Abstract

Plasmonic resonances in metal-dielectric-metal structures have shown strong electric and magnetic fields enhancement in the sub-wavelength region, which can significantly boost the performance of plasmon-based metamaterial absorbers. Square resonators (SR) and ring resonators (RR) are both the most common blocks for designing metamaterial perfect absorbers (MPAs) by exciting fundamental electric dipole plasmonic modes. Actually, they can also excite the higher-order electric sextupole plasmonic modes but the absorptivity is very low, which are not available for the design of MPAs. In this paper, the near-field-coupling idea is introduced to enhance the absorptivity of higher-order electric sextupole modes. We propose the outer-square inner-ring coupled resonators (OSIRCR) made of the Ag and ZnS. When the coupling distance has decreased from 70 to 10 nm, the electric field intensity has increased 10.8 times from 55 to 594, which leads to a 5.4 times increase in absorptivity of higher-order electric sextupole modes of the outer-square from 17.6% to 95.3%. In addition to the higher-order electric sextupole modes, the OSIRCR can also excite the fundamental electric dipole modes of the outer-square and the inner-ring. Then a six-band polarization-independent MPA in the infrared range is designed with an average absorptivity of 91.5% utilizing two different sized OSIRCRs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of higher-order plasmonic modes in a dense array of split-ring resonators

Dalius Seliuta, Gediminas Šlekas, Andrius Vaitkūnas, Žilvinas Kancleris, and Gintaras Valušis
Opt. Express 25(21) 25113-25124 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  3. A. Karalis and J. D. Joannopoulos, “‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6(1), 28472 (2016).
    [Crossref] [PubMed]
  4. D. Xiao and K. Tao, “Ultra-compact metamaterial absorber for multiband light absorption at mid-infrared frequencies,” Appl. Phys. Express 8(10), 102001 (2015).
    [Crossref]
  5. K. Q. Le, Q. M. Ngo, and T. K. Nguyen, “Nanostructured metal-nsulator-Metal Metamaterials for Refractive Index Biosensing Applications: Design, Fabrication, and Characterization,” IEEE J. Sel. Top. Quantum Electron. 23(2), 6900506 (2017).
    [Crossref]
  6. R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
    [Crossref] [PubMed]
  7. T. Maier and H. Brückl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett. 34(19), 3012–3014 (2009).
    [Crossref] [PubMed]
  8. T. Maier and H. Brueckl, “Multispectral microbolometers for the midinfrared,” Opt. Lett. 35(22), 3766–3768 (2010).
    [Crossref] [PubMed]
  9. S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
    [Crossref]
  10. S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
    [Crossref]
  11. S. Ogawa, J. Komoda, K. Masuda, and M. Kimata, “Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber,” Opt. Eng. 52(12), 127104 (2013).
    [Crossref]
  12. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
    [Crossref]
  13. N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
    [Crossref]
  14. G. Dayal and S. Anantha Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15(5), 055106 (2013).
    [Crossref]
  15. S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
    [Crossref]
  16. P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
    [Crossref]
  17. H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
    [Crossref]
  18. J. Chen, Z. Hu, S. Wang, X. Huang, and M. Liu, “A triple-band, polarization- and incident angle-independent microwave metamaterial absorber with interference theory,” Eur. Phys. J. B 89(1), 14 (2016).
    [Crossref]
  19. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
    [Crossref] [PubMed]
  20. D. Zheng, Y. Cheng, D. Cheng, Y. Nie, and R. Gong, “Four-Band Polarization-Insensitive Metama- Terial Absorber Based on Flower-Shaped Structures,” Prog. Electromagnetics Res. 142, 221–229 (2013).
    [Crossref]
  21. J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
    [Crossref] [PubMed]
  22. G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chin. Phys. B 23(1), 017802 (2014).
    [Crossref]
  23. W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
    [Crossref]
  24. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
    [Crossref] [PubMed]
  25. B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a four-band and polarization-insensitive terahertz metamaterial absorber,” IEEE Photonics J. 7, 4600108 (2015).
    [Crossref]
  26. W. Pan, X. Yu, J. Zhang, and W. Zeng, “A Novel Design of Broadband Terahertz Metamaterial Absorber Based on Nested Circle Rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
    [Crossref]
  27. Z. C. Xu, R. M. Gao, C. F. Ding, Y. T. Zhang, and J. Q. Yao, “Multiband metamaterial absorber at terahertz frequencies,” Chin. Phys. Lett. 31(5), 054205 (2014).
    [Crossref]
  28. T. Xie, Z. Chen, R. Ma, and M. Zhong, “A wide-angle and polarization insensitive infrared broad band metamaterial absorber,” Opt. Commun. 383, 81–86 (2017).
    [Crossref]
  29. J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
    [Crossref] [PubMed]
  30. J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau De Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
    [Crossref]
  31. C. Chen, Y. Sheng, and W. Jun, “Computed a multiple band metamaterial absorber and its application based on the figure of merit value,” Opt. Commun. 406, 145–150 (2018).
    [Crossref]
  32. B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30(3), 656–662 (2013).
    [Crossref]
  33. J. Xu, Z. Zhao, H. Yu, L. Yang, P. Gou, J. Cao, Y. Zou, J. Qian, T. Shi, Q. Ren, and Z. An, “Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies,” Opt. Express 24(22), 25742–25751 (2016).
    [Crossref] [PubMed]
  34. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

2018 (1)

C. Chen, Y. Sheng, and W. Jun, “Computed a multiple band metamaterial absorber and its application based on the figure of merit value,” Opt. Commun. 406, 145–150 (2018).
[Crossref]

2017 (4)

T. Xie, Z. Chen, R. Ma, and M. Zhong, “A wide-angle and polarization insensitive infrared broad band metamaterial absorber,” Opt. Commun. 383, 81–86 (2017).
[Crossref]

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

K. Q. Le, Q. M. Ngo, and T. K. Nguyen, “Nanostructured metal-nsulator-Metal Metamaterials for Refractive Index Biosensing Applications: Design, Fabrication, and Characterization,” IEEE J. Sel. Top. Quantum Electron. 23(2), 6900506 (2017).
[Crossref]

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

2016 (4)

A. Karalis and J. D. Joannopoulos, “‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6(1), 28472 (2016).
[Crossref] [PubMed]

J. Chen, Z. Hu, S. Wang, X. Huang, and M. Liu, “A triple-band, polarization- and incident angle-independent microwave metamaterial absorber with interference theory,” Eur. Phys. J. B 89(1), 14 (2016).
[Crossref]

J. Xu, Z. Zhao, H. Yu, L. Yang, P. Gou, J. Cao, Y. Zou, J. Qian, T. Shi, Q. Ren, and Z. An, “Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies,” Opt. Express 24(22), 25742–25751 (2016).
[Crossref] [PubMed]

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A Novel Design of Broadband Terahertz Metamaterial Absorber Based on Nested Circle Rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

2015 (5)

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a four-band and polarization-insensitive terahertz metamaterial absorber,” IEEE Photonics J. 7, 4600108 (2015).
[Crossref]

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

D. Xiao and K. Tao, “Ultra-compact metamaterial absorber for multiband light absorption at mid-infrared frequencies,” Appl. Phys. Express 8(10), 102001 (2015).
[Crossref]

2014 (3)

S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
[Crossref]

G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chin. Phys. B 23(1), 017802 (2014).
[Crossref]

Z. C. Xu, R. M. Gao, C. F. Ding, Y. T. Zhang, and J. Q. Yao, “Multiband metamaterial absorber at terahertz frequencies,” Chin. Phys. Lett. 31(5), 054205 (2014).
[Crossref]

2013 (5)

D. Zheng, Y. Cheng, D. Cheng, Y. Nie, and R. Gong, “Four-Band Polarization-Insensitive Metama- Terial Absorber Based on Flower-Shaped Structures,” Prog. Electromagnetics Res. 142, 221–229 (2013).
[Crossref]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30(3), 656–662 (2013).
[Crossref]

S. Ogawa, J. Komoda, K. Masuda, and M. Kimata, “Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber,” Opt. Eng. 52(12), 127104 (2013).
[Crossref]

G. Dayal and S. Anantha Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15(5), 055106 (2013).
[Crossref]

2012 (2)

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau De Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

2011 (4)

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
[Crossref] [PubMed]

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

2007 (1)

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Afsar, M. N.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

An, Z.

Anantha Ramakrishna, S.

G. Dayal and S. Anantha Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15(5), 055106 (2013).
[Crossref]

Bao, D.

S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

Brückl, H.

Brueckl, H.

Cao, J.

Chen, C.

C. Chen, Y. Sheng, and W. Jun, “Computed a multiple band metamaterial absorber and its application based on the figure of merit value,” Opt. Commun. 406, 145–150 (2018).
[Crossref]

Chen, H.

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

Chen, J.

J. Chen, Z. Hu, S. Wang, X. Huang, and M. Liu, “A triple-band, polarization- and incident angle-independent microwave metamaterial absorber with interference theory,” Eur. Phys. J. B 89(1), 14 (2016).
[Crossref]

Chen, L. Y.

Chen, Q.

Chen, Z.

T. Xie, Z. Chen, R. Ma, and M. Zhong, “A wide-angle and polarization insensitive infrared broad band metamaterial absorber,” Opt. Commun. 383, 81–86 (2017).
[Crossref]

Chen, Z. Q.

G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chin. Phys. B 23(1), 017802 (2014).
[Crossref]

Cheng, D.

D. Zheng, Y. Cheng, D. Cheng, Y. Nie, and R. Gong, “Four-Band Polarization-Insensitive Metama- Terial Absorber Based on Flower-Shaped Structures,” Prog. Electromagnetics Res. 142, 221–229 (2013).
[Crossref]

Cheng, L. L.

G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chin. Phys. B 23(1), 017802 (2014).
[Crossref]

Cheng, Q.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

Cheng, Y.

D. Zheng, Y. Cheng, D. Cheng, Y. Nie, and R. Gong, “Four-Band Polarization-Insensitive Metama- Terial Absorber Based on Flower-Shaped Structures,” Prog. Electromagnetics Res. 142, 221–229 (2013).
[Crossref]

Choi, E. H.

Cui, T. J.

S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Cumming, D. R. S.

Dayal, G.

G. Dayal and S. Anantha Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15(5), 055106 (2013).
[Crossref]

Deng, L.

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

Desieres, Y.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau De Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

Ding, C. F.

Z. C. Xu, R. M. Gao, C. F. Ding, Y. T. Zhang, and J. Q. Yao, “Multiband metamaterial absorber at terahertz frequencies,” Chin. Phys. Lett. 31(5), 054205 (2014).
[Crossref]

Espiau De Lamaestre, R.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau De Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

Feng, M.

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Fukushima, N.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

Gao, R. M.

Z. C. Xu, R. M. Gao, C. F. Ding, Y. T. Zhang, and J. Q. Yao, “Multiband metamaterial absorber at terahertz frequencies,” Chin. Phys. Lett. 31(5), 054205 (2014).
[Crossref]

Giessen, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Gong, R.

D. Zheng, Y. Cheng, D. Cheng, Y. Nie, and R. Gong, “Four-Band Polarization-Insensitive Metama- Terial Absorber Based on Flower-Shaped Structures,” Prog. Electromagnetics Res. 142, 221–229 (2013).
[Crossref]

Gou, P.

Grant, J.

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Guo, J.

Hahn, J. W.

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

Han, K.

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

He, Q.

S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

Hendrickson, J.

Hu, X. W.

G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chin. Phys. B 23(1), 017802 (2014).
[Crossref]

Hu, Z.

J. Chen, Z. Hu, S. Wang, X. Huang, and M. Liu, “A triple-band, polarization- and incident angle-independent microwave metamaterial absorber with interference theory,” Eur. Phys. J. B 89(1), 14 (2016).
[Crossref]

Huang, W. Q.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a four-band and polarization-insensitive terahertz metamaterial absorber,” IEEE Photonics J. 7, 4600108 (2015).
[Crossref]

Huang, X.

J. Chen, Z. Hu, S. Wang, X. Huang, and M. Liu, “A triple-band, polarization- and incident angle-independent microwave metamaterial absorber with interference theory,” Eur. Phys. J. B 89(1), 14 (2016).
[Crossref]

Jang, W. H.

Jiang, W. X.

Joannopoulos, J. D.

A. Karalis and J. D. Joannopoulos, “‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6(1), 28472 (2016).
[Crossref] [PubMed]

Jun, W.

C. Chen, Y. Sheng, and W. Jun, “Computed a multiple band metamaterial absorber and its application based on the figure of merit value,” Opt. Commun. 406, 145–150 (2018).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kaiser, S.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Karalis, A.

A. Karalis and J. D. Joannopoulos, “‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6(1), 28472 (2016).
[Crossref] [PubMed]

Khalid, A.

Kim, J.

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

Kim, K. W.

Kimata, M.

S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
[Crossref]

S. Ogawa, J. Komoda, K. Masuda, and M. Kimata, “Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber,” Opt. Eng. 52(12), 127104 (2013).
[Crossref]

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

Komoda, J.

S. Ogawa, J. Komoda, K. Masuda, and M. Kimata, “Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber,” Opt. Eng. 52(12), 127104 (2013).
[Crossref]

Kong, L. H.

G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chin. Phys. B 23(1), 017802 (2014).
[Crossref]

Korolev, K. A.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

Le, K. Q.

K. Q. Le, Q. M. Ngo, and T. K. Nguyen, “Nanostructured metal-nsulator-Metal Metamaterials for Refractive Index Biosensing Applications: Design, Fabrication, and Characterization,” IEEE J. Sel. Top. Quantum Electron. 23(2), 6900506 (2017).
[Crossref]

Le Perchec, J.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau De Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

Lee, Y.

Li, H.

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

Li, R.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Liu, M.

J. Chen, Z. Hu, S. Wang, X. Huang, and M. Liu, “A triple-band, polarization- and incident angle-independent microwave metamaterial absorber with interference theory,” Eur. Phys. J. B 89(1), 14 (2016).
[Crossref]

Liu, M. H.

G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chin. Phys. B 23(1), 017802 (2014).
[Crossref]

Liu, N.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Liu, S.

S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

Liu, Y.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Ma, H.

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Ma, H. F.

Ma, R.

T. Xie, Z. Chen, R. Ma, and M. Zhong, “A wide-angle and polarization insensitive infrared broad band metamaterial absorber,” Opt. Commun. 383, 81–86 (2017).
[Crossref]

Ma, S.

S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

Ma, Y.

Maier, T.

Masuda, K.

S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
[Crossref]

S. Ogawa, J. Komoda, K. Masuda, and M. Kimata, “Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber,” Opt. Eng. 52(12), 127104 (2013).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Ngo, Q. M.

K. Q. Le, Q. M. Ngo, and T. K. Nguyen, “Nanostructured metal-nsulator-Metal Metamaterials for Refractive Index Biosensing Applications: Design, Fabrication, and Characterization,” IEEE J. Sel. Top. Quantum Electron. 23(2), 6900506 (2017).
[Crossref]

Nguyen, T. K.

K. Q. Le, Q. M. Ngo, and T. K. Nguyen, “Nanostructured metal-nsulator-Metal Metamaterials for Refractive Index Biosensing Applications: Design, Fabrication, and Characterization,” IEEE J. Sel. Top. Quantum Electron. 23(2), 6900506 (2017).
[Crossref]

Nie, Y.

D. Zheng, Y. Cheng, D. Cheng, Y. Nie, and R. Gong, “Four-Band Polarization-Insensitive Metama- Terial Absorber Based on Flower-Shaped Structures,” Prog. Electromagnetics Res. 142, 221–229 (2013).
[Crossref]

Ogawa, S.

S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
[Crossref]

S. Ogawa, J. Komoda, K. Masuda, and M. Kimata, “Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber,” Opt. Eng. 52(12), 127104 (2013).
[Crossref]

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

Okada, K.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

Pan, W.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A Novel Design of Broadband Terahertz Metamaterial Absorber Based on Nested Circle Rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

Pang, Y.

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Park, J. W.

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Qian, J.

Qua, S.

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Ren, Q.

Rhee, J. Y.

Rochat, N.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau De Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

Saha, S. C.

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Shen, X.

Shen, X. P.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

Sheng, Y.

C. Chen, Y. Sheng, and W. Jun, “Computed a multiple band metamaterial absorber and its application based on the figure of merit value,” Opt. Commun. 406, 145–150 (2018).
[Crossref]

Shi, T.

Singh, P. K.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Sonkusale, S.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Takagawa, Y.

S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
[Crossref]

Tao, K.

D. Xiao and K. Tao, “Ultra-compact metamaterial absorber for multiband light absorption at mid-infrared frequencies,” Appl. Phys. Express 8(10), 102001 (2015).
[Crossref]

Tuong, P. V.

Wang, B. X.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a four-band and polarization-insensitive terahertz metamaterial absorber,” IEEE Photonics J. 7, 4600108 (2015).
[Crossref]

Wang, G. D.

G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chin. Phys. B 23(1), 017802 (2014).
[Crossref]

Wang, G. Z.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a four-band and polarization-insensitive terahertz metamaterial absorber,” IEEE Photonics J. 7, 4600108 (2015).
[Crossref]

Wang, J.

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Wang, L. L.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a four-band and polarization-insensitive terahertz metamaterial absorber,” IEEE Photonics J. 7, 4600108 (2015).
[Crossref]

Wang, S.

J. Chen, Z. Hu, S. Wang, X. Huang, and M. Liu, “A triple-band, polarization- and incident angle-independent microwave metamaterial absorber with interference theory,” Eur. Phys. J. B 89(1), 14 (2016).
[Crossref]

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

Wang, W.

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Weng, X.

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

Wu, D.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Xiao, D.

D. Xiao and K. Tao, “Ultra-compact metamaterial absorber for multiband light absorption at mid-infrared frequencies,” Appl. Phys. Express 8(10), 102001 (2015).
[Crossref]

Xie, J.

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

Xie, T.

T. Xie, Z. Chen, R. Ma, and M. Zhong, “A wide-angle and polarization insensitive infrared broad band metamaterial absorber,” Opt. Commun. 383, 81–86 (2017).
[Crossref]

Xu, C.

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Xu, J.

Xu, Z. C.

Z. C. Xu, R. M. Gao, C. F. Ding, Y. T. Zhang, and J. Q. Yao, “Multiband metamaterial absorber at terahertz frequencies,” Chin. Phys. Lett. 31(5), 054205 (2014).
[Crossref]

Yan, M.

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Yang, L.

Yao, J. Q.

Z. C. Xu, R. M. Gao, C. F. Ding, Y. T. Zhang, and J. Q. Yao, “Multiband metamaterial absorber at terahertz frequencies,” Chin. Phys. Lett. 31(5), 054205 (2014).
[Crossref]

Ye, H.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Yu, H.

Yu, L.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Yu, X.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A Novel Design of Broadband Terahertz Metamaterial Absorber Based on Nested Circle Rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

Yu, Z.

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Yuan, L. H.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

Zeng, W.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A Novel Design of Broadband Terahertz Metamaterial Absorber Based on Nested Circle Rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

Zhai, X.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a four-band and polarization-insensitive terahertz metamaterial absorber,” IEEE Photonics J. 7, 4600108 (2015).
[Crossref]

Zhang, B.

Zhang, J.

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A Novel Design of Broadband Terahertz Metamaterial Absorber Based on Nested Circle Rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

Zhang, N.

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

Zhang, Y. T.

Z. C. Xu, R. M. Gao, C. F. Ding, Y. T. Zhang, and J. Q. Yao, “Multiband metamaterial absorber at terahertz frequencies,” Chin. Phys. Lett. 31(5), 054205 (2014).
[Crossref]

Zhao, J.

Zhao, Z.

Zheng, D.

D. Zheng, Y. Cheng, D. Cheng, Y. Nie, and R. Gong, “Four-Band Polarization-Insensitive Metama- Terial Absorber Based on Flower-Shaped Structures,” Prog. Electromagnetics Res. 142, 221–229 (2013).
[Crossref]

Zhong, M.

T. Xie, Z. Chen, R. Ma, and M. Zhong, “A wide-angle and polarization insensitive infrared broad band metamaterial absorber,” Opt. Commun. 383, 81–86 (2017).
[Crossref]

Zhou, B.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

Zhou, L.

S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

Zhou, P.

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

Zhuge, J.

S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

Zou, Y.

Adv. Mater. (1)

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Appl. Phys. Express (1)

D. Xiao and K. Tao, “Ultra-compact metamaterial absorber for multiband light absorption at mid-infrared frequencies,” Appl. Phys. Express 8(10), 102001 (2015).
[Crossref]

Appl. Phys. Lett. (3)

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau De Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Chin. Phys. B (1)

G. D. Wang, M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, “Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses,” Chin. Phys. B 23(1), 017802 (2014).
[Crossref]

Chin. Phys. Lett. (1)

Z. C. Xu, R. M. Gao, C. F. Ding, Y. T. Zhang, and J. Q. Yao, “Multiband metamaterial absorber at terahertz frequencies,” Chin. Phys. Lett. 31(5), 054205 (2014).
[Crossref]

Eur. Phys. J. B (1)

J. Chen, Z. Hu, S. Wang, X. Huang, and M. Liu, “A triple-band, polarization- and incident angle-independent microwave metamaterial absorber with interference theory,” Eur. Phys. J. B 89(1), 14 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Q. Le, Q. M. Ngo, and T. K. Nguyen, “Nanostructured metal-nsulator-Metal Metamaterials for Refractive Index Biosensing Applications: Design, Fabrication, and Characterization,” IEEE J. Sel. Top. Quantum Electron. 23(2), 6900506 (2017).
[Crossref]

IEEE Photonics J. (1)

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “Design of a four-band and polarization-insensitive terahertz metamaterial absorber,” IEEE Photonics J. 7, 4600108 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

W. Pan, X. Yu, J. Zhang, and W. Zeng, “A Novel Design of Broadband Terahertz Metamaterial Absorber Based on Nested Circle Rings,” IEEE Photonics Technol. Lett. 28(21), 2335–2338 (2016).
[Crossref]

J. Appl. Phys. (2)

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

S. Liu, J. Zhuge, S. Ma, H. Chen, D. Bao, Q. He, L. Zhou, and T. J. Cui, “A bi-layered quad-band metamaterial absorber at terahertz frequencies,” J. Appl. Phys. 118(24), 245304 (2015).
[Crossref]

J. Opt. (1)

G. Dayal and S. Anantha Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks,” J. Opt. 15(5), 055106 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

Nanoscale Res. Lett. (1)

R. Li, D. Wu, Y. Liu, L. Yu, Z. Yu, and H. Ye, “Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating,” Nanoscale Res. Lett. 12(1), 1 (2017).
[Crossref] [PubMed]

Opt. Commun. (3)

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

T. Xie, Z. Chen, R. Ma, and M. Zhong, “A wide-angle and polarization insensitive infrared broad band metamaterial absorber,” Opt. Commun. 383, 81–86 (2017).
[Crossref]

C. Chen, Y. Sheng, and W. Jun, “Computed a multiple band metamaterial absorber and its application based on the figure of merit value,” Opt. Commun. 406, 145–150 (2018).
[Crossref]

Opt. Eng. (2)

S. Ogawa, K. Masuda, Y. Takagawa, and M. Kimata, “Polarization-selective uncooled infrared sensor with asymmetric two-dimensional plasmonic absorber,” Opt. Eng. 53(10), 107110 (2014).
[Crossref]

S. Ogawa, J. Komoda, K. Masuda, and M. Kimata, “Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber,” Opt. Eng. 52(12), 127104 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Prog. Electromagnetics Res. (1)

D. Zheng, Y. Cheng, D. Cheng, Y. Nie, and R. Gong, “Four-Band Polarization-Insensitive Metama- Terial Absorber Based on Flower-Shaped Structures,” Prog. Electromagnetics Res. 142, 221–229 (2013).
[Crossref]

Sci. Rep. (2)

A. Karalis and J. D. Joannopoulos, “‘Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6(1), 28472 (2016).
[Crossref] [PubMed]

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

Science (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Schematic of our designed metamaterial perfect absorbers based on the outer-square inner-ring coupled resonators (OSIRCR) and (b) the corresponding spectral absorptivity as the function of the coupling distance D between the outer-square and the inner-ring.
Fig. 2
Fig. 2 The electric fields intensity (|E|2) distribution of absorption band f3 when the coupling distance D is (a) 70, (b) 50, (c) 30, and (d) 10 nm, respectively. (e) The peak absorptivity and maximum electric field intensity as functions of the coupling distance D for f3.
Fig. 3
Fig. 3 The electric fields intensity (|E|2) distribution of absorption band f2 when the coupling distance D is (a) 70, (b) 50, (c) 30, and (d) 10 nm, respectively. (e) The peak absorptivity and maximum electric field intensity as functions of the coupling distance D for f2.
Fig. 4
Fig. 4 The electric fields intensity (|E|2) distribution of absorption band f1 when the coupling distance D is (a) 70, (b) 50, (c) 30, and (d) 10 nm, respectively. (e) The peak absorptivity and maximum electric field intensity as functions of the coupling distance D for f1.
Fig. 5
Fig. 5 The electric fields intensity (|E|2) distribution of absorption band f4 when the coupling distance D is (a) 70, (b) 50, (c) 30, and (d) 10 nm, respectively. (e) The peak absorptivity and maximum electric field intensity as functions of the coupling distance D for f4.
Fig. 6
Fig. 6 Dependence of the spectral absorptivity on (a) the inner diameter L1 of the ring resonators and (b) the outer length L4 of the square resonators in case4. The unchanged geometry parameters are given as: P = 1000, T1 = 200, T2 = 80, T3 = 200, L2 = 460, L3 = 480, D = (L3 – L2)/2 = 10 (units: nm).
Fig. 7
Fig. 7 The dependence of the spectral absorptivity on the coupling distance D between the inner-ring and the outer-square when the material Ag is replaced with (a) Au, (b) Al, and (c) Cu.
Fig. 8
Fig. 8 (a) Schematic of our designed metamaterial perfect absorbers consisting of outer-square inner-dodecagon coupled resonators (OSIDCR) and (b) the dependence of the spectral absorptivity on the distance D between the inner-dodecagon and the outer-square. (c) Schematic of our designed metamaterial perfect absorbers consisting of outer-square inner-octagon coupled resonators (OSIOCR) and (d) the dependence of the spectral absorptivity on the coupling distance D between the inner-octagon and outer-square.
Fig. 9
Fig. 9 (a) Schematic of our designed MPA consisting of two different sized OSIRCRs A and B and (b) the corresponding spectral absorptivity. (c) The spectral absorptivity as functions of the polarization angles.
Fig. 10
Fig. 10 The electric fields intensity (|E|2) distribution of the six-band MPA at (a) f1 = 55.1 THz, (b) f2 = 63.2 THz, (c) f3 = 79.5 THz, (d) f4 = 91.3 THz, (e) f5 = 145.4 THz, and (f) f6 = 157.9 THz, respectively.

Tables (1)

Tables Icon

Table 1 The geometry parameters of our designed MPAs (units: nm)

Metrics