Wang, J. Tan, and S. Lin, “Microwave shielding enhancement of high-transparency, double-layer, submillimeter-period metallic mesh,” Appl. Phys. Lett. 105(24), 103105 (2014).
[Crossref]

Z. Lu, J. Tan, J. Qi, Z. Fan, and L. Zhang, “Modeling Fraunhofer diffractive characteristics for modulation transfer function analysis of tilted ring metallic mesh,” Opt. Commun. 284(16-17), 3855–3861 (2011).
[Crossref]

J. Tan and Z. Lu, “Contiguous metallic rings: an inductive mesh with high transmissivity, strong electromagnetic shielding, and uniformly distributed stray light,” Opt. Express 15(3), 790–796 (2007).
[Crossref] [PubMed]

Thomas, M.

J. I. Halman, K. A. Ramsey, M. Thomas, and A. Griffin, “Predicted and measured transmission and diffraction by a metallic mesh coating,” Proc. SPIE 7302, 7302 (2009).
[Crossref]

Traylor, J. D.

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng. 32(5), 911–925 (1993).
[Crossref]

Tretyakov, S. A.

J. Li, C. Shen, A. Díaz-Rubio, S. A. Tretyakov, and S. A. Cummer, “Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts,” Nat. Commun. 9(1), 1342 (2018).
[Crossref] [PubMed]

Ulrich, R.

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
[Crossref]

Valagiannopoulos, C.

Z. Tagay and C. Valagiannopoulos, “Highly selective transmission and absorption from metasurfaces of periodically corrugated cylindrical particles,” Phys. Rev. B 98(11), 115306 (2018).
[Crossref]

Valagiannopoulos, C. A.

C. A. Valagiannopoulos, “Arbitrary currents on circular cylinder with inhomogeneous cladding and RCS optimization,” J. Electromagn. Waves Appl. 21(5), 665–680 (2007).
[Crossref]

Wang, H.

Wang, T.

T. Zhou, X. Wang, and T. Wang, “Cure reaction of multi‐walled carbon nanotubes/diglycidyl ether of bisphenol A/2‐ethyl‐4‐methylimidazole (MWCNTs/DGEBA/EMI‐2,4) nanocomposites: effect of carboxylic functionalization of MWCNTs,” Polym. Int. 58(4), 445–452 (2009).
[Crossref]

Wang, X.

J. Han, X. Wang, Y. Qiu, J. Zhu, and P. A. Hue, “Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding,” Carbon 87, 206–214 (2015).
[Crossref]

T. Zhou, X. Wang, and T. Wang, “Cure reaction of multi‐walled carbon nanotubes/diglycidyl ether of bisphenol A/2‐ethyl‐4‐methylimidazole (MWCNTs/DGEBA/EMI‐2,4) nanocomposites: effect of carboxylic functionalization of MWCNTs,” Polym. Int. 58(4), 445–452 (2009).
[Crossref]

Wein, S. J.

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng. 32(5), 911–925 (1993).
[Crossref]

Xu, H.

H. Xu, L. B. Hu, S. M. Anlage, and G. Gruner, “Microwave shielding of transparent and conducting single-walled carbon nanotube films,” Appl. Phys. Lett. 90(18), 3533–3545 (2007).
[Crossref]

Yang, S.

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, R. K. Li, and Y. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref] [PubMed]

Yau, B. S.

J. L. Huang, B. S. Yau, C. Y. Chen, W. T. Lo, and D. F. Lii, “The electromagnetic shielding effectiveness of indium tin oxide films,” Ceram. Int. 27(3), 363–365 (2001).
[Crossref]

Zhai, W.

J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, and W. Zheng, “A Facile Preparation of Lightweight Microcellular Polyetherimide/Graphene Composite Foams for Electromagnetic Interference Shielding,” ACS Appl. Mater. Interfaces 5(7), 2677–2684 (2013).
[Crossref] [PubMed]

Zhang, J.

J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, and W. Zheng, “A Facile Preparation of Lightweight Microcellular Polyetherimide/Graphene Composite Foams for Electromagnetic Interference Shielding,” ACS Appl. Mater. Interfaces 5(7), 2677–2684 (2013).
[Crossref] [PubMed]

Zhang, L.

Z. Lu, J. Tan, J. Qi, Z. Fan, and L. Zhang, “Modeling Fraunhofer diffractive characteristics for modulation transfer function analysis of tilted ring metallic mesh,” Opt. Commun. 284(16-17), 3855–3861 (2011).
[Crossref]

Zhang, X.

X. Zhang, G. Ji, W. Liu, B. Quan, X. Liang, C. Shang, Y. Cheng, and Y. Du, “Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material,” Nanoscale 7(30), 12932–12942 (2015).
[Crossref] [PubMed]

Zheng, W.

J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, and W. Zheng, “A Facile Preparation of Lightweight Microcellular Polyetherimide/Graphene Composite Foams for Electromagnetic Interference Shielding,” ACS Appl. Mater. Interfaces 5(7), 2677–2684 (2013).
[Crossref] [PubMed]

Zhou, T.

T. Zhou, X. Wang, and T. Wang, “Cure reaction of multi‐walled carbon nanotubes/diglycidyl ether of bisphenol A/2‐ethyl‐4‐methylimidazole (MWCNTs/DGEBA/EMI‐2,4) nanocomposites: effect of carboxylic functionalization of MWCNTs,” Polym. Int. 58(4), 445–452 (2009).
[Crossref]

Zhu, J.

J. Han, X. Wang, Y. Qiu, J. Zhu, and P. A. Hue, “Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding,” Carbon 87, 206–214 (2015).
[Crossref]

ACS Appl. Mater. Interfaces (1)

J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, and W. Zheng, “A Facile Preparation of Lightweight Microcellular Polyetherimide/Graphene Composite Foams for Electromagnetic Interference Shielding,” ACS Appl. Mater. Interfaces 5(7), 2677–2684 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

H. Xu, L. B. Hu, S. M. Anlage, and G. Gruner, “Microwave shielding of transparent and conducting single-walled carbon nanotube films,” Appl. Phys. Lett. 90(18), 3533–3545 (2007).
[Crossref]

H. Mesfin, A. C. Baudouin, S. Hermans, A. Delcorte, I. Huynen, and C. Bailly, “Frequency selective microwave absorption induced by controlled orientation of graphene-like nanoplatelets in thin polymer films,” Appl. Phys. Lett. 105(10), 103105 (2014).
[Crossref]

Z. Lu, H. Wang, J. Tan, and S. Lin, “Microwave shielding enhancement of high-transparency, double-layer, submillimeter-period metallic mesh,” Appl. Phys. Lett. 105(24), 103105 (2014).
[Crossref]

Carbon (1)

J. Han, X. Wang, Y. Qiu, J. Zhu, and P. A. Hue, “Infrared-transparent films based on conductive graphene network fabrics for electromagnetic shielding,” Carbon 87, 206–214 (2015).
[Crossref]

Ceram. Int. (1)

J. L. Huang, B. S. Yau, C. Y. Chen, W. T. Lo, and D. F. Lii, “The electromagnetic shielding effectiveness of indium tin oxide films,” Ceram. Int. 27(3), 363–365 (2001).
[Crossref]

Infrared Phys. (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
[Crossref]

Int. J. Precis. Eng. Manuf. (1)

C. H. Kim and Y. Lee, “Fabrication and measurement of the performance of a printed EMI shielding mesh filter on PET film,” Int. J. Precis. Eng. Manuf. 12(1), 161–164 (2011).
[Crossref]

J. Electromagn. Waves Appl. (1)

C. A. Valagiannopoulos, “Arbitrary currents on circular cylinder with inhomogeneous cladding and RCS optimization,” J. Electromagn. Waves Appl. 21(5), 665–680 (2007).
[Crossref]

Langmuir (1)

M. Hu, J. Gao, Y. Dong, K. Li, G. Shan, S. Yang, R. K. Li, and Y. Li, “Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding,” Langmuir 28(18), 7101–7106 (2012).
[Crossref] [PubMed]

Nano Lett. (1)

N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites,” Nano Lett. 6(6), 1141–1145 (2006).
[Crossref] [PubMed]

Nanoscale (1)

X. Zhang, G. Ji, W. Liu, B. Quan, X. Liang, C. Shang, Y. Cheng, and Y. Du, “Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material,” Nanoscale 7(30), 12932–12942 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

S. K. Hong, K. Y. Kim, T. Y. Kim, J. H. Kim, S. W. Park, J. H. Kim, and B. J. Cho, “Electromagnetic interference shielding effectiveness of monolayer graphene,” Nanotechnology 23(45), 455704 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

J. Li, C. Shen, A. Díaz-Rubio, S. A. Tretyakov, and S. A. Cummer, “Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts,” Nat. Commun. 9(1), 1342 (2018).
[Crossref] [PubMed]

Opt. Commun. (1)

Z. Lu, J. Tan, J. Qi, Z. Fan, and L. Zhang, “Modeling Fraunhofer diffractive characteristics for modulation transfer function analysis of tilted ring metallic mesh,” Opt. Commun. 284(16-17), 3855–3861 (2011).
[Crossref]

Opt. Eng. (1)

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng. 32(5), 911–925 (1993).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

R. Kumar, H. K. Choudhary, S. P. Pawar, S. Bose, and B. Sahoo, “Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption,” Phys. Chem. Chem. Phys. 19(34), 23268–23279 (2017).
[Crossref] [PubMed]

Phys. Rev. B (1)

Z. Tagay and C. Valagiannopoulos, “Highly selective transmission and absorption from metasurfaces of periodically corrugated cylindrical particles,” Phys. Rev. B 98(11), 115306 (2018).
[Crossref]

Polym. Int. (1)

T. Zhou, X. Wang, and T. Wang, “Cure reaction of multi‐walled carbon nanotubes/diglycidyl ether of bisphenol A/2‐ethyl‐4‐methylimidazole (MWCNTs/DGEBA/EMI‐2,4) nanocomposites: effect of carboxylic functionalization of MWCNTs,” Polym. Int. 58(4), 445–452 (2009).
[Crossref]

Proc. SPIE (3)

Y. S. Kim, Y. S. Jeon, and S. S. Kim, “Fabrication of Indium Tin Oxide (ITO) Transparent Thin Films and Their Microwave Shielding Properties,” Proc. SPIE 8548, 85482L (1999).

J. I. Halman, K. A. Ramsey, M. Thomas, and A. Griffin, “Predicted and measured transmission and diffraction by a metallic mesh coating,” Proc. SPIE 7302, 7302 (2009).
[Crossref]

R. J. Noll, “Some trade issues for EMI windows,” Proc. SPIE 2286, 403–410 (1994).
[Crossref]

Sci. Rep. (1)

Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma, P. Jin, and J. Tan, “Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding,” Sci. Rep. 6(1), 25601 (2016).
[Crossref] [PubMed]

Science (1)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Other (5)

J. Kutsch, A. Laroche, and L. Fehrenbacher, “Spinel domes with integrated electromagnetic interference protection,” SPIE Security and Defense. (Academic, 2013), pp. 8761–8770.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” in APS March Meeting, American Physical Society (Academic, 2009), pp. 706.

F. Capasso, “Active metasurfaces for advanced wavefront engineering and waveguiding,” presented at the MURI Annual Review Meeting, Harvard University, USA, 5 Dec. 2014.

D. M. Pozar, Microwave Engineering (Academic Press, 2005), 4th ed.

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2005), 3rd ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of the proposed petal-shaped metallic mesh. (b) Geometric details of the 1/4 unit cell.
Fig. 2
Fig. 2 Calculated EMI SEs of the petal mesh and the square mesh, by use of the Ulrich’s model and the numerical simulation of CST Microwave Studio.
Fig. 3
Fig. 3 (a) and (b) are the calculation results of the normalized diffraction energy distributions of the square mesh and the petal mesh in log scales, respectively. (c) and (d) are the experimentally measured diffraction intensity distributions of the square mesh and the petal mesh, respectively. The areas surrounded by the black solid circles indicate the size of the zero-order beam.
Fig. 4
Fig. 4 Micrographs of the fabricated samples of (a) the square mesh and (b) the petal mesh.
Fig. 5
Fig. 5 (a) Schematic of the EMI SE measurement setup. (b) Measurement results of the SEs of the square mesh and the petal mesh, in comparison with the simulation results.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T= 4 g 2 λ 2 {ln[sin( πa g )]} 2 ,
SE=10lgT,
t n (x,y)=circ( x 2 + y 2 Ng/2 ){[rect( x g )rect( y g ) k=0 3 (E A k E B k ) ]** m n δ(xmg)δ(yng) },
E A k =EP, x+ g 2 cos 90 k g 2 , y+ g 2 sin 90 k g 2 ),
E B k =EP( x+ g2a 2 cos 90 k g2a 2 , y+ g2a 2 sin 90 k g2a 2 ),
EP(x,y)=circ( r 1 )+circ( r 2 ),
{ circ(r)=1,r1 circ(r)=0,else ,
I n (α,β)=F[ t n (x,y)] F * [ t n (x,y)],

Metrics