Abstract

The efficient cross coupling between the surface plasmon–polariton (SPP) and microcavity modes was employed in the top-emitting organic light-emitting devices (TOLEDs) to release the trade-off between efficiency and stability by using a periodic corrugated Ag cathode. As the main factors affecting the cross coupling, the thickness and period of the corrugated Ag cathode were optimized to excite the SPP at the two interfaces of the Ag cathode and achieve a matched resonance wavelength between the SPP and the microcavity mode. At the optimal values of the thickness and period, the cross coupling between the SPP and microcavity modes enhanced the light extraction efficiency, and the efficiency of the corrugated TOLEDs was enhanced by 38.6% at the current density of 100 mA cm−2.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coherent mode coupling in highly efficient top-emitting OLEDs on periodically corrugated substrates

Tobias Schwab, Cornelius Fuchs, Reinhard Scholz, Alexander Zakhidov, Karl Leo, and Malte C. Gather
Opt. Express 22(7) 7524-7537 (2014)

Efficient micro-cavity top emission OLED with optimized Mg:Ag ratio cathode

Sun-kap Kwon, Eun-Hyung Lee, Kwan-soo Kim, Hyun-chul Choi, Mi Jin Park, Seong Keun Kim, Ramchandra Pode, and Jang Hyuk Kwon
Opt. Express 25(24) 29906-29915 (2017)

Improvement of light extraction in organic light-emitting diodes using a corrugated microcavity

Bo Jiao, Yue Yu, Yang Dai, Xun Hou, and Zhaoxin Wu
Opt. Express 23(4) 4055-4064 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Al Attar and A. P. Monkman, “Electric field induce blue shift and intensity enhancement in 2D exciplex organic light emitting diodes; controlling electron-hole separation,” Adv. Mater. 28(36), 8014–8020 (2016).
    [Crossref] [PubMed]
  2. D. Chen, K. Liu, L. Gan, M. Liu, K. Gao, G. Xie, Y. Ma, Y. Cao, and S. J. Su, “Modulation of exciton generation in organic active planar pn heterojunction: toward low driving voltage and high-efficiency OLEDs employing conventional and thermally activated delayed fluorescent emitters,” Adv. Mater. 28(31), 6758–6765 (2016).
    [Crossref] [PubMed]
  3. L. S. Cui, Y. L. Deng, D. P. Tsang, Z. Q. Jiang, Q. Zhang, L. S. Liao, and C. Adachi, “Controlling synergistic oxidation processes for efficient and stable blue thermally activated delayed fluorescence devices,” Adv. Mater. 28(35), 7620–7625 (2016).
    [Crossref] [PubMed]
  4. G. Cheng, K. T. Chan, W. P. To, and C. M. Che, “Color tunable organic light-emitting devices with external quantum efficiency over 20% based on strongly luminescent gold(iii) complexes having long-lived emissive excited states,” Adv. Mater. 26(16), 2540–2546 (2014).
    [Crossref] [PubMed]
  5. T. A. Lin, T. Chatterjee, W. L. Tsai, W. K. Lee, M. J. Wu, M. Jiao, K. C. Pan, C. L. Yi, C. L. Chung, K. T. Wong, and C. C. Wu, “Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid,” Adv. Mater. 28(32), 6976–6983 (2016).
    [Crossref] [PubMed]
  6. J. Hauss, T. Bocksrocker, B. Riedel, U. Geyer, U. Lemmer, and M. Gerken, “Metallic Bragg-gratings for light management in organic light-emitting devices,” Appl. Phys. Lett. 99(10), 103303 (2011).
    [Crossref]
  7. P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface Plasmon Mediated Emission from Organic Light-Emitting Diodes,” Adv. Mater. 14(19), 1393–1396 (2002).
    [Crossref]
  8. L. H. Smith, J. A. E. Wasey, I. D. W. Samuel, and W. L. Barnes, “Light out-coupling efficiencies of organic light-emitting diode structures and the effect of photoluminescence quantum yield,” Adv. Funct. Mater. 15(11), 1839–1844 (2005).
    [Crossref]
  9. C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88(16), 161105 (2006).
    [Crossref]
  10. C. Liu, V. Kamaev, and Z. V. Vardeny, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86(14), 143501 (2005).
    [Crossref]
  11. J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87(24), 241109 (2005).
    [Crossref]
  12. Y. G. Bi, J. Feng, Y. F. Li, X. L. Zhang, Y. F. Liu, Y. Jin, and H. B. Sun, “Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity,” Adv. Mater. 25(48), 6969–6974 (2013).
    [Crossref] [PubMed]
  13. C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88(16), 161105 (2006).
    [Crossref]
  14. Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24(9), 1187–1191 (2012).
    [Crossref] [PubMed]
  15. X. L. Zhang, J. Feng, J. F. Song, X. B. Li, and H. B. Sun, “Grating amplitude effect on electroluminescence enhancement of corrugated organic light-emitting devices,” Opt. Lett. 36(19), 3915–3917 (2011).
    [Crossref] [PubMed]
  16. V. M. Silva and L. Pereira, “The nature of the electrical conduction and light emitting efficiency in organic semiconductors layers: The case of [m-MTDATA] – [NPB] – Alq3 OLED,” J. Non-Cryst. Solids 352(50–51), 5429–5436 (2006).
    [Crossref]
  17. Y. Bi, J. Feng, Y. Li, Y. Jin, Y. Liu, Q. Chen, and H. Sun, “Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structure,” Appl. Phys. Lett. 100(5), 053304 (2012).
    [Crossref]
  18. Y. Jin, J. Feng, X. Zhang, M. Xu, Y. Bi, Q. Chen, H. Wang, and H. Sun, “Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode,” Appl. Phys. Lett. 101(16), 163303 (2012).
    [Crossref]
  19. Y. Jin, J. Feng, M. Xu, X. Zhang, L. Wang, Q. Chen, H. Wang, and H. Sun, “Matching photocurrents of sub-cells in double-junction organic solar cells via coupling between surface plasmon polaritons and microcavity modes,” Advanced Optical Materials 1(11), 809–813 (2013).
    [Crossref]
  20. Y. Jin, J. Feng, X. Zhang, M. Xu, Q. Chen, Z. Wu, and H. Sun, “Broadband absorption enhancement in organic solar cells with an antenna layer through surface-plasmon mediated energy transfer,” Appl. Phys. Lett. 106(22), 223303 (2015).
    [Crossref]
  21. D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81(23), 4315–4317 (2002).
    [Crossref]
  22. J. Feng, T. Okamoto, R. Naraoka, and S. Kawata, “Enhancement of surface plasmon-mediated radiative energy transfer through a corrugated metal cathode in organic light-emitting devices,” Appl. Phys. Lett. 93(5), 051106 (2008).
    [Crossref]
  23. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), Chap. 8.

2016 (4)

H. A. Al Attar and A. P. Monkman, “Electric field induce blue shift and intensity enhancement in 2D exciplex organic light emitting diodes; controlling electron-hole separation,” Adv. Mater. 28(36), 8014–8020 (2016).
[Crossref] [PubMed]

D. Chen, K. Liu, L. Gan, M. Liu, K. Gao, G. Xie, Y. Ma, Y. Cao, and S. J. Su, “Modulation of exciton generation in organic active planar pn heterojunction: toward low driving voltage and high-efficiency OLEDs employing conventional and thermally activated delayed fluorescent emitters,” Adv. Mater. 28(31), 6758–6765 (2016).
[Crossref] [PubMed]

L. S. Cui, Y. L. Deng, D. P. Tsang, Z. Q. Jiang, Q. Zhang, L. S. Liao, and C. Adachi, “Controlling synergistic oxidation processes for efficient and stable blue thermally activated delayed fluorescence devices,” Adv. Mater. 28(35), 7620–7625 (2016).
[Crossref] [PubMed]

T. A. Lin, T. Chatterjee, W. L. Tsai, W. K. Lee, M. J. Wu, M. Jiao, K. C. Pan, C. L. Yi, C. L. Chung, K. T. Wong, and C. C. Wu, “Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid,” Adv. Mater. 28(32), 6976–6983 (2016).
[Crossref] [PubMed]

2015 (1)

Y. Jin, J. Feng, X. Zhang, M. Xu, Q. Chen, Z. Wu, and H. Sun, “Broadband absorption enhancement in organic solar cells with an antenna layer through surface-plasmon mediated energy transfer,” Appl. Phys. Lett. 106(22), 223303 (2015).
[Crossref]

2014 (1)

G. Cheng, K. T. Chan, W. P. To, and C. M. Che, “Color tunable organic light-emitting devices with external quantum efficiency over 20% based on strongly luminescent gold(iii) complexes having long-lived emissive excited states,” Adv. Mater. 26(16), 2540–2546 (2014).
[Crossref] [PubMed]

2013 (2)

Y. G. Bi, J. Feng, Y. F. Li, X. L. Zhang, Y. F. Liu, Y. Jin, and H. B. Sun, “Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity,” Adv. Mater. 25(48), 6969–6974 (2013).
[Crossref] [PubMed]

Y. Jin, J. Feng, M. Xu, X. Zhang, L. Wang, Q. Chen, H. Wang, and H. Sun, “Matching photocurrents of sub-cells in double-junction organic solar cells via coupling between surface plasmon polaritons and microcavity modes,” Advanced Optical Materials 1(11), 809–813 (2013).
[Crossref]

2012 (3)

Y. Bi, J. Feng, Y. Li, Y. Jin, Y. Liu, Q. Chen, and H. Sun, “Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structure,” Appl. Phys. Lett. 100(5), 053304 (2012).
[Crossref]

Y. Jin, J. Feng, X. Zhang, M. Xu, Y. Bi, Q. Chen, H. Wang, and H. Sun, “Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode,” Appl. Phys. Lett. 101(16), 163303 (2012).
[Crossref]

Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24(9), 1187–1191 (2012).
[Crossref] [PubMed]

2011 (2)

X. L. Zhang, J. Feng, J. F. Song, X. B. Li, and H. B. Sun, “Grating amplitude effect on electroluminescence enhancement of corrugated organic light-emitting devices,” Opt. Lett. 36(19), 3915–3917 (2011).
[Crossref] [PubMed]

J. Hauss, T. Bocksrocker, B. Riedel, U. Geyer, U. Lemmer, and M. Gerken, “Metallic Bragg-gratings for light management in organic light-emitting devices,” Appl. Phys. Lett. 99(10), 103303 (2011).
[Crossref]

2008 (1)

J. Feng, T. Okamoto, R. Naraoka, and S. Kawata, “Enhancement of surface plasmon-mediated radiative energy transfer through a corrugated metal cathode in organic light-emitting devices,” Appl. Phys. Lett. 93(5), 051106 (2008).
[Crossref]

2006 (3)

C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88(16), 161105 (2006).
[Crossref]

V. M. Silva and L. Pereira, “The nature of the electrical conduction and light emitting efficiency in organic semiconductors layers: The case of [m-MTDATA] – [NPB] – Alq3 OLED,” J. Non-Cryst. Solids 352(50–51), 5429–5436 (2006).
[Crossref]

C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88(16), 161105 (2006).
[Crossref]

2005 (3)

L. H. Smith, J. A. E. Wasey, I. D. W. Samuel, and W. L. Barnes, “Light out-coupling efficiencies of organic light-emitting diode structures and the effect of photoluminescence quantum yield,” Adv. Funct. Mater. 15(11), 1839–1844 (2005).
[Crossref]

C. Liu, V. Kamaev, and Z. V. Vardeny, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86(14), 143501 (2005).
[Crossref]

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87(24), 241109 (2005).
[Crossref]

2002 (2)

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface Plasmon Mediated Emission from Organic Light-Emitting Diodes,” Adv. Mater. 14(19), 1393–1396 (2002).
[Crossref]

D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81(23), 4315–4317 (2002).
[Crossref]

Adachi, C.

L. S. Cui, Y. L. Deng, D. P. Tsang, Z. Q. Jiang, Q. Zhang, L. S. Liao, and C. Adachi, “Controlling synergistic oxidation processes for efficient and stable blue thermally activated delayed fluorescence devices,” Adv. Mater. 28(35), 7620–7625 (2016).
[Crossref] [PubMed]

Al Attar, H. A.

H. A. Al Attar and A. P. Monkman, “Electric field induce blue shift and intensity enhancement in 2D exciplex organic light emitting diodes; controlling electron-hole separation,” Adv. Mater. 28(36), 8014–8020 (2016).
[Crossref] [PubMed]

Bai, Y.

Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24(9), 1187–1191 (2012).
[Crossref] [PubMed]

Barnes, W. L.

C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88(16), 161105 (2006).
[Crossref]

C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88(16), 161105 (2006).
[Crossref]

L. H. Smith, J. A. E. Wasey, I. D. W. Samuel, and W. L. Barnes, “Light out-coupling efficiencies of organic light-emitting diode structures and the effect of photoluminescence quantum yield,” Adv. Funct. Mater. 15(11), 1839–1844 (2005).
[Crossref]

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface Plasmon Mediated Emission from Organic Light-Emitting Diodes,” Adv. Mater. 14(19), 1393–1396 (2002).
[Crossref]

Bi, Y.

Y. Bi, J. Feng, Y. Li, Y. Jin, Y. Liu, Q. Chen, and H. Sun, “Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structure,” Appl. Phys. Lett. 100(5), 053304 (2012).
[Crossref]

Y. Jin, J. Feng, X. Zhang, M. Xu, Y. Bi, Q. Chen, H. Wang, and H. Sun, “Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode,” Appl. Phys. Lett. 101(16), 163303 (2012).
[Crossref]

Bi, Y. G.

Y. G. Bi, J. Feng, Y. F. Li, X. L. Zhang, Y. F. Liu, Y. Jin, and H. B. Sun, “Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity,” Adv. Mater. 25(48), 6969–6974 (2013).
[Crossref] [PubMed]

Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24(9), 1187–1191 (2012).
[Crossref] [PubMed]

Bocksrocker, T.

J. Hauss, T. Bocksrocker, B. Riedel, U. Geyer, U. Lemmer, and M. Gerken, “Metallic Bragg-gratings for light management in organic light-emitting devices,” Appl. Phys. Lett. 99(10), 103303 (2011).
[Crossref]

Burn, P. L.

C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88(16), 161105 (2006).
[Crossref]

C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88(16), 161105 (2006).
[Crossref]

Cao, Y.

D. Chen, K. Liu, L. Gan, M. Liu, K. Gao, G. Xie, Y. Ma, Y. Cao, and S. J. Su, “Modulation of exciton generation in organic active planar pn heterojunction: toward low driving voltage and high-efficiency OLEDs employing conventional and thermally activated delayed fluorescent emitters,” Adv. Mater. 28(31), 6758–6765 (2016).
[Crossref] [PubMed]

Chan, K. T.

G. Cheng, K. T. Chan, W. P. To, and C. M. Che, “Color tunable organic light-emitting devices with external quantum efficiency over 20% based on strongly luminescent gold(iii) complexes having long-lived emissive excited states,” Adv. Mater. 26(16), 2540–2546 (2014).
[Crossref] [PubMed]

Chatterjee, T.

T. A. Lin, T. Chatterjee, W. L. Tsai, W. K. Lee, M. J. Wu, M. Jiao, K. C. Pan, C. L. Yi, C. L. Chung, K. T. Wong, and C. C. Wu, “Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid,” Adv. Mater. 28(32), 6976–6983 (2016).
[Crossref] [PubMed]

Che, C. M.

G. Cheng, K. T. Chan, W. P. To, and C. M. Che, “Color tunable organic light-emitting devices with external quantum efficiency over 20% based on strongly luminescent gold(iii) complexes having long-lived emissive excited states,” Adv. Mater. 26(16), 2540–2546 (2014).
[Crossref] [PubMed]

Chen, D.

D. Chen, K. Liu, L. Gan, M. Liu, K. Gao, G. Xie, Y. Ma, Y. Cao, and S. J. Su, “Modulation of exciton generation in organic active planar pn heterojunction: toward low driving voltage and high-efficiency OLEDs employing conventional and thermally activated delayed fluorescent emitters,” Adv. Mater. 28(31), 6758–6765 (2016).
[Crossref] [PubMed]

Chen, L.

Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24(9), 1187–1191 (2012).
[Crossref] [PubMed]

Chen, Q.

Y. Jin, J. Feng, X. Zhang, M. Xu, Q. Chen, Z. Wu, and H. Sun, “Broadband absorption enhancement in organic solar cells with an antenna layer through surface-plasmon mediated energy transfer,” Appl. Phys. Lett. 106(22), 223303 (2015).
[Crossref]

Y. Jin, J. Feng, M. Xu, X. Zhang, L. Wang, Q. Chen, H. Wang, and H. Sun, “Matching photocurrents of sub-cells in double-junction organic solar cells via coupling between surface plasmon polaritons and microcavity modes,” Advanced Optical Materials 1(11), 809–813 (2013).
[Crossref]

Y. Jin, J. Feng, X. Zhang, M. Xu, Y. Bi, Q. Chen, H. Wang, and H. Sun, “Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode,” Appl. Phys. Lett. 101(16), 163303 (2012).
[Crossref]

Y. Bi, J. Feng, Y. Li, Y. Jin, Y. Liu, Q. Chen, and H. Sun, “Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structure,” Appl. Phys. Lett. 100(5), 053304 (2012).
[Crossref]

Chen, Q. D.

Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24(9), 1187–1191 (2012).
[Crossref] [PubMed]

Cheng, G.

G. Cheng, K. T. Chan, W. P. To, and C. M. Che, “Color tunable organic light-emitting devices with external quantum efficiency over 20% based on strongly luminescent gold(iii) complexes having long-lived emissive excited states,” Adv. Mater. 26(16), 2540–2546 (2014).
[Crossref] [PubMed]

Chung, C. L.

T. A. Lin, T. Chatterjee, W. L. Tsai, W. K. Lee, M. J. Wu, M. Jiao, K. C. Pan, C. L. Yi, C. L. Chung, K. T. Wong, and C. C. Wu, “Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid,” Adv. Mater. 28(32), 6976–6983 (2016).
[Crossref] [PubMed]

Cui, L. S.

L. S. Cui, Y. L. Deng, D. P. Tsang, Z. Q. Jiang, Q. Zhang, L. S. Liao, and C. Adachi, “Controlling synergistic oxidation processes for efficient and stable blue thermally activated delayed fluorescence devices,” Adv. Mater. 28(35), 7620–7625 (2016).
[Crossref] [PubMed]

Deng, Y. L.

L. S. Cui, Y. L. Deng, D. P. Tsang, Z. Q. Jiang, Q. Zhang, L. S. Liao, and C. Adachi, “Controlling synergistic oxidation processes for efficient and stable blue thermally activated delayed fluorescence devices,” Adv. Mater. 28(35), 7620–7625 (2016).
[Crossref] [PubMed]

Feng, J.

Y. Jin, J. Feng, X. Zhang, M. Xu, Q. Chen, Z. Wu, and H. Sun, “Broadband absorption enhancement in organic solar cells with an antenna layer through surface-plasmon mediated energy transfer,” Appl. Phys. Lett. 106(22), 223303 (2015).
[Crossref]

Y. G. Bi, J. Feng, Y. F. Li, X. L. Zhang, Y. F. Liu, Y. Jin, and H. B. Sun, “Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity,” Adv. Mater. 25(48), 6969–6974 (2013).
[Crossref] [PubMed]

Y. Jin, J. Feng, M. Xu, X. Zhang, L. Wang, Q. Chen, H. Wang, and H. Sun, “Matching photocurrents of sub-cells in double-junction organic solar cells via coupling between surface plasmon polaritons and microcavity modes,” Advanced Optical Materials 1(11), 809–813 (2013).
[Crossref]

Y. Bi, J. Feng, Y. Li, Y. Jin, Y. Liu, Q. Chen, and H. Sun, “Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structure,” Appl. Phys. Lett. 100(5), 053304 (2012).
[Crossref]

Y. Jin, J. Feng, X. Zhang, M. Xu, Y. Bi, Q. Chen, H. Wang, and H. Sun, “Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode,” Appl. Phys. Lett. 101(16), 163303 (2012).
[Crossref]

Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24(9), 1187–1191 (2012).
[Crossref] [PubMed]

X. L. Zhang, J. Feng, J. F. Song, X. B. Li, and H. B. Sun, “Grating amplitude effect on electroluminescence enhancement of corrugated organic light-emitting devices,” Opt. Lett. 36(19), 3915–3917 (2011).
[Crossref] [PubMed]

J. Feng, T. Okamoto, R. Naraoka, and S. Kawata, “Enhancement of surface plasmon-mediated radiative energy transfer through a corrugated metal cathode in organic light-emitting devices,” Appl. Phys. Lett. 93(5), 051106 (2008).
[Crossref]

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87(24), 241109 (2005).
[Crossref]

Gan, L.

D. Chen, K. Liu, L. Gan, M. Liu, K. Gao, G. Xie, Y. Ma, Y. Cao, and S. J. Su, “Modulation of exciton generation in organic active planar pn heterojunction: toward low driving voltage and high-efficiency OLEDs employing conventional and thermally activated delayed fluorescent emitters,” Adv. Mater. 28(31), 6758–6765 (2016).
[Crossref] [PubMed]

Gao, K.

D. Chen, K. Liu, L. Gan, M. Liu, K. Gao, G. Xie, Y. Ma, Y. Cao, and S. J. Su, “Modulation of exciton generation in organic active planar pn heterojunction: toward low driving voltage and high-efficiency OLEDs employing conventional and thermally activated delayed fluorescent emitters,” Adv. Mater. 28(31), 6758–6765 (2016).
[Crossref] [PubMed]

Gerken, M.

J. Hauss, T. Bocksrocker, B. Riedel, U. Geyer, U. Lemmer, and M. Gerken, “Metallic Bragg-gratings for light management in organic light-emitting devices,” Appl. Phys. Lett. 99(10), 103303 (2011).
[Crossref]

Geyer, U.

J. Hauss, T. Bocksrocker, B. Riedel, U. Geyer, U. Lemmer, and M. Gerken, “Metallic Bragg-gratings for light management in organic light-emitting devices,” Appl. Phys. Lett. 99(10), 103303 (2011).
[Crossref]

Gifford, D. K.

D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81(23), 4315–4317 (2002).
[Crossref]

Hall, D. G.

D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81(23), 4315–4317 (2002).
[Crossref]

Hauss, J.

J. Hauss, T. Bocksrocker, B. Riedel, U. Geyer, U. Lemmer, and M. Gerken, “Metallic Bragg-gratings for light management in organic light-emitting devices,” Appl. Phys. Lett. 99(10), 103303 (2011).
[Crossref]

Hobson, P. A.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface Plasmon Mediated Emission from Organic Light-Emitting Diodes,” Adv. Mater. 14(19), 1393–1396 (2002).
[Crossref]

Jiang, Z. Q.

L. S. Cui, Y. L. Deng, D. P. Tsang, Z. Q. Jiang, Q. Zhang, L. S. Liao, and C. Adachi, “Controlling synergistic oxidation processes for efficient and stable blue thermally activated delayed fluorescence devices,” Adv. Mater. 28(35), 7620–7625 (2016).
[Crossref] [PubMed]

Jiao, M.

T. A. Lin, T. Chatterjee, W. L. Tsai, W. K. Lee, M. J. Wu, M. Jiao, K. C. Pan, C. L. Yi, C. L. Chung, K. T. Wong, and C. C. Wu, “Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid,” Adv. Mater. 28(32), 6976–6983 (2016).
[Crossref] [PubMed]

Jin, Y.

Y. Jin, J. Feng, X. Zhang, M. Xu, Q. Chen, Z. Wu, and H. Sun, “Broadband absorption enhancement in organic solar cells with an antenna layer through surface-plasmon mediated energy transfer,” Appl. Phys. Lett. 106(22), 223303 (2015).
[Crossref]

Y. G. Bi, J. Feng, Y. F. Li, X. L. Zhang, Y. F. Liu, Y. Jin, and H. B. Sun, “Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity,” Adv. Mater. 25(48), 6969–6974 (2013).
[Crossref] [PubMed]

Y. Jin, J. Feng, M. Xu, X. Zhang, L. Wang, Q. Chen, H. Wang, and H. Sun, “Matching photocurrents of sub-cells in double-junction organic solar cells via coupling between surface plasmon polaritons and microcavity modes,” Advanced Optical Materials 1(11), 809–813 (2013).
[Crossref]

Y. Jin, J. Feng, X. Zhang, M. Xu, Y. Bi, Q. Chen, H. Wang, and H. Sun, “Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode,” Appl. Phys. Lett. 101(16), 163303 (2012).
[Crossref]

Y. Bi, J. Feng, Y. Li, Y. Jin, Y. Liu, Q. Chen, and H. Sun, “Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structure,” Appl. Phys. Lett. 100(5), 053304 (2012).
[Crossref]

Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24(9), 1187–1191 (2012).
[Crossref] [PubMed]

Kamaev, V.

C. Liu, V. Kamaev, and Z. V. Vardeny, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86(14), 143501 (2005).
[Crossref]

Kawata, S.

J. Feng, T. Okamoto, R. Naraoka, and S. Kawata, “Enhancement of surface plasmon-mediated radiative energy transfer through a corrugated metal cathode in organic light-emitting devices,” Appl. Phys. Lett. 93(5), 051106 (2008).
[Crossref]

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87(24), 241109 (2005).
[Crossref]

Lan, T.

Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24(9), 1187–1191 (2012).
[Crossref] [PubMed]

Lee, W. K.

T. A. Lin, T. Chatterjee, W. L. Tsai, W. K. Lee, M. J. Wu, M. Jiao, K. C. Pan, C. L. Yi, C. L. Chung, K. T. Wong, and C. C. Wu, “Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid,” Adv. Mater. 28(32), 6976–6983 (2016).
[Crossref] [PubMed]

Lemmer, U.

J. Hauss, T. Bocksrocker, B. Riedel, U. Geyer, U. Lemmer, and M. Gerken, “Metallic Bragg-gratings for light management in organic light-emitting devices,” Appl. Phys. Lett. 99(10), 103303 (2011).
[Crossref]

Li, X. B.

Li, Y.

Y. Bi, J. Feng, Y. Li, Y. Jin, Y. Liu, Q. Chen, and H. Sun, “Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structure,” Appl. Phys. Lett. 100(5), 053304 (2012).
[Crossref]

Li, Y. F.

Y. G. Bi, J. Feng, Y. F. Li, X. L. Zhang, Y. F. Liu, Y. Jin, and H. B. Sun, “Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity,” Adv. Mater. 25(48), 6969–6974 (2013).
[Crossref] [PubMed]

Liao, L. S.

L. S. Cui, Y. L. Deng, D. P. Tsang, Z. Q. Jiang, Q. Zhang, L. S. Liao, and C. Adachi, “Controlling synergistic oxidation processes for efficient and stable blue thermally activated delayed fluorescence devices,” Adv. Mater. 28(35), 7620–7625 (2016).
[Crossref] [PubMed]

Lin, T. A.

T. A. Lin, T. Chatterjee, W. L. Tsai, W. K. Lee, M. J. Wu, M. Jiao, K. C. Pan, C. L. Yi, C. L. Chung, K. T. Wong, and C. C. Wu, “Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid,” Adv. Mater. 28(32), 6976–6983 (2016).
[Crossref] [PubMed]

Liu, C.

C. Liu, V. Kamaev, and Z. V. Vardeny, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86(14), 143501 (2005).
[Crossref]

Liu, K.

D. Chen, K. Liu, L. Gan, M. Liu, K. Gao, G. Xie, Y. Ma, Y. Cao, and S. J. Su, “Modulation of exciton generation in organic active planar pn heterojunction: toward low driving voltage and high-efficiency OLEDs employing conventional and thermally activated delayed fluorescent emitters,” Adv. Mater. 28(31), 6758–6765 (2016).
[Crossref] [PubMed]

Liu, M.

D. Chen, K. Liu, L. Gan, M. Liu, K. Gao, G. Xie, Y. Ma, Y. Cao, and S. J. Su, “Modulation of exciton generation in organic active planar pn heterojunction: toward low driving voltage and high-efficiency OLEDs employing conventional and thermally activated delayed fluorescent emitters,” Adv. Mater. 28(31), 6758–6765 (2016).
[Crossref] [PubMed]

Liu, Y.

Y. Bi, J. Feng, Y. Li, Y. Jin, Y. Liu, Q. Chen, and H. Sun, “Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structure,” Appl. Phys. Lett. 100(5), 053304 (2012).
[Crossref]

Liu, Y. F.

Y. G. Bi, J. Feng, Y. F. Li, X. L. Zhang, Y. F. Liu, Y. Jin, and H. B. Sun, “Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity,” Adv. Mater. 25(48), 6969–6974 (2013).
[Crossref] [PubMed]

Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24(9), 1187–1191 (2012).
[Crossref] [PubMed]

Ma, Y.

D. Chen, K. Liu, L. Gan, M. Liu, K. Gao, G. Xie, Y. Ma, Y. Cao, and S. J. Su, “Modulation of exciton generation in organic active planar pn heterojunction: toward low driving voltage and high-efficiency OLEDs employing conventional and thermally activated delayed fluorescent emitters,” Adv. Mater. 28(31), 6758–6765 (2016).
[Crossref] [PubMed]

Monkman, A. P.

H. A. Al Attar and A. P. Monkman, “Electric field induce blue shift and intensity enhancement in 2D exciplex organic light emitting diodes; controlling electron-hole separation,” Adv. Mater. 28(36), 8014–8020 (2016).
[Crossref] [PubMed]

Naraoka, R.

J. Feng, T. Okamoto, R. Naraoka, and S. Kawata, “Enhancement of surface plasmon-mediated radiative energy transfer through a corrugated metal cathode in organic light-emitting devices,” Appl. Phys. Lett. 93(5), 051106 (2008).
[Crossref]

Okamoto, T.

J. Feng, T. Okamoto, R. Naraoka, and S. Kawata, “Enhancement of surface plasmon-mediated radiative energy transfer through a corrugated metal cathode in organic light-emitting devices,” Appl. Phys. Lett. 93(5), 051106 (2008).
[Crossref]

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87(24), 241109 (2005).
[Crossref]

Pan, K. C.

T. A. Lin, T. Chatterjee, W. L. Tsai, W. K. Lee, M. J. Wu, M. Jiao, K. C. Pan, C. L. Yi, C. L. Chung, K. T. Wong, and C. C. Wu, “Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid,” Adv. Mater. 28(32), 6976–6983 (2016).
[Crossref] [PubMed]

Pereira, L.

V. M. Silva and L. Pereira, “The nature of the electrical conduction and light emitting efficiency in organic semiconductors layers: The case of [m-MTDATA] – [NPB] – Alq3 OLED,” J. Non-Cryst. Solids 352(50–51), 5429–5436 (2006).
[Crossref]

Riedel, B.

J. Hauss, T. Bocksrocker, B. Riedel, U. Geyer, U. Lemmer, and M. Gerken, “Metallic Bragg-gratings for light management in organic light-emitting devices,” Appl. Phys. Lett. 99(10), 103303 (2011).
[Crossref]

Sage, I.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface Plasmon Mediated Emission from Organic Light-Emitting Diodes,” Adv. Mater. 14(19), 1393–1396 (2002).
[Crossref]

Samuel, I. D. W.

C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88(16), 161105 (2006).
[Crossref]

C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88(16), 161105 (2006).
[Crossref]

L. H. Smith, J. A. E. Wasey, I. D. W. Samuel, and W. L. Barnes, “Light out-coupling efficiencies of organic light-emitting diode structures and the effect of photoluminescence quantum yield,” Adv. Funct. Mater. 15(11), 1839–1844 (2005).
[Crossref]

Silva, V. M.

V. M. Silva and L. Pereira, “The nature of the electrical conduction and light emitting efficiency in organic semiconductors layers: The case of [m-MTDATA] – [NPB] – Alq3 OLED,” J. Non-Cryst. Solids 352(50–51), 5429–5436 (2006).
[Crossref]

Smith, L. H.

L. H. Smith, J. A. E. Wasey, I. D. W. Samuel, and W. L. Barnes, “Light out-coupling efficiencies of organic light-emitting diode structures and the effect of photoluminescence quantum yield,” Adv. Funct. Mater. 15(11), 1839–1844 (2005).
[Crossref]

Song, J. F.

Su, S. J.

D. Chen, K. Liu, L. Gan, M. Liu, K. Gao, G. Xie, Y. Ma, Y. Cao, and S. J. Su, “Modulation of exciton generation in organic active planar pn heterojunction: toward low driving voltage and high-efficiency OLEDs employing conventional and thermally activated delayed fluorescent emitters,” Adv. Mater. 28(31), 6758–6765 (2016).
[Crossref] [PubMed]

Sun, H.

Y. Jin, J. Feng, X. Zhang, M. Xu, Q. Chen, Z. Wu, and H. Sun, “Broadband absorption enhancement in organic solar cells with an antenna layer through surface-plasmon mediated energy transfer,” Appl. Phys. Lett. 106(22), 223303 (2015).
[Crossref]

Y. Jin, J. Feng, M. Xu, X. Zhang, L. Wang, Q. Chen, H. Wang, and H. Sun, “Matching photocurrents of sub-cells in double-junction organic solar cells via coupling between surface plasmon polaritons and microcavity modes,” Advanced Optical Materials 1(11), 809–813 (2013).
[Crossref]

Y. Jin, J. Feng, X. Zhang, M. Xu, Y. Bi, Q. Chen, H. Wang, and H. Sun, “Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode,” Appl. Phys. Lett. 101(16), 163303 (2012).
[Crossref]

Y. Bi, J. Feng, Y. Li, Y. Jin, Y. Liu, Q. Chen, and H. Sun, “Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structure,” Appl. Phys. Lett. 100(5), 053304 (2012).
[Crossref]

Sun, H. B.

Y. G. Bi, J. Feng, Y. F. Li, X. L. Zhang, Y. F. Liu, Y. Jin, and H. B. Sun, “Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity,” Adv. Mater. 25(48), 6969–6974 (2013).
[Crossref] [PubMed]

Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24(9), 1187–1191 (2012).
[Crossref] [PubMed]

X. L. Zhang, J. Feng, J. F. Song, X. B. Li, and H. B. Sun, “Grating amplitude effect on electroluminescence enhancement of corrugated organic light-emitting devices,” Opt. Lett. 36(19), 3915–3917 (2011).
[Crossref] [PubMed]

To, W. P.

G. Cheng, K. T. Chan, W. P. To, and C. M. Che, “Color tunable organic light-emitting devices with external quantum efficiency over 20% based on strongly luminescent gold(iii) complexes having long-lived emissive excited states,” Adv. Mater. 26(16), 2540–2546 (2014).
[Crossref] [PubMed]

Tsai, W. L.

T. A. Lin, T. Chatterjee, W. L. Tsai, W. K. Lee, M. J. Wu, M. Jiao, K. C. Pan, C. L. Yi, C. L. Chung, K. T. Wong, and C. C. Wu, “Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid,” Adv. Mater. 28(32), 6976–6983 (2016).
[Crossref] [PubMed]

Tsang, D. P.

L. S. Cui, Y. L. Deng, D. P. Tsang, Z. Q. Jiang, Q. Zhang, L. S. Liao, and C. Adachi, “Controlling synergistic oxidation processes for efficient and stable blue thermally activated delayed fluorescence devices,” Adv. Mater. 28(35), 7620–7625 (2016).
[Crossref] [PubMed]

Vardeny, Z. V.

C. Liu, V. Kamaev, and Z. V. Vardeny, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86(14), 143501 (2005).
[Crossref]

Wang, H.

Y. Jin, J. Feng, M. Xu, X. Zhang, L. Wang, Q. Chen, H. Wang, and H. Sun, “Matching photocurrents of sub-cells in double-junction organic solar cells via coupling between surface plasmon polaritons and microcavity modes,” Advanced Optical Materials 1(11), 809–813 (2013).
[Crossref]

Y. Jin, J. Feng, X. Zhang, M. Xu, Y. Bi, Q. Chen, H. Wang, and H. Sun, “Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode,” Appl. Phys. Lett. 101(16), 163303 (2012).
[Crossref]

Wang, L.

Y. Jin, J. Feng, M. Xu, X. Zhang, L. Wang, Q. Chen, H. Wang, and H. Sun, “Matching photocurrents of sub-cells in double-junction organic solar cells via coupling between surface plasmon polaritons and microcavity modes,” Advanced Optical Materials 1(11), 809–813 (2013).
[Crossref]

Wasey, J. A. E.

L. H. Smith, J. A. E. Wasey, I. D. W. Samuel, and W. L. Barnes, “Light out-coupling efficiencies of organic light-emitting diode structures and the effect of photoluminescence quantum yield,” Adv. Funct. Mater. 15(11), 1839–1844 (2005).
[Crossref]

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface Plasmon Mediated Emission from Organic Light-Emitting Diodes,” Adv. Mater. 14(19), 1393–1396 (2002).
[Crossref]

Wedge, S.

C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88(16), 161105 (2006).
[Crossref]

C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88(16), 161105 (2006).
[Crossref]

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface Plasmon Mediated Emission from Organic Light-Emitting Diodes,” Adv. Mater. 14(19), 1393–1396 (2002).
[Crossref]

Wong, K. T.

T. A. Lin, T. Chatterjee, W. L. Tsai, W. K. Lee, M. J. Wu, M. Jiao, K. C. Pan, C. L. Yi, C. L. Chung, K. T. Wong, and C. C. Wu, “Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid,” Adv. Mater. 28(32), 6976–6983 (2016).
[Crossref] [PubMed]

Wu, C. C.

T. A. Lin, T. Chatterjee, W. L. Tsai, W. K. Lee, M. J. Wu, M. Jiao, K. C. Pan, C. L. Yi, C. L. Chung, K. T. Wong, and C. C. Wu, “Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid,” Adv. Mater. 28(32), 6976–6983 (2016).
[Crossref] [PubMed]

Wu, M. J.

T. A. Lin, T. Chatterjee, W. L. Tsai, W. K. Lee, M. J. Wu, M. Jiao, K. C. Pan, C. L. Yi, C. L. Chung, K. T. Wong, and C. C. Wu, “Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid,” Adv. Mater. 28(32), 6976–6983 (2016).
[Crossref] [PubMed]

Wu, Z.

Y. Jin, J. Feng, X. Zhang, M. Xu, Q. Chen, Z. Wu, and H. Sun, “Broadband absorption enhancement in organic solar cells with an antenna layer through surface-plasmon mediated energy transfer,” Appl. Phys. Lett. 106(22), 223303 (2015).
[Crossref]

Xie, G.

D. Chen, K. Liu, L. Gan, M. Liu, K. Gao, G. Xie, Y. Ma, Y. Cao, and S. J. Su, “Modulation of exciton generation in organic active planar pn heterojunction: toward low driving voltage and high-efficiency OLEDs employing conventional and thermally activated delayed fluorescent emitters,” Adv. Mater. 28(31), 6758–6765 (2016).
[Crossref] [PubMed]

Xu, M.

Y. Jin, J. Feng, X. Zhang, M. Xu, Q. Chen, Z. Wu, and H. Sun, “Broadband absorption enhancement in organic solar cells with an antenna layer through surface-plasmon mediated energy transfer,” Appl. Phys. Lett. 106(22), 223303 (2015).
[Crossref]

Y. Jin, J. Feng, M. Xu, X. Zhang, L. Wang, Q. Chen, H. Wang, and H. Sun, “Matching photocurrents of sub-cells in double-junction organic solar cells via coupling between surface plasmon polaritons and microcavity modes,” Advanced Optical Materials 1(11), 809–813 (2013).
[Crossref]

Y. Jin, J. Feng, X. Zhang, M. Xu, Y. Bi, Q. Chen, H. Wang, and H. Sun, “Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode,” Appl. Phys. Lett. 101(16), 163303 (2012).
[Crossref]

Yates, C. J.

C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88(16), 161105 (2006).
[Crossref]

C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88(16), 161105 (2006).
[Crossref]

Yi, C. L.

T. A. Lin, T. Chatterjee, W. L. Tsai, W. K. Lee, M. J. Wu, M. Jiao, K. C. Pan, C. L. Yi, C. L. Chung, K. T. Wong, and C. C. Wu, “Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid,” Adv. Mater. 28(32), 6976–6983 (2016).
[Crossref] [PubMed]

Zhang, Q.

L. S. Cui, Y. L. Deng, D. P. Tsang, Z. Q. Jiang, Q. Zhang, L. S. Liao, and C. Adachi, “Controlling synergistic oxidation processes for efficient and stable blue thermally activated delayed fluorescence devices,” Adv. Mater. 28(35), 7620–7625 (2016).
[Crossref] [PubMed]

Zhang, X.

Y. Jin, J. Feng, X. Zhang, M. Xu, Q. Chen, Z. Wu, and H. Sun, “Broadband absorption enhancement in organic solar cells with an antenna layer through surface-plasmon mediated energy transfer,” Appl. Phys. Lett. 106(22), 223303 (2015).
[Crossref]

Y. Jin, J. Feng, M. Xu, X. Zhang, L. Wang, Q. Chen, H. Wang, and H. Sun, “Matching photocurrents of sub-cells in double-junction organic solar cells via coupling between surface plasmon polaritons and microcavity modes,” Advanced Optical Materials 1(11), 809–813 (2013).
[Crossref]

Y. Jin, J. Feng, X. Zhang, M. Xu, Y. Bi, Q. Chen, H. Wang, and H. Sun, “Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode,” Appl. Phys. Lett. 101(16), 163303 (2012).
[Crossref]

Zhang, X. L.

Y. G. Bi, J. Feng, Y. F. Li, X. L. Zhang, Y. F. Liu, Y. Jin, and H. B. Sun, “Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity,” Adv. Mater. 25(48), 6969–6974 (2013).
[Crossref] [PubMed]

Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24(9), 1187–1191 (2012).
[Crossref] [PubMed]

X. L. Zhang, J. Feng, J. F. Song, X. B. Li, and H. B. Sun, “Grating amplitude effect on electroluminescence enhancement of corrugated organic light-emitting devices,” Opt. Lett. 36(19), 3915–3917 (2011).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

L. H. Smith, J. A. E. Wasey, I. D. W. Samuel, and W. L. Barnes, “Light out-coupling efficiencies of organic light-emitting diode structures and the effect of photoluminescence quantum yield,” Adv. Funct. Mater. 15(11), 1839–1844 (2005).
[Crossref]

Adv. Mater. (8)

H. A. Al Attar and A. P. Monkman, “Electric field induce blue shift and intensity enhancement in 2D exciplex organic light emitting diodes; controlling electron-hole separation,” Adv. Mater. 28(36), 8014–8020 (2016).
[Crossref] [PubMed]

D. Chen, K. Liu, L. Gan, M. Liu, K. Gao, G. Xie, Y. Ma, Y. Cao, and S. J. Su, “Modulation of exciton generation in organic active planar pn heterojunction: toward low driving voltage and high-efficiency OLEDs employing conventional and thermally activated delayed fluorescent emitters,” Adv. Mater. 28(31), 6758–6765 (2016).
[Crossref] [PubMed]

L. S. Cui, Y. L. Deng, D. P. Tsang, Z. Q. Jiang, Q. Zhang, L. S. Liao, and C. Adachi, “Controlling synergistic oxidation processes for efficient and stable blue thermally activated delayed fluorescence devices,” Adv. Mater. 28(35), 7620–7625 (2016).
[Crossref] [PubMed]

G. Cheng, K. T. Chan, W. P. To, and C. M. Che, “Color tunable organic light-emitting devices with external quantum efficiency over 20% based on strongly luminescent gold(iii) complexes having long-lived emissive excited states,” Adv. Mater. 26(16), 2540–2546 (2014).
[Crossref] [PubMed]

T. A. Lin, T. Chatterjee, W. L. Tsai, W. K. Lee, M. J. Wu, M. Jiao, K. C. Pan, C. L. Yi, C. L. Chung, K. T. Wong, and C. C. Wu, “Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid,” Adv. Mater. 28(32), 6976–6983 (2016).
[Crossref] [PubMed]

Y. G. Bi, J. Feng, Y. F. Li, X. L. Zhang, Y. F. Liu, Y. Jin, and H. B. Sun, “Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity,” Adv. Mater. 25(48), 6969–6974 (2013).
[Crossref] [PubMed]

Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24(9), 1187–1191 (2012).
[Crossref] [PubMed]

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface Plasmon Mediated Emission from Organic Light-Emitting Diodes,” Adv. Mater. 14(19), 1393–1396 (2002).
[Crossref]

Advanced Optical Materials (1)

Y. Jin, J. Feng, M. Xu, X. Zhang, L. Wang, Q. Chen, H. Wang, and H. Sun, “Matching photocurrents of sub-cells in double-junction organic solar cells via coupling between surface plasmon polaritons and microcavity modes,” Advanced Optical Materials 1(11), 809–813 (2013).
[Crossref]

Appl. Phys. Lett. (10)

Y. Jin, J. Feng, X. Zhang, M. Xu, Q. Chen, Z. Wu, and H. Sun, “Broadband absorption enhancement in organic solar cells with an antenna layer through surface-plasmon mediated energy transfer,” Appl. Phys. Lett. 106(22), 223303 (2015).
[Crossref]

D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81(23), 4315–4317 (2002).
[Crossref]

J. Feng, T. Okamoto, R. Naraoka, and S. Kawata, “Enhancement of surface plasmon-mediated radiative energy transfer through a corrugated metal cathode in organic light-emitting devices,” Appl. Phys. Lett. 93(5), 051106 (2008).
[Crossref]

C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88(16), 161105 (2006).
[Crossref]

J. Hauss, T. Bocksrocker, B. Riedel, U. Geyer, U. Lemmer, and M. Gerken, “Metallic Bragg-gratings for light management in organic light-emitting devices,” Appl. Phys. Lett. 99(10), 103303 (2011).
[Crossref]

C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, “Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes,” Appl. Phys. Lett. 88(16), 161105 (2006).
[Crossref]

C. Liu, V. Kamaev, and Z. V. Vardeny, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86(14), 143501 (2005).
[Crossref]

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87(24), 241109 (2005).
[Crossref]

Y. Bi, J. Feng, Y. Li, Y. Jin, Y. Liu, Q. Chen, and H. Sun, “Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structure,” Appl. Phys. Lett. 100(5), 053304 (2012).
[Crossref]

Y. Jin, J. Feng, X. Zhang, M. Xu, Y. Bi, Q. Chen, H. Wang, and H. Sun, “Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode,” Appl. Phys. Lett. 101(16), 163303 (2012).
[Crossref]

J. Non-Cryst. Solids (1)

V. M. Silva and L. Pereira, “The nature of the electrical conduction and light emitting efficiency in organic semiconductors layers: The case of [m-MTDATA] – [NPB] – Alq3 OLED,” J. Non-Cryst. Solids 352(50–51), 5429–5436 (2006).
[Crossref]

Opt. Lett. (1)

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), Chap. 8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic structure of the corrugated TOLEDs. (b) AFM image of the surface morphology of the corrugated Ag cathode layer on the TOLED with the period of 500 nm.
Fig. 2
Fig. 2 (a)-(c) EL spectra of the corrugated TOLEDs with the periods of 400, 450 and 500 nm at different observation angle off the surface normal, respectively. (d)-(f) Numerical calculated dispersion relation for the wavelength versus incident angle of the corrugated TOLEDs with the periods of 400, 450 and 500 nm for TM polarization, respectively. The wavelength of the measured emission peaks extracted from the EL spectra (circles) are also plotted in (d)-(f).
Fig. 3
Fig. 3 Distribution of the magnetic field intensity in the corrugated TOLEDs with 30-nm Ag cathode at the wavelength of incident TM polarized light of 560 nm at 10 (a), 510 nm at 10 (b), and with 20, 30, 40 and 50 nm Ag cathode at the wavelength of incident TM polarized light of 525 nm at 0 from (c) to (f), respectively.
Fig. 4
Fig. 4 (a) Current density–voltage–luminance, (b) current density–efficiency characteristics of the corrugated and planar TOLEDs.

Metrics