Abstract

We report a novel, polarization dependent, femtosecond laser-induced modification of surface nanostructures of indium, gallium, and arsenic grown on silicon via molecular beam epitaxy, yielding shape control from linear and circular polarization of laser excitation. Linear polarization causes an elongation effect, beyond the dimensions of the unexposed nanostructures, ranging from 88 nm to over 1 µm, and circular polarization causes the nanostructures to flatten out or form loops of material, to diameters of approximately 195 nm. During excitation, it is also observed that the generated second and third harmonic signals from the substrate and surface nanostructures increase with exposure time.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear optical feedback for nano- and micropatterning of silicon surface under femtosecond laser irradiation

A. A. Ionin, S. I. Kudryashov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and S. V. Makarov
Opt. Mater. Express 7(8) 2793-2807 (2017)

Laser-induced periodic surface structures on bismuth thin films with ns laser pulses below ablation threshold

A. Reyes-Contreras, M. Camacho-López, S. Camacho-López, O. Olea-Mejía, A. Esparza-García, J. G. Bañuelos-Muñetón, and M. A. Camacho-López
Opt. Mater. Express 7(6) 1777-1786 (2017)

Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers

Michael Fokine, Antreas Theodosiou, Seunghan Song, Thomas Hawkins, John Ballato, Kyriacos Kalli, and Ursula J. Gibson
Opt. Mater. Express 7(5) 1589-1597 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16(1), 42–44 (1991).
    [Crossref] [PubMed]
  2. E. Gamaly, Femtosecond Laser-Matter Interactions: Theory, Experiments and Applications (Pan Stanford, 2011).
  3. K. Sugioka and Y. Cheng, Ultrafast Laser Processing: From Micro- to Nanoscale (Pan Stanford, 2013).
  4. E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37(5), 215–323 (2013).
    [Crossref]
  5. K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
    [Crossref]
  6. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  7. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
    [Crossref]
  8. A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, and D. van der Linde, “Femtosecond laser ablation of gallium arsenide investigated with time-of-flight mass spectroscopy,” Appl. Phys. Lett. 72(19), 2385–2387 (1998).
    [Crossref]
  9. S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces,” Nano Lett. 16(9), 5426–5432 (2016).
    [Crossref] [PubMed]
  10. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  11. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
    [Crossref] [PubMed]
  12. A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
    [Crossref]
  13. N. N. Nedyalkov, T. Miyanishi, and M. Obara, “Enhanced near field mediated nanohole fabrication on silicon substrate by femtosecond laser pulse,” Appl. Surf. Sci. 253(15), 6558–6562 (2007).
    [Crossref]
  14. A. Kolloch, P. Leiderer, S. Ibrahimkutty, D. Issenmann, and A. Plech, “Structural study of near-field ablation close to plasmon-resonant nanotriangles,” J. Laser Appl. 24(4), 042015 (2012).
    [Crossref]
  15. C. N. Afonso, J. Solis, F. Catalina, and C. Kalpouzos, “Ultrafast reversible phase change in GeSb films for erasable optical storage,” Appl. Phys. Lett. 60(25), 3123–3125 (1992).
    [Crossref]
  16. B. F. Soares, F. Jonsson, and N. I. Zheludev, “All-Optical Phase-Change Memory in a Single Gallium Nanoparticle,” Phys. Rev. Lett. 98(15), 153905 (2007).
    [Crossref] [PubMed]
  17. A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
    [Crossref]
  18. M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
    [Crossref]
  19. J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
    [Crossref]
  20. M. J. Abere, B. Torralva, and S. M. Yalisove, “Periodic surface bifurcation induced by ultrafast laser generated point defect diffusion in GaAs,” Appl. Phys. Lett. 108(15), 153110 (2016).
    [Crossref]
  21. T. Götz and M. Stuke, “Short-pulse UV laser ablation of solid and liquid metals: indium,” Appl. Phys., A Mater. Sci. Process. 64(6), 539–543 (1997).
    [Crossref]
  22. A. Urbańczyk, G. J. Hamhuis, and R. Nötzel, “In islands and their conversion to InAs quantum dots on GaAs (100): Structural and optical properties,” J. Appl. Phys. 107(1), 014312 (2010).
    [Crossref]
  23. J. Knall, J.-E. Sundgren, G. V. Hansson, and J. E. Greene, “Indium overlayers on clean Si(100)2x1: Surface structure, nucleation, and growth,” Surf. Sci. 166(2–3), 512–538 (1986).
    [Crossref]
  24. K. Kieu, S. Mehravar, R. Gowda, R. A. Norwood, and N. Peyghambarian, “Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber,” Biomed. Opt. Express 4(10), 2187–2195 (2013).
    [Crossref] [PubMed]
  25. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [Crossref] [PubMed]
  26. A. Säynätjoki, L. Karvonen, J. Riikonen, W. Kim, S. Mehravar, R. A. Norwood, N. Peyghambarian, H. Lipsanen, and K. Kieu, “Rapid large-area multiphoton microscopy for characterization of graphene,” ACS Nano 7(10), 8441–8446 (2013).
    [Crossref] [PubMed]
  27. S. Shahin, S. Mehravar, P. Gangopadhyay, N. Peyghambarian, R. A. Norwood, and K. Kieu, “Multiphoton microscopy as a detection tool for photobleaching of EO materials,” Opt. Express 22(25), 30955–30962 (2014).
    [Crossref] [PubMed]
  28. M. Mansuripur, Classical Optics and its Applications (Cambridge University, 2009).
  29. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
    [Crossref] [PubMed]
  30. M. A. Herman and H. Sitter, Molecular Beam Epitaxy: Fundamentals and Current Status (Springer, 1996).
  31. K. L. Chopra, “Growth of thin metal films under applied electric field,” Appl. Phys. Lett. 7(5), 140–142 (1965).
    [Crossref]

2016 (3)

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces,” Nano Lett. 16(9), 5426–5432 (2016).
[Crossref] [PubMed]

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

M. J. Abere, B. Torralva, and S. M. Yalisove, “Periodic surface bifurcation induced by ultrafast laser generated point defect diffusion in GaAs,” Appl. Phys. Lett. 108(15), 153110 (2016).
[Crossref]

2015 (1)

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

2014 (1)

2013 (3)

K. Kieu, S. Mehravar, R. Gowda, R. A. Norwood, and N. Peyghambarian, “Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber,” Biomed. Opt. Express 4(10), 2187–2195 (2013).
[Crossref] [PubMed]

A. Säynätjoki, L. Karvonen, J. Riikonen, W. Kim, S. Mehravar, R. A. Norwood, N. Peyghambarian, H. Lipsanen, and K. Kieu, “Rapid large-area multiphoton microscopy for characterization of graphene,” ACS Nano 7(10), 8441–8446 (2013).
[Crossref] [PubMed]

E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37(5), 215–323 (2013).
[Crossref]

2012 (3)

A. Kolloch, P. Leiderer, S. Ibrahimkutty, D. Issenmann, and A. Plech, “Structural study of near-field ablation close to plasmon-resonant nanotriangles,” J. Laser Appl. 24(4), 042015 (2012).
[Crossref]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

2010 (1)

A. Urbańczyk, G. J. Hamhuis, and R. Nötzel, “In islands and their conversion to InAs quantum dots on GaAs (100): Structural and optical properties,” J. Appl. Phys. 107(1), 014312 (2010).
[Crossref]

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2007 (2)

N. N. Nedyalkov, T. Miyanishi, and M. Obara, “Enhanced near field mediated nanohole fabrication on silicon substrate by femtosecond laser pulse,” Appl. Surf. Sci. 253(15), 6558–6562 (2007).
[Crossref]

B. F. Soares, F. Jonsson, and N. I. Zheludev, “All-Optical Phase-Change Memory in a Single Gallium Nanoparticle,” Phys. Rev. Lett. 98(15), 153905 (2007).
[Crossref] [PubMed]

2006 (1)

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[Crossref]

2003 (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

2002 (1)

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

2001 (1)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

1998 (1)

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, and D. van der Linde, “Femtosecond laser ablation of gallium arsenide investigated with time-of-flight mass spectroscopy,” Appl. Phys. Lett. 72(19), 2385–2387 (1998).
[Crossref]

1997 (1)

T. Götz and M. Stuke, “Short-pulse UV laser ablation of solid and liquid metals: indium,” Appl. Phys., A Mater. Sci. Process. 64(6), 539–543 (1997).
[Crossref]

1992 (1)

C. N. Afonso, J. Solis, F. Catalina, and C. Kalpouzos, “Ultrafast reversible phase change in GeSb films for erasable optical storage,” Appl. Phys. Lett. 60(25), 3123–3125 (1992).
[Crossref]

1991 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

1986 (1)

J. Knall, J.-E. Sundgren, G. V. Hansson, and J. E. Greene, “Indium overlayers on clean Si(100)2x1: Surface structure, nucleation, and growth,” Surf. Sci. 166(2–3), 512–538 (1986).
[Crossref]

1965 (2)

K. L. Chopra, “Growth of thin metal films under applied electric field,” Appl. Phys. Lett. 7(5), 140–142 (1965).
[Crossref]

M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[Crossref]

Abere, M. J.

M. J. Abere, B. Torralva, and S. M. Yalisove, “Periodic surface bifurcation induced by ultrafast laser generated point defect diffusion in GaAs,” Appl. Phys. Lett. 108(15), 153110 (2016).
[Crossref]

Afonso, C. N.

C. N. Afonso, J. Solis, F. Catalina, and C. Kalpouzos, “Ultrafast reversible phase change in GeSb films for erasable optical storage,” Appl. Phys. Lett. 60(25), 3123–3125 (1992).
[Crossref]

Arganda-Carreras, I.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Baudach, S.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Bialkowski, J.

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, and D. van der Linde, “Femtosecond laser ablation of gallium arsenide investigated with time-of-flight mass spectroscopy,” Appl. Phys. Lett. 72(19), 2385–2387 (1998).
[Crossref]

Birnbaum, M.

M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[Crossref]

Boneberg, J.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[Crossref]

Bonse, J.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Brener, I.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces,” Nano Lett. 16(9), 5426–5432 (2016).
[Crossref] [PubMed]

Cardona, A.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Catalina, F.

C. N. Afonso, J. Solis, F. Catalina, and C. Kalpouzos, “Ultrafast reversible phase change in GeSb films for erasable optical storage,” Appl. Phys. Lett. 60(25), 3123–3125 (1992).
[Crossref]

Cavalleri, A.

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, and D. van der Linde, “Femtosecond laser ablation of gallium arsenide investigated with time-of-flight mass spectroscopy,” Appl. Phys. Lett. 72(19), 2385–2387 (1998).
[Crossref]

Chopra, K. L.

K. L. Chopra, “Growth of thin metal films under applied electric field,” Appl. Phys. Lett. 7(5), 140–142 (1965).
[Crossref]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Eliceiri, K.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Frise, E.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Gamaly, E. G.

E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37(5), 215–323 (2013).
[Crossref]

Gandhi, H. H.

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Gangopadhyay, P.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gholipour, B.

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

Götz, T.

T. Götz and M. Stuke, “Short-pulse UV laser ablation of solid and liquid metals: indium,” Appl. Phys., A Mater. Sci. Process. 64(6), 539–543 (1997).
[Crossref]

Gowda, R.

Greene, J. E.

J. Knall, J.-E. Sundgren, G. V. Hansson, and J. E. Greene, “Indium overlayers on clean Si(100)2x1: Surface structure, nucleation, and growth,” Surf. Sci. 166(2–3), 512–538 (1986).
[Crossref]

Hamhuis, G. J.

A. Urbańczyk, G. J. Hamhuis, and R. Nötzel, “In islands and their conversion to InAs quantum dots on GaAs (100): Structural and optical properties,” J. Appl. Phys. 107(1), 014312 (2010).
[Crossref]

Hansson, G. V.

J. Knall, J.-E. Sundgren, G. V. Hansson, and J. E. Greene, “Indium overlayers on clean Si(100)2x1: Surface structure, nucleation, and growth,” Surf. Sci. 166(2–3), 512–538 (1986).
[Crossref]

Hartenstein, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Höhm, S.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

Ibrahimkutty, S.

A. Kolloch, P. Leiderer, S. Ibrahimkutty, D. Issenmann, and A. Plech, “Structural study of near-field ablation close to plasmon-resonant nanotriangles,” J. Laser Appl. 24(4), 042015 (2012).
[Crossref]

Issenmann, D.

A. Kolloch, P. Leiderer, S. Ibrahimkutty, D. Issenmann, and A. Plech, “Structural study of near-field ablation close to plasmon-resonant nanotriangles,” J. Laser Appl. 24(4), 042015 (2012).
[Crossref]

Jonsson, F.

B. F. Soares, F. Jonsson, and N. I. Zheludev, “All-Optical Phase-Change Memory in a Single Gallium Nanoparticle,” Phys. Rev. Lett. 98(15), 153905 (2007).
[Crossref] [PubMed]

Kalpouzos, C.

C. N. Afonso, J. Solis, F. Catalina, and C. Kalpouzos, “Ultrafast reversible phase change in GeSb films for erasable optical storage,” Appl. Phys. Lett. 60(25), 3123–3125 (1992).
[Crossref]

Karvonen, L.

A. Säynätjoki, L. Karvonen, J. Riikonen, W. Kim, S. Mehravar, R. A. Norwood, N. Peyghambarian, H. Lipsanen, and K. Kieu, “Rapid large-area multiphoton microscopy for characterization of graphene,” ACS Nano 7(10), 8441–8446 (2013).
[Crossref] [PubMed]

Karvounis, A.

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

Kautek, W.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Kawata, S.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Kaynig, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Kean, P. N.

Keeler, G. A.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces,” Nano Lett. 16(9), 5426–5432 (2016).
[Crossref] [PubMed]

Kieu, K.

Kim, W.

A. Säynätjoki, L. Karvonen, J. Riikonen, W. Kim, S. Mehravar, R. A. Norwood, N. Peyghambarian, H. Lipsanen, and K. Kieu, “Rapid large-area multiphoton microscopy for characterization of graphene,” ACS Nano 7(10), 8441–8446 (2013).
[Crossref] [PubMed]

Knall, J.

J. Knall, J.-E. Sundgren, G. V. Hansson, and J. E. Greene, “Indium overlayers on clean Si(100)2x1: Surface structure, nucleation, and growth,” Surf. Sci. 166(2–3), 512–538 (1986).
[Crossref]

Kolloch, A.

A. Kolloch, P. Leiderer, S. Ibrahimkutty, D. Issenmann, and A. Plech, “Structural study of near-field ablation close to plasmon-resonant nanotriangles,” J. Laser Appl. 24(4), 042015 (2012).
[Crossref]

Kotaidis, V.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[Crossref]

Krüger, J.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Leiderer, P.

A. Kolloch, P. Leiderer, S. Ibrahimkutty, D. Issenmann, and A. Plech, “Structural study of near-field ablation close to plasmon-resonant nanotriangles,” J. Laser Appl. 24(4), 042015 (2012).
[Crossref]

Lenzner, M.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Lipsanen, H.

A. Säynätjoki, L. Karvonen, J. Riikonen, W. Kim, S. Mehravar, R. A. Norwood, N. Peyghambarian, H. Lipsanen, and K. Kieu, “Rapid large-area multiphoton microscopy for characterization of graphene,” ACS Nano 7(10), 8441–8446 (2013).
[Crossref] [PubMed]

Liu, S.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces,” Nano Lett. 16(9), 5426–5432 (2016).
[Crossref] [PubMed]

Longair, M.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Lorenc, M.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[Crossref]

MacDonald, K. F.

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

Mazur, E.

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Mehravar, S.

Miyanishi, T.

N. N. Nedyalkov, T. Miyanishi, and M. Obara, “Enhanced near field mediated nanohole fabrication on silicon substrate by femtosecond laser pulse,” Appl. Surf. Sci. 253(15), 6558–6562 (2007).
[Crossref]

Nedyalkov, N. N.

N. N. Nedyalkov, T. Miyanishi, and M. Obara, “Enhanced near field mediated nanohole fabrication on silicon substrate by femtosecond laser pulse,” Appl. Surf. Sci. 253(15), 6558–6562 (2007).
[Crossref]

Norwood, R. A.

Nötzel, R.

A. Urbańczyk, G. J. Hamhuis, and R. Nötzel, “In islands and their conversion to InAs quantum dots on GaAs (100): Structural and optical properties,” J. Appl. Phys. 107(1), 014312 (2010).
[Crossref]

Obara, M.

N. N. Nedyalkov, T. Miyanishi, and M. Obara, “Enhanced near field mediated nanohole fabrication on silicon substrate by femtosecond laser pulse,” Appl. Surf. Sci. 253(15), 6558–6562 (2007).
[Crossref]

Peake, G. M.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces,” Nano Lett. 16(9), 5426–5432 (2016).
[Crossref] [PubMed]

Pertsch, T.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces,” Nano Lett. 16(9), 5426–5432 (2016).
[Crossref] [PubMed]

Peyghambarian, N.

Phillips, K. C.

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Pietzsch, T.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Plech, A.

A. Kolloch, P. Leiderer, S. Ibrahimkutty, D. Issenmann, and A. Plech, “Structural study of near-field ablation close to plasmon-resonant nanotriangles,” J. Laser Appl. 24(4), 042015 (2012).
[Crossref]

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[Crossref]

Preibisch, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Reno, J.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces,” Nano Lett. 16(9), 5426–5432 (2016).
[Crossref] [PubMed]

Riikonen, J.

A. Säynätjoki, L. Karvonen, J. Riikonen, W. Kim, S. Mehravar, R. A. Norwood, N. Peyghambarian, H. Lipsanen, and K. Kieu, “Rapid large-area multiphoton microscopy for characterization of graphene,” ACS Nano 7(10), 8441–8446 (2013).
[Crossref] [PubMed]

Rode, A. V.

E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37(5), 215–323 (2013).
[Crossref]

Rosenfeld, A.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

Rueden, C.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Saalfeld, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Saravi, S.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces,” Nano Lett. 16(9), 5426–5432 (2016).
[Crossref] [PubMed]

Säynätjoki, A.

A. Säynätjoki, L. Karvonen, J. Riikonen, W. Kim, S. Mehravar, R. A. Norwood, N. Peyghambarian, H. Lipsanen, and K. Kieu, “Rapid large-area multiphoton microscopy for characterization of graphene,” ACS Nano 7(10), 8441–8446 (2013).
[Crossref] [PubMed]

Schindelin, J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Schmid, B.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Setzpfandt, F.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces,” Nano Lett. 16(9), 5426–5432 (2016).
[Crossref] [PubMed]

Shahin, S.

Sibbett, W.

Sinclair, M. B.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces,” Nano Lett. 16(9), 5426–5432 (2016).
[Crossref] [PubMed]

Soares, B. F.

B. F. Soares, F. Jonsson, and N. I. Zheludev, “All-Optical Phase-Change Memory in a Single Gallium Nanoparticle,” Phys. Rev. Lett. 98(15), 153905 (2007).
[Crossref] [PubMed]

Sokolowski-Tinten, K.

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, and D. van der Linde, “Femtosecond laser ablation of gallium arsenide investigated with time-of-flight mass spectroscopy,” Appl. Phys. Lett. 72(19), 2385–2387 (1998).
[Crossref]

Solis, J.

C. N. Afonso, J. Solis, F. Catalina, and C. Kalpouzos, “Ultrafast reversible phase change in GeSb films for erasable optical storage,” Appl. Phys. Lett. 60(25), 3123–3125 (1992).
[Crossref]

Spence, D. E.

Staude, I.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces,” Nano Lett. 16(9), 5426–5432 (2016).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Stuke, M.

T. Götz and M. Stuke, “Short-pulse UV laser ablation of solid and liquid metals: indium,” Appl. Phys., A Mater. Sci. Process. 64(6), 539–543 (1997).
[Crossref]

Sun, H. B.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Sundaram, S. K.

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Sundgren, J.-E.

J. Knall, J.-E. Sundgren, G. V. Hansson, and J. E. Greene, “Indium overlayers on clean Si(100)2x1: Surface structure, nucleation, and growth,” Surf. Sci. 166(2–3), 512–538 (1986).
[Crossref]

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Tanaka, T.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Tinevez, J. Y.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Tomancak, P.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Torralva, B.

M. J. Abere, B. Torralva, and S. M. Yalisove, “Periodic surface bifurcation induced by ultrafast laser generated point defect diffusion in GaAs,” Appl. Phys. Lett. 108(15), 153110 (2016).
[Crossref]

Urbanczyk, A.

A. Urbańczyk, G. J. Hamhuis, and R. Nötzel, “In islands and their conversion to InAs quantum dots on GaAs (100): Structural and optical properties,” J. Appl. Phys. 107(1), 014312 (2010).
[Crossref]

van der Linde, D.

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, and D. van der Linde, “Femtosecond laser ablation of gallium arsenide investigated with time-of-flight mass spectroscopy,” Appl. Phys. Lett. 72(19), 2385–2387 (1998).
[Crossref]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

White, D. J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Yalisove, S. M.

M. J. Abere, B. Torralva, and S. M. Yalisove, “Periodic surface bifurcation induced by ultrafast laser generated point defect diffusion in GaAs,” Appl. Phys. Lett. 108(15), 153110 (2016).
[Crossref]

Yang, Y.

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces,” Nano Lett. 16(9), 5426–5432 (2016).
[Crossref] [PubMed]

Zheludev, N. I.

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

B. F. Soares, F. Jonsson, and N. I. Zheludev, “All-Optical Phase-Change Memory in a Single Gallium Nanoparticle,” Phys. Rev. Lett. 98(15), 153905 (2007).
[Crossref] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

ACS Nano (1)

A. Säynätjoki, L. Karvonen, J. Riikonen, W. Kim, S. Mehravar, R. A. Norwood, N. Peyghambarian, H. Lipsanen, and K. Kieu, “Rapid large-area multiphoton microscopy for characterization of graphene,” ACS Nano 7(10), 8441–8446 (2013).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photonics 7(4), 684–712 (2015).
[Crossref]

Appl. Phys. Lett. (5)

A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, and D. van der Linde, “Femtosecond laser ablation of gallium arsenide investigated with time-of-flight mass spectroscopy,” Appl. Phys. Lett. 72(19), 2385–2387 (1998).
[Crossref]

C. N. Afonso, J. Solis, F. Catalina, and C. Kalpouzos, “Ultrafast reversible phase change in GeSb films for erasable optical storage,” Appl. Phys. Lett. 60(25), 3123–3125 (1992).
[Crossref]

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

M. J. Abere, B. Torralva, and S. M. Yalisove, “Periodic surface bifurcation induced by ultrafast laser generated point defect diffusion in GaAs,” Appl. Phys. Lett. 108(15), 153110 (2016).
[Crossref]

K. L. Chopra, “Growth of thin metal films under applied electric field,” Appl. Phys. Lett. 7(5), 140–142 (1965).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

T. Götz and M. Stuke, “Short-pulse UV laser ablation of solid and liquid metals: indium,” Appl. Phys., A Mater. Sci. Process. 64(6), 539–543 (1997).
[Crossref]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Appl. Surf. Sci. (1)

N. N. Nedyalkov, T. Miyanishi, and M. Obara, “Enhanced near field mediated nanohole fabrication on silicon substrate by femtosecond laser pulse,” Appl. Surf. Sci. 253(15), 6558–6562 (2007).
[Crossref]

Biomed. Opt. Express (1)

J. Appl. Phys. (2)

A. Urbańczyk, G. J. Hamhuis, and R. Nötzel, “In islands and their conversion to InAs quantum dots on GaAs (100): Structural and optical properties,” J. Appl. Phys. 107(1), 014312 (2010).
[Crossref]

M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[Crossref]

J. Laser Appl. (2)

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24(4), 042006 (2012).
[Crossref]

A. Kolloch, P. Leiderer, S. Ibrahimkutty, D. Issenmann, and A. Plech, “Structural study of near-field ablation close to plasmon-resonant nanotriangles,” J. Laser Appl. 24(4), 042015 (2012).
[Crossref]

Nano Lett. (1)

S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, “Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces,” Nano Lett. 16(9), 5426–5432 (2016).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Nat. Methods (1)

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Nat. Phys. (1)

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[Crossref]

Nature (1)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

B. F. Soares, F. Jonsson, and N. I. Zheludev, “All-Optical Phase-Change Memory in a Single Gallium Nanoparticle,” Phys. Rev. Lett. 98(15), 153905 (2007).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37(5), 215–323 (2013).
[Crossref]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Surf. Sci. (1)

J. Knall, J.-E. Sundgren, G. V. Hansson, and J. E. Greene, “Indium overlayers on clean Si(100)2x1: Surface structure, nucleation, and growth,” Surf. Sci. 166(2–3), 512–538 (1986).
[Crossref]

Other (4)

M. Mansuripur, Classical Optics and its Applications (Cambridge University, 2009).

M. A. Herman and H. Sitter, Molecular Beam Epitaxy: Fundamentals and Current Status (Springer, 1996).

E. Gamaly, Femtosecond Laser-Matter Interactions: Theory, Experiments and Applications (Pan Stanford, 2011).

K. Sugioka and Y. Cheng, Ultrafast Laser Processing: From Micro- to Nanoscale (Pan Stanford, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 SEM, TEM, and EDX analysis of nanostructures. SEM images (45°) (a) through (c) of the unexposed semiconductor sample with III-V nanostructures grown via MBE on n-doped silicon (100) substrate. In (a) the nanostructures have directionality and point either up/down or left/right, aligning to the crystal axes of the silicon substrate (inset), indicated by the yellow arrows. In the two close-ups (b) and (c), the individual structures are half-rounded and half-faceted. (d) A high-resolution TEM image zoomed into the interface between the two regions shown in the inset low-magnification TEM image. An EDX line scan (e) was taken between these two regions along the green line labeled “Spectrum Image”. Using the EDX data, we can determine that the left side (faceted) of the interface is a crystalline GaAs by the strong lattice lines, and the right side (rounded) of the image is predominantly indium.
Fig. 2
Fig. 2 Schematic diagram of multiphoton microscope. A linearly polarized laser beam from a mode-locked fiber laser at 1560 nm is first collimated and passes through a linear polarizer (for power control) and wave plate (for polarization control). The laser light is then scanned with the galvo mirrors, expanded with the all-reflective beam expander, reflected off the shortpass dichroic mirror, and directed through the objective lens, focusing tightly onto the sample. The reflected and emitted light travels back up through the lens and shortpass dichroic mirror and enters the SHG and THG photomultiplier tubes (PMTs), after passing through or reflecting off of a longpass dichroic mirror. Narrow bandpass filters are used to guarantee the signal is from SHG, THG, or fluorescence.
Fig. 3
Fig. 3 The changing SHG and THG signal as a function of the number of exposures. The inset images show the first and final SHG PMT output. The FOV of the image is approximately 300x300 µm. The plot clearly shows the increase in SHG and THG signal with each exposure by the linearly polarized fs laser. An increase in signal was also observed during exposure with circular polarization. The optical resolution of the system is not high enough to resolve individual nanostructures.
Fig. 4
Fig. 4 Observation of non-ablative material modification (NMM). SEM images clearly demonstrate a laser-induced change in shape, along the direction of laser excitation polarization, which resulted in increasing nonlinear signal. In (a) and (b), the angle of linear polarization is indicated by the orange arrows, and in (c), circular polarization is indicated by the circle. The red circular arrows in (c) indicate the CW material movement direction.
Fig. 5
Fig. 5 Power and pulse number dependence on elongation effect. (a) SEM image of the area exposed with the least number of pulses at the highest power. (b) SEM image of the area exposed with the largest number of pulses at the highest power. (c) As you increase the number of pulses and/or the power of your irradiation, there are clear trends toward a stronger elongation effect.
Fig. 6
Fig. 6 TEM and EDX analysis of exposed nanostructures. A STEM image (a) of two nanostructures that have connected after being exposed. The silicon substrate surface (dotted line), the protective layer of carbon, and the protective layer of platinum are indicated. The EDX line scans (b,c) show the relative elemental signature versus location in nanometers along the lines indicated in the image.

Metrics