Abstract

The formation mechanism of twinning and defects in He+/H+ ion implanted z-cut and x-cut KTP samples are studied. A series of parallel linear defects observed on the surface of ion-implanted z-cut KTP samples is related to twinning boundaries formed in the KTP structure. The implanted He+/H+ ions tend to aggregate along these twinning boundaries that are normally parallel to a (100) plane and perpendicular to an x-axis direction, where K atoms are loosely bonded. The lattice between twinning boundaries is tilted at some angle to the rest of the crystal. Implanted He+/H+ ions and target K atoms are sensitive to temperature change, and diffuse easily along z-axis in stagger paths when temperature is elevated. Various implantation parameters are employed, including different ion fluences and beam current densities, with an aim to find the optimum condition for KTP thin film exfoliation. It is found that the temperature window for layer splitting of KTP samples is small and low, and implanted He+ ions are more likely to aggregate into bubbles or cracks that layer splitting requires when implantation is performed along x-axis.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Micro-structure analysis of He+ ion implanted KTP by TEM

Yu-Jie Ma, Fei Lu, M. C. Ridgway, Chang-Dong Ma, and Bo Xu
Opt. Mater. Express 5(5) 986-995 (2015)

Fabrication of TiO2 thin films with both anatase and rutile structures together using the ion-implantation method

Yu-Jie Ma, Fei Lu, Bing-Xi Xiang, Jin-Lai Zhao, and Shuang-Chen Ruan
Opt. Mater. Express 8(3) 532-540 (2018)

Second harmonic and Raman imaging of He+ implanted KTiOPO4 waveguides

Ningning Dong, Daniel Jaque, Feng Chen, and Qingming Lu
Opt. Express 19(15) 13934-13939 (2011)

References

  • View by:
  • |
  • |
  • |

  1. C. Canalias, M. Nordlöf, V. Pasiskevicius, and F. Laurell, “A KTiOPO4 nonlinear photonic crystal for blue second harmonic generation,” Appl. Phys. Lett. 94, 081121 (2009).
    [Crossref]
  2. S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96(4), 2023–2028 (2004).
    [Crossref]
  3. X. Gu, M. Makarov, Y. J. Ding, J. B. Khurgin, and W. P. Risk, “Backward second-harmonic and third-harmonic generation in a periodically poled potassium titanyl phosphate waveguide,” Opt. Lett. 24(3), 127–129 (1999).
    [Crossref] [PubMed]
  4. L. Ma, O. Slattery, T. Chang, and X. Tang, “Non-degenerated sequential time-bin entanglement generation using periodically poled KTP waveguide,” Opt. Express 17(18), 15799–15807 (2009).
    [Crossref] [PubMed]
  5. R. Solé, V. Nikolov, A. Vilalta, J. J. Carvajal, J. Massons, J. Gavaldà, M. Aguiló, and F. Díaz, “Growth of KTiOPO4 films on KTi1-xGexOPO4 substrates by liquid-phase epitaxy,” J. Mater. Res. 17(03), 563–569 (2002).
    [Crossref]
  6. K.-M. Wang, B.-R. Shi, N. Cue, Y.-Y. Zhu, R.-F. Xiao, F. L. Wei Li, and Y.-G. Liu, “Waveguide laser film in erbium-doped KTiOPO4 by pulsed laser deposition,” Appl. Phys. Lett. 73(8), 1020–1022 (1998).
    [Crossref]
  7. L. K. Cheng, J. D. Bierlein, C. M. Foris, and A. A. Ballman, “Growth of epitaxial thin films in the KTiOPO4 family of crystals,” J. Cryst. Growth 112(2-3), 309–315 (1991).
    [Crossref]
  8. Y.-J. Ma, F. Lu, J.-J. Yin, and C.-D. Ma, “Radiation damage study of MeV ions-implanted Nd:YVO4 crystal,” Mater. Sci. Eng. B 178(20), 1464–1468 (2013).
    [Crossref]
  9. Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
    [Crossref]
  10. Y.-J. Ma, F. Lu, X.-B. Ming, M. Chen, X.-H. Liu, and J.-J. Yin, “Analysis of Si+-implanted Nd:YVO4 crystal: the relation between lattice damage and waveguide formation,” Appl. Opt. 51(23), 5657–5663 (2012).
    [Crossref] [PubMed]
  11. Yu-Jie Ma, Fei Lu, Jiao-Jian Yin, Xiu-Hong Liu, “Refractive index profile in ion-implanted neodymium-doped yttrium vanadate waveguide: the relation between index change and lattice damage,” Opt. Engineering 52(9), 097101 (2013).
    [Crossref]
  12. P. J. Chandler, L. Zhang, and P. D. Townsend, “Double waveguide in LiNbO3 by ion implantation,” Appl. Phys. Lett. 55(17), 1710–1712 (1989).
    [Crossref]
  13. M. Bruel, “Application of hydrogen ion beams to silicon on insulator material technology,” Nucl. Instrum. Methods Phys. Res. Sect. B 108(3), 313–319 (1996).
    [Crossref]
  14. P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86, 161115 (2005).
    [Crossref]
  15. M. Bruel, “Silicon on insulator material technology,” Electron. Lett. 31(14), 1201–1202 (1995).
    [Crossref]
  16. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
    [Crossref]
  17. T. Izuhara, R. M. Osgood, M. Levy, M. E. Reeves, Y. G. Wang, A. N. Roy, and H. Bakhru, “Low-loss crystal-ion-sliced single-crystal potassium tantalate films,” Appl. Phys. Lett. 80(6), 1046–1048 (2002).
    [Crossref]
  18. A. M. Radojevic, M. Levy, H. Kwak, and R. M. Osgood., “Strong nonlinear optical response in epitaxial liftoff single-crystal LiNbO3 films,” Appl. Phys. Lett. 75(19), 2888–2890 (1999).
    [Crossref]
  19. P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
    [Crossref]
  20. T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407–1409 (2000).
    [Crossref]
  21. Y.-J. Ma, F. Lu, C.-D. Ma, B. Xu, and R. Fan, “Analysis of layer splitting in x and z-cut KTiOPO4 implanted by H+ ions,” Opt. Mater. 54, 1–5 (2016).
    [Crossref]
  22. C. Ma, F. Lu, B. Xu, and R. Fan, “Fabrication and analysis of single-crystal KTiOPO₄ films with thicknesses in the micrometer range,” Opt. Lett. 41(3), 607–609 (2016).
    [Crossref] [PubMed]
  23. Changdong Ma, Fei Lu, Bo Xu, and Ranran Fan, “Lattice modification in KTiOPO4 by hydrogen and helium sequentially implantation in submicrometer depth,” Appl. Phys. Lett. 108, 193110 (2016).
    [Crossref]
  24. Y.-J. Ma, F. Lu, M. C. Ridgway, C.-D. Ma, and B. Xu, “Micro-structure analysis of He+ ion implanted KTP by TEM,” Opt. Mater. Express 5(5), 986–995 (2015).
    [Crossref]
  25. A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, Jr., “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (1–8) (2011).
    [Crossref]
  26. W. Wesch, Th. Opfermann, and T. Bachmann, “Investigation of radiation damage in ion implanted KTiOPO4,” Nucl. Instrum. Methods Phys. Res. Sect. B 141(1-4), 338–342 (1998).
    [Crossref]
  27. P. A. Thoms and A. M. Glazer, “Potassium titanyl phosphate, KTiOPO4. II. Structural interpretation of twinning, ion exchange and domain inverstion,” J. Appl. Cryst. 24(5), 968–971 (1991).
    [Crossref]
  28. S. HaussühL, S. Luping, W. Baolin, W. Jiyang, J. Liebertz, A. Wostrack, and C. Fink, “Physical properties of single crystals of KTiOPO4, KxRb1-xTiOPO4 (x=0.85; 0.75), KGeOPO4 and KTiOAsO4,” Cryst. Res. Technol. 29(4), 583–589 (1994).
    [Crossref]
  29. K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47(4), 421–426 (1990).
    [Crossref]
  30. L. C. Feldman and J. M. Rodgers, “Depth profiles of the lattice disorder resulting from ion bombardment of silicon single crystals,” J. Appl. Phys. 41(9), 3776–3782 (1970).
    [Crossref]

2016 (3)

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Y.-J. Ma, F. Lu, C.-D. Ma, B. Xu, and R. Fan, “Analysis of layer splitting in x and z-cut KTiOPO4 implanted by H+ ions,” Opt. Mater. 54, 1–5 (2016).
[Crossref]

C. Ma, F. Lu, B. Xu, and R. Fan, “Fabrication and analysis of single-crystal KTiOPO₄ films with thicknesses in the micrometer range,” Opt. Lett. 41(3), 607–609 (2016).
[Crossref] [PubMed]

2015 (1)

2013 (1)

Y.-J. Ma, F. Lu, J.-J. Yin, and C.-D. Ma, “Radiation damage study of MeV ions-implanted Nd:YVO4 crystal,” Mater. Sci. Eng. B 178(20), 1464–1468 (2013).
[Crossref]

2012 (1)

2009 (1)

2006 (1)

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

2004 (1)

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96(4), 2023–2028 (2004).
[Crossref]

2002 (2)

R. Solé, V. Nikolov, A. Vilalta, J. J. Carvajal, J. Massons, J. Gavaldà, M. Aguiló, and F. Díaz, “Growth of KTiOPO4 films on KTi1-xGexOPO4 substrates by liquid-phase epitaxy,” J. Mater. Res. 17(03), 563–569 (2002).
[Crossref]

T. Izuhara, R. M. Osgood, M. Levy, M. E. Reeves, Y. G. Wang, A. N. Roy, and H. Bakhru, “Low-loss crystal-ion-sliced single-crystal potassium tantalate films,” Appl. Phys. Lett. 80(6), 1046–1048 (2002).
[Crossref]

2000 (1)

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407–1409 (2000).
[Crossref]

1999 (2)

A. M. Radojevic, M. Levy, H. Kwak, and R. M. Osgood., “Strong nonlinear optical response in epitaxial liftoff single-crystal LiNbO3 films,” Appl. Phys. Lett. 75(19), 2888–2890 (1999).
[Crossref]

X. Gu, M. Makarov, Y. J. Ding, J. B. Khurgin, and W. P. Risk, “Backward second-harmonic and third-harmonic generation in a periodically poled potassium titanyl phosphate waveguide,” Opt. Lett. 24(3), 127–129 (1999).
[Crossref] [PubMed]

1998 (3)

K.-M. Wang, B.-R. Shi, N. Cue, Y.-Y. Zhu, R.-F. Xiao, F. L. Wei Li, and Y.-G. Liu, “Waveguide laser film in erbium-doped KTiOPO4 by pulsed laser deposition,” Appl. Phys. Lett. 73(8), 1020–1022 (1998).
[Crossref]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

W. Wesch, Th. Opfermann, and T. Bachmann, “Investigation of radiation damage in ion implanted KTiOPO4,” Nucl. Instrum. Methods Phys. Res. Sect. B 141(1-4), 338–342 (1998).
[Crossref]

1996 (1)

M. Bruel, “Application of hydrogen ion beams to silicon on insulator material technology,” Nucl. Instrum. Methods Phys. Res. Sect. B 108(3), 313–319 (1996).
[Crossref]

1995 (1)

M. Bruel, “Silicon on insulator material technology,” Electron. Lett. 31(14), 1201–1202 (1995).
[Crossref]

1994 (1)

S. HaussühL, S. Luping, W. Baolin, W. Jiyang, J. Liebertz, A. Wostrack, and C. Fink, “Physical properties of single crystals of KTiOPO4, KxRb1-xTiOPO4 (x=0.85; 0.75), KGeOPO4 and KTiOAsO4,” Cryst. Res. Technol. 29(4), 583–589 (1994).
[Crossref]

1991 (2)

P. A. Thoms and A. M. Glazer, “Potassium titanyl phosphate, KTiOPO4. II. Structural interpretation of twinning, ion exchange and domain inverstion,” J. Appl. Cryst. 24(5), 968–971 (1991).
[Crossref]

L. K. Cheng, J. D. Bierlein, C. M. Foris, and A. A. Ballman, “Growth of epitaxial thin films in the KTiOPO4 family of crystals,” J. Cryst. Growth 112(2-3), 309–315 (1991).
[Crossref]

1990 (1)

K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47(4), 421–426 (1990).
[Crossref]

1989 (1)

P. J. Chandler, L. Zhang, and P. D. Townsend, “Double waveguide in LiNbO3 by ion implantation,” Appl. Phys. Lett. 55(17), 1710–1712 (1989).
[Crossref]

1970 (1)

L. C. Feldman and J. M. Rodgers, “Depth profiles of the lattice disorder resulting from ion bombardment of silicon single crystals,” J. Appl. Phys. 41(9), 3776–3782 (1970).
[Crossref]

Afra, B.

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Aguiló, M.

R. Solé, V. Nikolov, A. Vilalta, J. J. Carvajal, J. Massons, J. Gavaldà, M. Aguiló, and F. Díaz, “Growth of KTiOPO4 films on KTi1-xGexOPO4 substrates by liquid-phase epitaxy,” J. Mater. Res. 17(03), 563–569 (2002).
[Crossref]

Bachmann, T.

W. Wesch, Th. Opfermann, and T. Bachmann, “Investigation of radiation damage in ion implanted KTiOPO4,” Nucl. Instrum. Methods Phys. Res. Sect. B 141(1-4), 338–342 (1998).
[Crossref]

Bakhru, H.

T. Izuhara, R. M. Osgood, M. Levy, M. E. Reeves, Y. G. Wang, A. N. Roy, and H. Bakhru, “Low-loss crystal-ion-sliced single-crystal potassium tantalate films,” Appl. Phys. Lett. 80(6), 1046–1048 (2002).
[Crossref]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Ballman, A. A.

L. K. Cheng, J. D. Bierlein, C. M. Foris, and A. A. Ballman, “Growth of epitaxial thin films in the KTiOPO4 family of crystals,” J. Cryst. Growth 112(2-3), 309–315 (1991).
[Crossref]

Baolin, W.

S. HaussühL, S. Luping, W. Baolin, W. Jiyang, J. Liebertz, A. Wostrack, and C. Fink, “Physical properties of single crystals of KTiOPO4, KxRb1-xTiOPO4 (x=0.85; 0.75), KGeOPO4 and KTiOAsO4,” Cryst. Res. Technol. 29(4), 583–589 (1994).
[Crossref]

Bierlein, J. D.

L. K. Cheng, J. D. Bierlein, C. M. Foris, and A. A. Ballman, “Growth of epitaxial thin films in the KTiOPO4 family of crystals,” J. Cryst. Growth 112(2-3), 309–315 (1991).
[Crossref]

Bierschenk, T.

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Bruel, M.

M. Bruel, “Application of hydrogen ion beams to silicon on insulator material technology,” Nucl. Instrum. Methods Phys. Res. Sect. B 108(3), 313–319 (1996).
[Crossref]

M. Bruel, “Silicon on insulator material technology,” Electron. Lett. 31(14), 1201–1202 (1995).
[Crossref]

Cargill, G. S.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Carvajal, J. J.

R. Solé, V. Nikolov, A. Vilalta, J. J. Carvajal, J. Massons, J. Gavaldà, M. Aguiló, and F. Díaz, “Growth of KTiOPO4 films on KTi1-xGexOPO4 substrates by liquid-phase epitaxy,” J. Mater. Res. 17(03), 563–569 (2002).
[Crossref]

Chandler, P. J.

P. J. Chandler, L. Zhang, and P. D. Townsend, “Double waveguide in LiNbO3 by ion implantation,” Appl. Phys. Lett. 55(17), 1710–1712 (1989).
[Crossref]

Chang, T.

Chen, M.

Cheng, L. K.

L. K. Cheng, J. D. Bierlein, C. M. Foris, and A. A. Ballman, “Growth of epitaxial thin films in the KTiOPO4 family of crystals,” J. Cryst. Growth 112(2-3), 309–315 (1991).
[Crossref]

Cross, L. E.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Cue, N.

K.-M. Wang, B.-R. Shi, N. Cue, Y.-Y. Zhu, R.-F. Xiao, F. L. Wei Li, and Y.-G. Liu, “Waveguide laser film in erbium-doped KTiOPO4 by pulsed laser deposition,” Appl. Phys. Lett. 73(8), 1020–1022 (1998).
[Crossref]

Díaz, F.

R. Solé, V. Nikolov, A. Vilalta, J. J. Carvajal, J. Massons, J. Gavaldà, M. Aguiló, and F. Díaz, “Growth of KTiOPO4 films on KTi1-xGexOPO4 substrates by liquid-phase epitaxy,” J. Mater. Res. 17(03), 563–569 (2002).
[Crossref]

Ding, Y. J.

Fan, R.

Y.-J. Ma, F. Lu, C.-D. Ma, B. Xu, and R. Fan, “Analysis of layer splitting in x and z-cut KTiOPO4 implanted by H+ ions,” Opt. Mater. 54, 1–5 (2016).
[Crossref]

C. Ma, F. Lu, B. Xu, and R. Fan, “Fabrication and analysis of single-crystal KTiOPO₄ films with thicknesses in the micrometer range,” Opt. Lett. 41(3), 607–609 (2016).
[Crossref] [PubMed]

Feldman, L. C.

L. C. Feldman and J. M. Rodgers, “Depth profiles of the lattice disorder resulting from ion bombardment of silicon single crystals,” J. Appl. Phys. 41(9), 3776–3782 (1970).
[Crossref]

Fink, C.

S. HaussühL, S. Luping, W. Baolin, W. Jiyang, J. Liebertz, A. Wostrack, and C. Fink, “Physical properties of single crystals of KTiOPO4, KxRb1-xTiOPO4 (x=0.85; 0.75), KGeOPO4 and KTiOAsO4,” Cryst. Res. Technol. 29(4), 583–589 (1994).
[Crossref]

Foris, C. M.

L. K. Cheng, J. D. Bierlein, C. M. Foris, and A. A. Ballman, “Growth of epitaxial thin films in the KTiOPO4 family of crystals,” J. Cryst. Growth 112(2-3), 309–315 (1991).
[Crossref]

Fujino, Y.

K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47(4), 421–426 (1990).
[Crossref]

Gavaldà, J.

R. Solé, V. Nikolov, A. Vilalta, J. J. Carvajal, J. Massons, J. Gavaldà, M. Aguiló, and F. Díaz, “Growth of KTiOPO4 films on KTi1-xGexOPO4 substrates by liquid-phase epitaxy,” J. Mater. Res. 17(03), 563–569 (2002).
[Crossref]

Gibson, B. C.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

Glazer, A. M.

P. A. Thoms and A. M. Glazer, “Potassium titanyl phosphate, KTiOPO4. II. Structural interpretation of twinning, ion exchange and domain inverstion,” J. Appl. Cryst. 24(5), 968–971 (1991).
[Crossref]

Greentree, A. D.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

Gu, X.

HaussühL, S.

S. HaussühL, S. Luping, W. Baolin, W. Jiyang, J. Liebertz, A. Wostrack, and C. Fink, “Physical properties of single crystals of KTiOPO4, KxRb1-xTiOPO4 (x=0.85; 0.75), KGeOPO4 and KTiOAsO4,” Cryst. Res. Technol. 29(4), 583–589 (1994).
[Crossref]

Huntington, S. T.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

Izuhara, T.

T. Izuhara, R. M. Osgood, M. Levy, M. E. Reeves, Y. G. Wang, A. N. Roy, and H. Bakhru, “Low-loss crystal-ion-sliced single-crystal potassium tantalate films,” Appl. Phys. Lett. 80(6), 1046–1048 (2002).
[Crossref]

Jamieson, D. N.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

Jiyang, W.

S. HaussühL, S. Luping, W. Baolin, W. Jiyang, J. Liebertz, A. Wostrack, and C. Fink, “Physical properties of single crystals of KTiOPO4, KxRb1-xTiOPO4 (x=0.85; 0.75), KGeOPO4 and KTiOAsO4,” Cryst. Res. Technol. 29(4), 583–589 (1994).
[Crossref]

Khurgin, J. B.

Kluth, P.

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Kremer, F.

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Kumar, A.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Kwak, H.

A. M. Radojevic, M. Levy, H. Kwak, and R. M. Osgood., “Strong nonlinear optical response in epitaxial liftoff single-crystal LiNbO3 films,” Appl. Phys. Lett. 75(19), 2888–2890 (1999).
[Crossref]

Laurell, F.

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96(4), 2023–2028 (2004).
[Crossref]

Levy, M.

T. Izuhara, R. M. Osgood, M. Levy, M. E. Reeves, Y. G. Wang, A. N. Roy, and H. Bakhru, “Low-loss crystal-ion-sliced single-crystal potassium tantalate films,” Appl. Phys. Lett. 80(6), 1046–1048 (2002).
[Crossref]

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407–1409 (2000).
[Crossref]

A. M. Radojevic, M. Levy, H. Kwak, and R. M. Osgood., “Strong nonlinear optical response in epitaxial liftoff single-crystal LiNbO3 films,” Appl. Phys. Lett. 75(19), 2888–2890 (1999).
[Crossref]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Liebertz, J.

S. HaussühL, S. Luping, W. Baolin, W. Jiyang, J. Liebertz, A. Wostrack, and C. Fink, “Physical properties of single crystals of KTiOPO4, KxRb1-xTiOPO4 (x=0.85; 0.75), KGeOPO4 and KTiOAsO4,” Cryst. Res. Technol. 29(4), 583–589 (1994).
[Crossref]

Liu, R.

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Liu, X.-H.

Liu, Y.-G.

K.-M. Wang, B.-R. Shi, N. Cue, Y.-Y. Zhu, R.-F. Xiao, F. L. Wei Li, and Y.-G. Liu, “Waveguide laser film in erbium-doped KTiOPO4 by pulsed laser deposition,” Appl. Phys. Lett. 73(8), 1020–1022 (1998).
[Crossref]

Llewellyn, D. J.

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Lu, F.

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Y.-J. Ma, F. Lu, C.-D. Ma, B. Xu, and R. Fan, “Analysis of layer splitting in x and z-cut KTiOPO4 implanted by H+ ions,” Opt. Mater. 54, 1–5 (2016).
[Crossref]

C. Ma, F. Lu, B. Xu, and R. Fan, “Fabrication and analysis of single-crystal KTiOPO₄ films with thicknesses in the micrometer range,” Opt. Lett. 41(3), 607–609 (2016).
[Crossref] [PubMed]

Y.-J. Ma, F. Lu, M. C. Ridgway, C.-D. Ma, and B. Xu, “Micro-structure analysis of He+ ion implanted KTP by TEM,” Opt. Mater. Express 5(5), 986–995 (2015).
[Crossref]

Y.-J. Ma, F. Lu, J.-J. Yin, and C.-D. Ma, “Radiation damage study of MeV ions-implanted Nd:YVO4 crystal,” Mater. Sci. Eng. B 178(20), 1464–1468 (2013).
[Crossref]

Y.-J. Ma, F. Lu, X.-B. Ming, M. Chen, X.-H. Liu, and J.-J. Yin, “Analysis of Si+-implanted Nd:YVO4 crystal: the relation between lattice damage and waveguide formation,” Appl. Opt. 51(23), 5657–5663 (2012).
[Crossref] [PubMed]

Luping, S.

S. HaussühL, S. Luping, W. Baolin, W. Jiyang, J. Liebertz, A. Wostrack, and C. Fink, “Physical properties of single crystals of KTiOPO4, KxRb1-xTiOPO4 (x=0.85; 0.75), KGeOPO4 and KTiOAsO4,” Cryst. Res. Technol. 29(4), 583–589 (1994).
[Crossref]

Ma, C.

Ma, C.-D.

Y.-J. Ma, F. Lu, C.-D. Ma, B. Xu, and R. Fan, “Analysis of layer splitting in x and z-cut KTiOPO4 implanted by H+ ions,” Opt. Mater. 54, 1–5 (2016).
[Crossref]

Y.-J. Ma, F. Lu, M. C. Ridgway, C.-D. Ma, and B. Xu, “Micro-structure analysis of He+ ion implanted KTP by TEM,” Opt. Mater. Express 5(5), 986–995 (2015).
[Crossref]

Y.-J. Ma, F. Lu, J.-J. Yin, and C.-D. Ma, “Radiation damage study of MeV ions-implanted Nd:YVO4 crystal,” Mater. Sci. Eng. B 178(20), 1464–1468 (2013).
[Crossref]

Ma, L.

Ma, Y.-J.

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Y.-J. Ma, F. Lu, C.-D. Ma, B. Xu, and R. Fan, “Analysis of layer splitting in x and z-cut KTiOPO4 implanted by H+ ions,” Opt. Mater. 54, 1–5 (2016).
[Crossref]

Y.-J. Ma, F. Lu, M. C. Ridgway, C.-D. Ma, and B. Xu, “Micro-structure analysis of He+ ion implanted KTP by TEM,” Opt. Mater. Express 5(5), 986–995 (2015).
[Crossref]

Y.-J. Ma, F. Lu, J.-J. Yin, and C.-D. Ma, “Radiation damage study of MeV ions-implanted Nd:YVO4 crystal,” Mater. Sci. Eng. B 178(20), 1464–1468 (2013).
[Crossref]

Y.-J. Ma, F. Lu, X.-B. Ming, M. Chen, X.-H. Liu, and J.-J. Yin, “Analysis of Si+-implanted Nd:YVO4 crystal: the relation between lattice damage and waveguide formation,” Appl. Opt. 51(23), 5657–5663 (2012).
[Crossref] [PubMed]

Makarov, M.

Massons, J.

R. Solé, V. Nikolov, A. Vilalta, J. J. Carvajal, J. Massons, J. Gavaldà, M. Aguiló, and F. Díaz, “Growth of KTiOPO4 films on KTi1-xGexOPO4 substrates by liquid-phase epitaxy,” J. Mater. Res. 17(03), 563–569 (2002).
[Crossref]

Ming, X.-B.

Moore, D.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

Mota Santiago, P.

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Naramoto, H.

K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47(4), 421–426 (1990).
[Crossref]

Nikolov, V.

R. Solé, V. Nikolov, A. Vilalta, J. J. Carvajal, J. Massons, J. Gavaldà, M. Aguiló, and F. Díaz, “Growth of KTiOPO4 films on KTi1-xGexOPO4 substrates by liquid-phase epitaxy,” J. Mater. Res. 17(03), 563–569 (2002).
[Crossref]

Olivero, P.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

Opfermann, Th.

W. Wesch, Th. Opfermann, and T. Bachmann, “Investigation of radiation damage in ion implanted KTiOPO4,” Nucl. Instrum. Methods Phys. Res. Sect. B 141(1-4), 338–342 (1998).
[Crossref]

Osgood, R. M.

T. Izuhara, R. M. Osgood, M. Levy, M. E. Reeves, Y. G. Wang, A. N. Roy, and H. Bakhru, “Low-loss crystal-ion-sliced single-crystal potassium tantalate films,” Appl. Phys. Lett. 80(6), 1046–1048 (2002).
[Crossref]

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407–1409 (2000).
[Crossref]

A. M. Radojevic, M. Levy, H. Kwak, and R. M. Osgood., “Strong nonlinear optical response in epitaxial liftoff single-crystal LiNbO3 films,” Appl. Phys. Lett. 75(19), 2888–2890 (1999).
[Crossref]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

Ozawa, K.

K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47(4), 421–426 (1990).
[Crossref]

Pasiskevicius, V.

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96(4), 2023–2028 (2004).
[Crossref]

Prawer, S.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

Rabeau, J. R.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

Radojevic, A. M.

A. M. Radojevic, M. Levy, H. Kwak, and R. M. Osgood., “Strong nonlinear optical response in epitaxial liftoff single-crystal LiNbO3 films,” Appl. Phys. Lett. 75(19), 2888–2890 (1999).
[Crossref]

Ramadan, T. A.

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407–1409 (2000).
[Crossref]

Reeves, M. E.

T. Izuhara, R. M. Osgood, M. Levy, M. E. Reeves, Y. G. Wang, A. N. Roy, and H. Bakhru, “Low-loss crystal-ion-sliced single-crystal potassium tantalate films,” Appl. Phys. Lett. 80(6), 1046–1048 (2002).
[Crossref]

Reichart, P.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

Ridgway, M. C.

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Y.-J. Ma, F. Lu, M. C. Ridgway, C.-D. Ma, and B. Xu, “Micro-structure analysis of He+ ion implanted KTP by TEM,” Opt. Mater. Express 5(5), 986–995 (2015).
[Crossref]

Risk, W. P.

Rodgers, J. M.

L. C. Feldman and J. M. Rodgers, “Depth profiles of the lattice disorder resulting from ion bombardment of silicon single crystals,” J. Appl. Phys. 41(9), 3776–3782 (1970).
[Crossref]

Rodriguez, M. D.

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Roy, A. N.

T. Izuhara, R. M. Osgood, M. Levy, M. E. Reeves, Y. G. Wang, A. N. Roy, and H. Bakhru, “Low-loss crystal-ion-sliced single-crystal potassium tantalate films,” Appl. Phys. Lett. 80(6), 1046–1048 (2002).
[Crossref]

Rubanov, S.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

Salzman, J.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

Sato, K.

K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47(4), 421–426 (1990).
[Crossref]

Schauries, D.

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Shi, B.-R.

K.-M. Wang, B.-R. Shi, N. Cue, Y.-Y. Zhu, R.-F. Xiao, F. L. Wei Li, and Y.-G. Liu, “Waveguide laser film in erbium-doped KTiOPO4 by pulsed laser deposition,” Appl. Phys. Lett. 73(8), 1020–1022 (1998).
[Crossref]

Slattery, O.

Solé, R.

R. Solé, V. Nikolov, A. Vilalta, J. J. Carvajal, J. Massons, J. Gavaldà, M. Aguiló, and F. Díaz, “Growth of KTiOPO4 films on KTi1-xGexOPO4 substrates by liquid-phase epitaxy,” J. Mater. Res. 17(03), 563–569 (2002).
[Crossref]

Tang, X.

Thoms, P. A.

P. A. Thoms and A. M. Glazer, “Potassium titanyl phosphate, KTiOPO4. II. Structural interpretation of twinning, ion exchange and domain inverstion,” J. Appl. Cryst. 24(5), 968–971 (1991).
[Crossref]

Townsend, P. D.

P. J. Chandler, L. Zhang, and P. D. Townsend, “Double waveguide in LiNbO3 by ion implantation,” Appl. Phys. Lett. 55(17), 1710–1712 (1989).
[Crossref]

Vilalta, A.

R. Solé, V. Nikolov, A. Vilalta, J. J. Carvajal, J. Massons, J. Gavaldà, M. Aguiló, and F. Díaz, “Growth of KTiOPO4 films on KTi1-xGexOPO4 substrates by liquid-phase epitaxy,” J. Mater. Res. 17(03), 563–569 (2002).
[Crossref]

Wang, K.-M.

K.-M. Wang, B.-R. Shi, N. Cue, Y.-Y. Zhu, R.-F. Xiao, F. L. Wei Li, and Y.-G. Liu, “Waveguide laser film in erbium-doped KTiOPO4 by pulsed laser deposition,” Appl. Phys. Lett. 73(8), 1020–1022 (1998).
[Crossref]

Wang, S.

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96(4), 2023–2028 (2004).
[Crossref]

Wang, Y. G.

T. Izuhara, R. M. Osgood, M. Levy, M. E. Reeves, Y. G. Wang, A. N. Roy, and H. Bakhru, “Low-loss crystal-ion-sliced single-crystal potassium tantalate films,” Appl. Phys. Lett. 80(6), 1046–1048 (2002).
[Crossref]

Wei Li, F. L.

K.-M. Wang, B.-R. Shi, N. Cue, Y.-Y. Zhu, R.-F. Xiao, F. L. Wei Li, and Y.-G. Liu, “Waveguide laser film in erbium-doped KTiOPO4 by pulsed laser deposition,” Appl. Phys. Lett. 73(8), 1020–1022 (1998).
[Crossref]

Wesch, W.

W. Wesch, Th. Opfermann, and T. Bachmann, “Investigation of radiation damage in ion implanted KTiOPO4,” Nucl. Instrum. Methods Phys. Res. Sect. B 141(1-4), 338–342 (1998).
[Crossref]

Wostrack, A.

S. HaussühL, S. Luping, W. Baolin, W. Jiyang, J. Liebertz, A. Wostrack, and C. Fink, “Physical properties of single crystals of KTiOPO4, KxRb1-xTiOPO4 (x=0.85; 0.75), KGeOPO4 and KTiOAsO4,” Cryst. Res. Technol. 29(4), 583–589 (1994).
[Crossref]

Xiao, R.-F.

K.-M. Wang, B.-R. Shi, N. Cue, Y.-Y. Zhu, R.-F. Xiao, F. L. Wei Li, and Y.-G. Liu, “Waveguide laser film in erbium-doped KTiOPO4 by pulsed laser deposition,” Appl. Phys. Lett. 73(8), 1020–1022 (1998).
[Crossref]

Xu, B.

Yamaguchi, S.

K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47(4), 421–426 (1990).
[Crossref]

Yin, J.-J.

Zhang, L.

P. J. Chandler, L. Zhang, and P. D. Townsend, “Double waveguide in LiNbO3 by ion implantation,” Appl. Phys. Lett. 55(17), 1710–1712 (1989).
[Crossref]

Zhu, Y.-Y.

K.-M. Wang, B.-R. Shi, N. Cue, Y.-Y. Zhu, R.-F. Xiao, F. L. Wei Li, and Y.-G. Liu, “Waveguide laser film in erbium-doped KTiOPO4 by pulsed laser deposition,” Appl. Phys. Lett. 73(8), 1020–1022 (1998).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

K.-M. Wang, B.-R. Shi, N. Cue, Y.-Y. Zhu, R.-F. Xiao, F. L. Wei Li, and Y.-G. Liu, “Waveguide laser film in erbium-doped KTiOPO4 by pulsed laser deposition,” Appl. Phys. Lett. 73(8), 1020–1022 (1998).
[Crossref]

P. J. Chandler, L. Zhang, and P. D. Townsend, “Double waveguide in LiNbO3 by ion implantation,” Appl. Phys. Lett. 55(17), 1710–1712 (1989).
[Crossref]

M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293–2295 (1998).
[Crossref]

T. Izuhara, R. M. Osgood, M. Levy, M. E. Reeves, Y. G. Wang, A. N. Roy, and H. Bakhru, “Low-loss crystal-ion-sliced single-crystal potassium tantalate films,” Appl. Phys. Lett. 80(6), 1046–1048 (2002).
[Crossref]

A. M. Radojevic, M. Levy, H. Kwak, and R. M. Osgood., “Strong nonlinear optical response in epitaxial liftoff single-crystal LiNbO3 films,” Appl. Phys. Lett. 75(19), 2888–2890 (1999).
[Crossref]

T. A. Ramadan, M. Levy, and R. M. Osgood., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407–1409 (2000).
[Crossref]

Cryst. Res. Technol. (1)

S. HaussühL, S. Luping, W. Baolin, W. Jiyang, J. Liebertz, A. Wostrack, and C. Fink, “Physical properties of single crystals of KTiOPO4, KxRb1-xTiOPO4 (x=0.85; 0.75), KGeOPO4 and KTiOAsO4,” Cryst. Res. Technol. 29(4), 583–589 (1994).
[Crossref]

Diamond Related Materials (1)

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[Crossref]

Electron. Lett. (1)

M. Bruel, “Silicon on insulator material technology,” Electron. Lett. 31(14), 1201–1202 (1995).
[Crossref]

J. Appl. Cryst. (1)

P. A. Thoms and A. M. Glazer, “Potassium titanyl phosphate, KTiOPO4. II. Structural interpretation of twinning, ion exchange and domain inverstion,” J. Appl. Cryst. 24(5), 968–971 (1991).
[Crossref]

J. Appl. Phys. (2)

L. C. Feldman and J. M. Rodgers, “Depth profiles of the lattice disorder resulting from ion bombardment of silicon single crystals,” J. Appl. Phys. 41(9), 3776–3782 (1970).
[Crossref]

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96(4), 2023–2028 (2004).
[Crossref]

J. Cryst. Growth (1)

L. K. Cheng, J. D. Bierlein, C. M. Foris, and A. A. Ballman, “Growth of epitaxial thin films in the KTiOPO4 family of crystals,” J. Cryst. Growth 112(2-3), 309–315 (1991).
[Crossref]

J. Mater. Res. (2)

R. Solé, V. Nikolov, A. Vilalta, J. J. Carvajal, J. Massons, J. Gavaldà, M. Aguiló, and F. Díaz, “Growth of KTiOPO4 films on KTi1-xGexOPO4 substrates by liquid-phase epitaxy,” J. Mater. Res. 17(03), 563–569 (2002).
[Crossref]

Y.-J. Ma, P. Mota Santiago, M. D. Rodriguez, F. Kremer, D. Schauries, B. Afra, T. Bierschenk, D. J. Llewellyn, F. Lu, M. C. Ridgway, and P. Kluth, “Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate,” J. Mater. Res. 31(15), 2329–2336 (2016).
[Crossref]

Mater. Sci. Eng. B (1)

Y.-J. Ma, F. Lu, J.-J. Yin, and C.-D. Ma, “Radiation damage study of MeV ions-implanted Nd:YVO4 crystal,” Mater. Sci. Eng. B 178(20), 1464–1468 (2013).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

K. Sato, Y. Fujino, S. Yamaguchi, H. Naramoto, and K. Ozawa, “Ion channeling studies of C+ irradiated TiC single crystals,” Nucl. Instrum. Methods Phys. Res. B 47(4), 421–426 (1990).
[Crossref]

Nucl. Instrum. Methods Phys. Res. Sect. B (2)

W. Wesch, Th. Opfermann, and T. Bachmann, “Investigation of radiation damage in ion implanted KTiOPO4,” Nucl. Instrum. Methods Phys. Res. Sect. B 141(1-4), 338–342 (1998).
[Crossref]

M. Bruel, “Application of hydrogen ion beams to silicon on insulator material technology,” Nucl. Instrum. Methods Phys. Res. Sect. B 108(3), 313–319 (1996).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. (1)

Y.-J. Ma, F. Lu, C.-D. Ma, B. Xu, and R. Fan, “Analysis of layer splitting in x and z-cut KTiOPO4 implanted by H+ ions,” Opt. Mater. 54, 1–5 (2016).
[Crossref]

Opt. Mater. Express (1)

Other (5)

Changdong Ma, Fei Lu, Bo Xu, and Ranran Fan, “Lattice modification in KTiOPO4 by hydrogen and helium sequentially implantation in submicrometer depth,” Appl. Phys. Lett. 108, 193110 (2016).
[Crossref]

A. Ofan, O. Gaathon, L. Zhang, K. Evans-Lutterodt, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, Jr., “Twinning and dislocation pileups in heavily implanted LiNbO3,” Phys. Rev. B 83(6), 064104 (1–8) (2011).
[Crossref]

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86, 161115 (2005).
[Crossref]

Yu-Jie Ma, Fei Lu, Jiao-Jian Yin, Xiu-Hong Liu, “Refractive index profile in ion-implanted neodymium-doped yttrium vanadate waveguide: the relation between index change and lattice damage,” Opt. Engineering 52(9), 097101 (2013).
[Crossref]

C. Canalias, M. Nordlöf, V. Pasiskevicius, and F. Laurell, “A KTiOPO4 nonlinear photonic crystal for blue second harmonic generation,” Appl. Phys. Lett. 94, 081121 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Surface morphology of He-implanted z-cut KTP with fluence of 6 × 1016 ions/cm2 observed by OM (a) and AFM (d, e), as well as OM results of z-cut KTP implanted with fluence of 5 × 1016 ions/cm2 (b), and 6 × 1016 ions/cm2 after thermal treatment (c).
Fig. 2
Fig. 2 Schematic illustrations of He+ distribution (a) and a twinning band (b) in KTP structure.
Fig. 3
Fig. 3 The damage profile of z-cut KTP implanted by He+ ions with fluences of 3 × 1016, 5 × 1016 and 6 × 1016 ions/cm2 in (a), and implanted by He+ ions with fluence of 6 × 1016 ions/cm2 at current densities of 1, 3 and 9μA/cm2 in (b).The SRIM simulation result is also shown in (a) in solid line.
Fig. 4
Fig. 4 TEM images of z-cut KTP implanted by He+ ion with fluence of 6 × 1016 ions/cm2 at 9μA/cm2, including areas near surface (a), in damage region (b), in the substrate (c), and twinning boundary (d).
Fig. 5
Fig. 5 The damage profile of x-cut KTP implanted by He+ ions with fluences of 3 × 1016, 4 × 1016, 5 × 1016 and 6 × 1016 ions/cm2 in (a), and implanted by He+ ions with fluence of 6 × 1016 ions/cm2 at current densities of 1, 3 and 9μA/cm2 in (b).
Fig. 6
Fig. 6 TEM images of x-cut KTP implanted by He+ ion with fluence of 6 × 1016 ions/cm2 at 9μA/cm2, including the whole implantation region (a), area near surface (b), the damage region (c), and diffraction pattern in the damage region (d).

Tables (1)

Tables Icon

Table 1 Summary of the irradiation parameters

Metrics