Abstract

Light amplification in DNA systems is a promising technique for efficient and compact photonics devices in the future. Since highly fluorescent properties for hemicyanine dyes are caused by the interaction with DNA or a DNA-complex, their effects on basic optical properties were elaborated in phases of solution and solid films prepared with two methods. Results of absorption and fluorescence characteristics showed that the strongest light emission was achieved by the interaction with DNA-CTMA (cetyltrimethylammonium) rather than direct coupling to bare DNA. Laser performance was compared for films prepared with two means, indicating that this newly developed immersion method provided highly doped samples with better performance in intensity, threshold value and durability.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light amplification in DNA-surfactant complex films stained by hemicyanine dye with immersion method

Takemasa Suzuki and Yutaka Kawabe
Opt. Mater. Express 4(7) 1411-1419 (2014)

Cationic lipid binding control in DNA based biopolymer and its impacts on optical and thermo-optic properties of thin solid films

Woohyun Jung, Hwiseok Jun, Seongjin Hong, Bjorn Paulson, Yoon Sung Nam, and Kyunghwan Oh
Opt. Mater. Express 7(11) 3796-3808 (2017)

Tracing photon transmission in dye-doped DNA-CTMA optical nanofibers

Weihong Long, Weiwen Zou, Xing Li, Wenning Jiang, Xinwan Li, and Jianping Chen
Opt. Express 22(6) 6249-6256 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13(4), 1273–1281 (2001).
    [Crossref]
  2. J. G. Grote, J. A. Hagan, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108(25), 8584–8591 (2004).
    [Crossref]
  3. Y.-W. Kwon, C. H. Lee, D.-H. Choi, and J.-I. Jin, “Materials science of DNA,” J. Mater. Chem. 19(10), 1353–1380 (2009).
    [Crossref]
  4. J.-I. Jin and J. Grote, eds., Materials Science of DNA (CRC Press, 2012).
  5. Y. Kawabe, L. Wang, S. Hirinouchi, and N. Ogata, “Amplified spontaneous emission from fluorescent-dye-doped DNA-surfactant complex films,” Adv. Mater. 12(17), 1281–1283 (2000).
    [Crossref]
  6. Y. Kawabe, L. Wang, T. Nakamura, and N. Ogata, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81(8), 1372–1374 (2002).
    [Crossref]
  7. L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Barkiewicz, I. Rau, F. Kajzar, and A. Miniewicz, “Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing,” Appl. Phys. Lett. 99(3), 031107 (2011).
    [Crossref]
  8. J. Mysliwiec, L. Sznitko, S. Bartkiewicz, A. Miniewicz, Z. Essaidi, F. Kajzar, and B. Sahraoui, “Amplified spontaneous emission in the spiropyran-biopolymer based system,” Appl. Phys. Lett. 94(24), 241106 (2009).
    [Crossref]
  9. M. Ibisate, J. F. Galisteo-Lopez, V. Esteso, and C. Lopez, “FRET-mediated amplified spontaneous emission in DNA-CTMA complexes,” Adv. Opt. Mater. 1(9), 651–656 (2013).
    [Crossref]
  10. X. Zhao, X. Li, Y. Zhao, J. Zhang, J. Pan, and J. Zhou, “Amplified spontaneous emission from 2,7-bis(4-pyridyl)fluorene-doped DNA cetyltrimethyl ammonium complex films,” Opt. Eng. 52(10), 106109 (2013).
    [Crossref]
  11. C. Pradeep, C. P. G. Vallabhan, P. Radhakrishnan, and V. P. N. Nampoori, “Amplified spontaneous emission from PicoGreen dye intercalated in deoxyribonucleic acid lipid complex,” Laser Phys. Lett. 12(12), 125802 (2015).
    [Crossref]
  12. J.-B. Lepecq and C. Paoletti, “A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization,” J. Mol. Biol. 27(1), 87–106 (1967).
    [Crossref] [PubMed]
  13. J. L. Seifert, R. E. Connor, S. A. Kushon, M. Wang, and B. A. Armitage, “Spontaneous assembly of helical cyanine dye aggregates on DNA templates,” J. Am. Chem. Soc. 121(13), 2987–2995 (1999).
    [Crossref]
  14. A. Tomlinson, B. Frezza, M. Kofke, M. Wang, B. A. Armitage, and D. Yaron, “A structural model for cyanine dyes templated into the minor groove of DNA,” Chem. Phys. 325(1), 36–47 (2006).
    [Crossref]
  15. T. Suzuki and Y. Kawabe, “Light amplification in DNA-surfactant complex films stained by hemicyanine dye with immersion method,” Opt. Mater. Express 4(7), 1411–1419 (2014).
    [Crossref]
  16. Y. Suzuki and Y. Kawabe, “Tunable lasers based on hemicyanines embedded in DNA complex,” Proc. SPIE 9928, 992809 (2016).
    [Crossref]
  17. H. You, H. Spaeth, V. N. Linhard, and A. J. Steckl, “Role of surfactants in the interaction of dye molecules in natural DNA polymers,” Langmuir 25(19), 11698–11702 (2009).
    [Crossref] [PubMed]
  18. Y. Kawabe, T. Suzuki, and Y. Iisaka, “Light amplification and lasing from dyes doped in DNA-complex thin films prepared by soaking method,” Proc. SPIE 9171, 91710G (2014).
  19. Y. Kawabe, T. Suzuki, and Y. Iisaka, “Light amplification in DNA and other polyion complexes stained with simple immersion technique,” Nonlinear Opt. Quantum Opt. 47(1–3), 211–221 (2015).
  20. T. Chida and Y. Kawabe, “Hemicyanine-DNA-complex: Application to Solid-State Dye Lasers,” Nonlinear Opt. Quantum Opt. 45(1–2), 85–91 (2012).
  21. C. V. Kumar, R. S. Turner, and E. H. Asuncion, “Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect,” J. Photochem. Photobiol. Chem. 74(2–3), 231–238 (1993).
    [Crossref]
  22. C. Pawlik, A. C. Mitus, J. Mysliwiec, A. Miniewicz, and J. G. Grote, “Photochromic dye semi-intercalation into DNA-based polymeric matrix: computer modeling and experiment,” Chem. Phys. Lett. 484(4-6), 321–323 (2010).
    [Crossref]
  23. Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine,” Appl. Opt. 46(9), 1507–1513 (2007).
    [Crossref] [PubMed]

2016 (1)

Y. Suzuki and Y. Kawabe, “Tunable lasers based on hemicyanines embedded in DNA complex,” Proc. SPIE 9928, 992809 (2016).
[Crossref]

2015 (2)

Y. Kawabe, T. Suzuki, and Y. Iisaka, “Light amplification in DNA and other polyion complexes stained with simple immersion technique,” Nonlinear Opt. Quantum Opt. 47(1–3), 211–221 (2015).

C. Pradeep, C. P. G. Vallabhan, P. Radhakrishnan, and V. P. N. Nampoori, “Amplified spontaneous emission from PicoGreen dye intercalated in deoxyribonucleic acid lipid complex,” Laser Phys. Lett. 12(12), 125802 (2015).
[Crossref]

2014 (2)

T. Suzuki and Y. Kawabe, “Light amplification in DNA-surfactant complex films stained by hemicyanine dye with immersion method,” Opt. Mater. Express 4(7), 1411–1419 (2014).
[Crossref]

Y. Kawabe, T. Suzuki, and Y. Iisaka, “Light amplification and lasing from dyes doped in DNA-complex thin films prepared by soaking method,” Proc. SPIE 9171, 91710G (2014).

2013 (2)

X. Zhao, X. Li, Y. Zhao, J. Zhang, J. Pan, and J. Zhou, “Amplified spontaneous emission from 2,7-bis(4-pyridyl)fluorene-doped DNA cetyltrimethyl ammonium complex films,” Opt. Eng. 52(10), 106109 (2013).
[Crossref]

M. Ibisate, J. F. Galisteo-Lopez, V. Esteso, and C. Lopez, “FRET-mediated amplified spontaneous emission in DNA-CTMA complexes,” Adv. Opt. Mater. 1(9), 651–656 (2013).
[Crossref]

2012 (1)

T. Chida and Y. Kawabe, “Hemicyanine-DNA-complex: Application to Solid-State Dye Lasers,” Nonlinear Opt. Quantum Opt. 45(1–2), 85–91 (2012).

2011 (1)

L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Barkiewicz, I. Rau, F. Kajzar, and A. Miniewicz, “Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing,” Appl. Phys. Lett. 99(3), 031107 (2011).
[Crossref]

2010 (1)

C. Pawlik, A. C. Mitus, J. Mysliwiec, A. Miniewicz, and J. G. Grote, “Photochromic dye semi-intercalation into DNA-based polymeric matrix: computer modeling and experiment,” Chem. Phys. Lett. 484(4-6), 321–323 (2010).
[Crossref]

2009 (3)

J. Mysliwiec, L. Sznitko, S. Bartkiewicz, A. Miniewicz, Z. Essaidi, F. Kajzar, and B. Sahraoui, “Amplified spontaneous emission in the spiropyran-biopolymer based system,” Appl. Phys. Lett. 94(24), 241106 (2009).
[Crossref]

H. You, H. Spaeth, V. N. Linhard, and A. J. Steckl, “Role of surfactants in the interaction of dye molecules in natural DNA polymers,” Langmuir 25(19), 11698–11702 (2009).
[Crossref] [PubMed]

Y.-W. Kwon, C. H. Lee, D.-H. Choi, and J.-I. Jin, “Materials science of DNA,” J. Mater. Chem. 19(10), 1353–1380 (2009).
[Crossref]

2007 (1)

2006 (1)

A. Tomlinson, B. Frezza, M. Kofke, M. Wang, B. A. Armitage, and D. Yaron, “A structural model for cyanine dyes templated into the minor groove of DNA,” Chem. Phys. 325(1), 36–47 (2006).
[Crossref]

2004 (1)

J. G. Grote, J. A. Hagan, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108(25), 8584–8591 (2004).
[Crossref]

2002 (1)

Y. Kawabe, L. Wang, T. Nakamura, and N. Ogata, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81(8), 1372–1374 (2002).
[Crossref]

2001 (1)

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13(4), 1273–1281 (2001).
[Crossref]

2000 (1)

Y. Kawabe, L. Wang, S. Hirinouchi, and N. Ogata, “Amplified spontaneous emission from fluorescent-dye-doped DNA-surfactant complex films,” Adv. Mater. 12(17), 1281–1283 (2000).
[Crossref]

1999 (1)

J. L. Seifert, R. E. Connor, S. A. Kushon, M. Wang, and B. A. Armitage, “Spontaneous assembly of helical cyanine dye aggregates on DNA templates,” J. Am. Chem. Soc. 121(13), 2987–2995 (1999).
[Crossref]

1993 (1)

C. V. Kumar, R. S. Turner, and E. H. Asuncion, “Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect,” J. Photochem. Photobiol. Chem. 74(2–3), 231–238 (1993).
[Crossref]

1967 (1)

J.-B. Lepecq and C. Paoletti, “A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization,” J. Mol. Biol. 27(1), 87–106 (1967).
[Crossref] [PubMed]

Armitage, B. A.

A. Tomlinson, B. Frezza, M. Kofke, M. Wang, B. A. Armitage, and D. Yaron, “A structural model for cyanine dyes templated into the minor groove of DNA,” Chem. Phys. 325(1), 36–47 (2006).
[Crossref]

J. L. Seifert, R. E. Connor, S. A. Kushon, M. Wang, and B. A. Armitage, “Spontaneous assembly of helical cyanine dye aggregates on DNA templates,” J. Am. Chem. Soc. 121(13), 2987–2995 (1999).
[Crossref]

Asuncion, E. H.

C. V. Kumar, R. S. Turner, and E. H. Asuncion, “Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect,” J. Photochem. Photobiol. Chem. 74(2–3), 231–238 (1993).
[Crossref]

Barkiewicz, S.

L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Barkiewicz, I. Rau, F. Kajzar, and A. Miniewicz, “Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing,” Appl. Phys. Lett. 99(3), 031107 (2011).
[Crossref]

Bartkiewicz, S.

J. Mysliwiec, L. Sznitko, S. Bartkiewicz, A. Miniewicz, Z. Essaidi, F. Kajzar, and B. Sahraoui, “Amplified spontaneous emission in the spiropyran-biopolymer based system,” Appl. Phys. Lett. 94(24), 241106 (2009).
[Crossref]

Chida, T.

T. Chida and Y. Kawabe, “Hemicyanine-DNA-complex: Application to Solid-State Dye Lasers,” Nonlinear Opt. Quantum Opt. 45(1–2), 85–91 (2012).

Choi, D.-H.

Y.-W. Kwon, C. H. Lee, D.-H. Choi, and J.-I. Jin, “Materials science of DNA,” J. Mater. Chem. 19(10), 1353–1380 (2009).
[Crossref]

Clarson, S. J.

J. G. Grote, J. A. Hagan, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108(25), 8584–8591 (2004).
[Crossref]

Connor, R. E.

J. L. Seifert, R. E. Connor, S. A. Kushon, M. Wang, and B. A. Armitage, “Spontaneous assembly of helical cyanine dye aggregates on DNA templates,” J. Am. Chem. Soc. 121(13), 2987–2995 (1999).
[Crossref]

Curley, M. J.

J. G. Grote, J. A. Hagan, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108(25), 8584–8591 (2004).
[Crossref]

Dalton, L. R.

J. G. Grote, J. A. Hagan, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108(25), 8584–8591 (2004).
[Crossref]

Diggs, D. E.

J. G. Grote, J. A. Hagan, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108(25), 8584–8591 (2004).
[Crossref]

Essaidi, Z.

J. Mysliwiec, L. Sznitko, S. Bartkiewicz, A. Miniewicz, Z. Essaidi, F. Kajzar, and B. Sahraoui, “Amplified spontaneous emission in the spiropyran-biopolymer based system,” Appl. Phys. Lett. 94(24), 241106 (2009).
[Crossref]

Esteso, V.

M. Ibisate, J. F. Galisteo-Lopez, V. Esteso, and C. Lopez, “FRET-mediated amplified spontaneous emission in DNA-CTMA complexes,” Adv. Opt. Mater. 1(9), 651–656 (2013).
[Crossref]

Frezza, B.

A. Tomlinson, B. Frezza, M. Kofke, M. Wang, B. A. Armitage, and D. Yaron, “A structural model for cyanine dyes templated into the minor groove of DNA,” Chem. Phys. 325(1), 36–47 (2006).
[Crossref]

Galisteo-Lopez, J. F.

M. Ibisate, J. F. Galisteo-Lopez, V. Esteso, and C. Lopez, “FRET-mediated amplified spontaneous emission in DNA-CTMA complexes,” Adv. Opt. Mater. 1(9), 651–656 (2013).
[Crossref]

Grote, J. G.

C. Pawlik, A. C. Mitus, J. Mysliwiec, A. Miniewicz, and J. G. Grote, “Photochromic dye semi-intercalation into DNA-based polymeric matrix: computer modeling and experiment,” Chem. Phys. Lett. 484(4-6), 321–323 (2010).
[Crossref]

Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine,” Appl. Opt. 46(9), 1507–1513 (2007).
[Crossref] [PubMed]

J. G. Grote, J. A. Hagan, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108(25), 8584–8591 (2004).
[Crossref]

Hagan, J. A.

J. G. Grote, J. A. Hagan, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108(25), 8584–8591 (2004).
[Crossref]

Hagen, J. A.

Heckman, E.

J. G. Grote, J. A. Hagan, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108(25), 8584–8591 (2004).
[Crossref]

Hirinouchi, S.

Y. Kawabe, L. Wang, S. Hirinouchi, and N. Ogata, “Amplified spontaneous emission from fluorescent-dye-doped DNA-surfactant complex films,” Adv. Mater. 12(17), 1281–1283 (2000).
[Crossref]

Hopkins, F. K.

J. G. Grote, J. A. Hagan, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108(25), 8584–8591 (2004).
[Crossref]

Ibisate, M.

M. Ibisate, J. F. Galisteo-Lopez, V. Esteso, and C. Lopez, “FRET-mediated amplified spontaneous emission in DNA-CTMA complexes,” Adv. Opt. Mater. 1(9), 651–656 (2013).
[Crossref]

Iisaka, Y.

Y. Kawabe, T. Suzuki, and Y. Iisaka, “Light amplification in DNA and other polyion complexes stained with simple immersion technique,” Nonlinear Opt. Quantum Opt. 47(1–3), 211–221 (2015).

Y. Kawabe, T. Suzuki, and Y. Iisaka, “Light amplification and lasing from dyes doped in DNA-complex thin films prepared by soaking method,” Proc. SPIE 9171, 91710G (2014).

Jen, A. K.-Y.

J. G. Grote, J. A. Hagan, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108(25), 8584–8591 (2004).
[Crossref]

Jin, J.-I.

Y.-W. Kwon, C. H. Lee, D.-H. Choi, and J.-I. Jin, “Materials science of DNA,” J. Mater. Chem. 19(10), 1353–1380 (2009).
[Crossref]

Kajiyama, T.

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13(4), 1273–1281 (2001).
[Crossref]

Kajzar, F.

L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Barkiewicz, I. Rau, F. Kajzar, and A. Miniewicz, “Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing,” Appl. Phys. Lett. 99(3), 031107 (2011).
[Crossref]

J. Mysliwiec, L. Sznitko, S. Bartkiewicz, A. Miniewicz, Z. Essaidi, F. Kajzar, and B. Sahraoui, “Amplified spontaneous emission in the spiropyran-biopolymer based system,” Appl. Phys. Lett. 94(24), 241106 (2009).
[Crossref]

Karpinski, P.

L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Barkiewicz, I. Rau, F. Kajzar, and A. Miniewicz, “Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing,” Appl. Phys. Lett. 99(3), 031107 (2011).
[Crossref]

Kawabe, Y.

Y. Suzuki and Y. Kawabe, “Tunable lasers based on hemicyanines embedded in DNA complex,” Proc. SPIE 9928, 992809 (2016).
[Crossref]

Y. Kawabe, T. Suzuki, and Y. Iisaka, “Light amplification in DNA and other polyion complexes stained with simple immersion technique,” Nonlinear Opt. Quantum Opt. 47(1–3), 211–221 (2015).

Y. Kawabe, T. Suzuki, and Y. Iisaka, “Light amplification and lasing from dyes doped in DNA-complex thin films prepared by soaking method,” Proc. SPIE 9171, 91710G (2014).

T. Suzuki and Y. Kawabe, “Light amplification in DNA-surfactant complex films stained by hemicyanine dye with immersion method,” Opt. Mater. Express 4(7), 1411–1419 (2014).
[Crossref]

T. Chida and Y. Kawabe, “Hemicyanine-DNA-complex: Application to Solid-State Dye Lasers,” Nonlinear Opt. Quantum Opt. 45(1–2), 85–91 (2012).

Y. Kawabe, L. Wang, T. Nakamura, and N. Ogata, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81(8), 1372–1374 (2002).
[Crossref]

Y. Kawabe, L. Wang, S. Hirinouchi, and N. Ogata, “Amplified spontaneous emission from fluorescent-dye-doped DNA-surfactant complex films,” Adv. Mater. 12(17), 1281–1283 (2000).
[Crossref]

Klotzkin, D.

Kofke, M.

A. Tomlinson, B. Frezza, M. Kofke, M. Wang, B. A. Armitage, and D. Yaron, “A structural model for cyanine dyes templated into the minor groove of DNA,” Chem. Phys. 325(1), 36–47 (2006).
[Crossref]

Kumar, C. V.

C. V. Kumar, R. S. Turner, and E. H. Asuncion, “Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect,” J. Photochem. Photobiol. Chem. 74(2–3), 231–238 (1993).
[Crossref]

Kushon, S. A.

J. L. Seifert, R. E. Connor, S. A. Kushon, M. Wang, and B. A. Armitage, “Spontaneous assembly of helical cyanine dye aggregates on DNA templates,” J. Am. Chem. Soc. 121(13), 2987–2995 (1999).
[Crossref]

Kwon, Y.-W.

Y.-W. Kwon, C. H. Lee, D.-H. Choi, and J.-I. Jin, “Materials science of DNA,” J. Mater. Chem. 19(10), 1353–1380 (2009).
[Crossref]

Lee, C. H.

Y.-W. Kwon, C. H. Lee, D.-H. Choi, and J.-I. Jin, “Materials science of DNA,” J. Mater. Chem. 19(10), 1353–1380 (2009).
[Crossref]

Lepecq, J.-B.

J.-B. Lepecq and C. Paoletti, “A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization,” J. Mol. Biol. 27(1), 87–106 (1967).
[Crossref] [PubMed]

Li, W.

Li, X.

X. Zhao, X. Li, Y. Zhao, J. Zhang, J. Pan, and J. Zhou, “Amplified spontaneous emission from 2,7-bis(4-pyridyl)fluorene-doped DNA cetyltrimethyl ammonium complex films,” Opt. Eng. 52(10), 106109 (2013).
[Crossref]

Linhard, V. N.

H. You, H. Spaeth, V. N. Linhard, and A. J. Steckl, “Role of surfactants in the interaction of dye molecules in natural DNA polymers,” Langmuir 25(19), 11698–11702 (2009).
[Crossref] [PubMed]

Lopez, C.

M. Ibisate, J. F. Galisteo-Lopez, V. Esteso, and C. Lopez, “FRET-mediated amplified spontaneous emission in DNA-CTMA complexes,” Adv. Opt. Mater. 1(9), 651–656 (2013).
[Crossref]

Miniewicz, A.

L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Barkiewicz, I. Rau, F. Kajzar, and A. Miniewicz, “Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing,” Appl. Phys. Lett. 99(3), 031107 (2011).
[Crossref]

C. Pawlik, A. C. Mitus, J. Mysliwiec, A. Miniewicz, and J. G. Grote, “Photochromic dye semi-intercalation into DNA-based polymeric matrix: computer modeling and experiment,” Chem. Phys. Lett. 484(4-6), 321–323 (2010).
[Crossref]

J. Mysliwiec, L. Sznitko, S. Bartkiewicz, A. Miniewicz, Z. Essaidi, F. Kajzar, and B. Sahraoui, “Amplified spontaneous emission in the spiropyran-biopolymer based system,” Appl. Phys. Lett. 94(24), 241106 (2009).
[Crossref]

Mitus, A. C.

C. Pawlik, A. C. Mitus, J. Mysliwiec, A. Miniewicz, and J. G. Grote, “Photochromic dye semi-intercalation into DNA-based polymeric matrix: computer modeling and experiment,” Chem. Phys. Lett. 484(4-6), 321–323 (2010).
[Crossref]

Mysliwiec, J.

L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Barkiewicz, I. Rau, F. Kajzar, and A. Miniewicz, “Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing,” Appl. Phys. Lett. 99(3), 031107 (2011).
[Crossref]

C. Pawlik, A. C. Mitus, J. Mysliwiec, A. Miniewicz, and J. G. Grote, “Photochromic dye semi-intercalation into DNA-based polymeric matrix: computer modeling and experiment,” Chem. Phys. Lett. 484(4-6), 321–323 (2010).
[Crossref]

J. Mysliwiec, L. Sznitko, S. Bartkiewicz, A. Miniewicz, Z. Essaidi, F. Kajzar, and B. Sahraoui, “Amplified spontaneous emission in the spiropyran-biopolymer based system,” Appl. Phys. Lett. 94(24), 241106 (2009).
[Crossref]

Nakamura, T.

Y. Kawabe, L. Wang, T. Nakamura, and N. Ogata, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81(8), 1372–1374 (2002).
[Crossref]

Nampoori, V. P. N.

C. Pradeep, C. P. G. Vallabhan, P. Radhakrishnan, and V. P. N. Nampoori, “Amplified spontaneous emission from PicoGreen dye intercalated in deoxyribonucleic acid lipid complex,” Laser Phys. Lett. 12(12), 125802 (2015).
[Crossref]

Nelson, R. L.

J. G. Grote, J. A. Hagan, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108(25), 8584–8591 (2004).
[Crossref]

Ogata, N.

J. G. Grote, J. A. Hagan, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108(25), 8584–8591 (2004).
[Crossref]

Y. Kawabe, L. Wang, T. Nakamura, and N. Ogata, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81(8), 1372–1374 (2002).
[Crossref]

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13(4), 1273–1281 (2001).
[Crossref]

Y. Kawabe, L. Wang, S. Hirinouchi, and N. Ogata, “Amplified spontaneous emission from fluorescent-dye-doped DNA-surfactant complex films,” Adv. Mater. 12(17), 1281–1283 (2000).
[Crossref]

Palewska, K.

L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Barkiewicz, I. Rau, F. Kajzar, and A. Miniewicz, “Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing,” Appl. Phys. Lett. 99(3), 031107 (2011).
[Crossref]

Pan, J.

X. Zhao, X. Li, Y. Zhao, J. Zhang, J. Pan, and J. Zhou, “Amplified spontaneous emission from 2,7-bis(4-pyridyl)fluorene-doped DNA cetyltrimethyl ammonium complex films,” Opt. Eng. 52(10), 106109 (2013).
[Crossref]

Paoletti, C.

J.-B. Lepecq and C. Paoletti, “A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization,” J. Mol. Biol. 27(1), 87–106 (1967).
[Crossref] [PubMed]

Parafiniuk, K.

L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Barkiewicz, I. Rau, F. Kajzar, and A. Miniewicz, “Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing,” Appl. Phys. Lett. 99(3), 031107 (2011).
[Crossref]

Pawlik, C.

C. Pawlik, A. C. Mitus, J. Mysliwiec, A. Miniewicz, and J. G. Grote, “Photochromic dye semi-intercalation into DNA-based polymeric matrix: computer modeling and experiment,” Chem. Phys. Lett. 484(4-6), 321–323 (2010).
[Crossref]

Pradeep, C.

C. Pradeep, C. P. G. Vallabhan, P. Radhakrishnan, and V. P. N. Nampoori, “Amplified spontaneous emission from PicoGreen dye intercalated in deoxyribonucleic acid lipid complex,” Laser Phys. Lett. 12(12), 125802 (2015).
[Crossref]

Radhakrishnan, P.

C. Pradeep, C. P. G. Vallabhan, P. Radhakrishnan, and V. P. N. Nampoori, “Amplified spontaneous emission from PicoGreen dye intercalated in deoxyribonucleic acid lipid complex,” Laser Phys. Lett. 12(12), 125802 (2015).
[Crossref]

Rau, I.

L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Barkiewicz, I. Rau, F. Kajzar, and A. Miniewicz, “Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing,” Appl. Phys. Lett. 99(3), 031107 (2011).
[Crossref]

Sahraoui, B.

J. Mysliwiec, L. Sznitko, S. Bartkiewicz, A. Miniewicz, Z. Essaidi, F. Kajzar, and B. Sahraoui, “Amplified spontaneous emission in the spiropyran-biopolymer based system,” Appl. Phys. Lett. 94(24), 241106 (2009).
[Crossref]

Sasaki, S.

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13(4), 1273–1281 (2001).
[Crossref]

Seifert, J. L.

J. L. Seifert, R. E. Connor, S. A. Kushon, M. Wang, and B. A. Armitage, “Spontaneous assembly of helical cyanine dye aggregates on DNA templates,” J. Am. Chem. Soc. 121(13), 2987–2995 (1999).
[Crossref]

Spaeth, H.

H. You, H. Spaeth, V. N. Linhard, and A. J. Steckl, “Role of surfactants in the interaction of dye molecules in natural DNA polymers,” Langmuir 25(19), 11698–11702 (2009).
[Crossref] [PubMed]

Steckl, A. J.

H. You, H. Spaeth, V. N. Linhard, and A. J. Steckl, “Role of surfactants in the interaction of dye molecules in natural DNA polymers,” Langmuir 25(19), 11698–11702 (2009).
[Crossref] [PubMed]

Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine,” Appl. Opt. 46(9), 1507–1513 (2007).
[Crossref] [PubMed]

Steier, W. H.

J. G. Grote, J. A. Hagan, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108(25), 8584–8591 (2004).
[Crossref]

Stone, M. O.

J. G. Grote, J. A. Hagan, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108(25), 8584–8591 (2004).
[Crossref]

Suzuki, T.

Y. Kawabe, T. Suzuki, and Y. Iisaka, “Light amplification in DNA and other polyion complexes stained with simple immersion technique,” Nonlinear Opt. Quantum Opt. 47(1–3), 211–221 (2015).

Y. Kawabe, T. Suzuki, and Y. Iisaka, “Light amplification and lasing from dyes doped in DNA-complex thin films prepared by soaking method,” Proc. SPIE 9171, 91710G (2014).

T. Suzuki and Y. Kawabe, “Light amplification in DNA-surfactant complex films stained by hemicyanine dye with immersion method,” Opt. Mater. Express 4(7), 1411–1419 (2014).
[Crossref]

Suzuki, Y.

Y. Suzuki and Y. Kawabe, “Tunable lasers based on hemicyanines embedded in DNA complex,” Proc. SPIE 9928, 992809 (2016).
[Crossref]

Sznitko, L.

L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Barkiewicz, I. Rau, F. Kajzar, and A. Miniewicz, “Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing,” Appl. Phys. Lett. 99(3), 031107 (2011).
[Crossref]

J. Mysliwiec, L. Sznitko, S. Bartkiewicz, A. Miniewicz, Z. Essaidi, F. Kajzar, and B. Sahraoui, “Amplified spontaneous emission in the spiropyran-biopolymer based system,” Appl. Phys. Lett. 94(24), 241106 (2009).
[Crossref]

Tomlinson, A.

A. Tomlinson, B. Frezza, M. Kofke, M. Wang, B. A. Armitage, and D. Yaron, “A structural model for cyanine dyes templated into the minor groove of DNA,” Chem. Phys. 325(1), 36–47 (2006).
[Crossref]

Turner, R. S.

C. V. Kumar, R. S. Turner, and E. H. Asuncion, “Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect,” J. Photochem. Photobiol. Chem. 74(2–3), 231–238 (1993).
[Crossref]

Vallabhan, C. P. G.

C. Pradeep, C. P. G. Vallabhan, P. Radhakrishnan, and V. P. N. Nampoori, “Amplified spontaneous emission from PicoGreen dye intercalated in deoxyribonucleic acid lipid complex,” Laser Phys. Lett. 12(12), 125802 (2015).
[Crossref]

Wang, L.

Y. Kawabe, L. Wang, T. Nakamura, and N. Ogata, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81(8), 1372–1374 (2002).
[Crossref]

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13(4), 1273–1281 (2001).
[Crossref]

Y. Kawabe, L. Wang, S. Hirinouchi, and N. Ogata, “Amplified spontaneous emission from fluorescent-dye-doped DNA-surfactant complex films,” Adv. Mater. 12(17), 1281–1283 (2000).
[Crossref]

Wang, M.

A. Tomlinson, B. Frezza, M. Kofke, M. Wang, B. A. Armitage, and D. Yaron, “A structural model for cyanine dyes templated into the minor groove of DNA,” Chem. Phys. 325(1), 36–47 (2006).
[Crossref]

J. L. Seifert, R. E. Connor, S. A. Kushon, M. Wang, and B. A. Armitage, “Spontaneous assembly of helical cyanine dye aggregates on DNA templates,” J. Am. Chem. Soc. 121(13), 2987–2995 (1999).
[Crossref]

Yaney, P. P.

J. G. Grote, J. A. Hagan, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108(25), 8584–8591 (2004).
[Crossref]

Yaron, D.

A. Tomlinson, B. Frezza, M. Kofke, M. Wang, B. A. Armitage, and D. Yaron, “A structural model for cyanine dyes templated into the minor groove of DNA,” Chem. Phys. 325(1), 36–47 (2006).
[Crossref]

Yoshida, J.

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13(4), 1273–1281 (2001).
[Crossref]

You, H.

H. You, H. Spaeth, V. N. Linhard, and A. J. Steckl, “Role of surfactants in the interaction of dye molecules in natural DNA polymers,” Langmuir 25(19), 11698–11702 (2009).
[Crossref] [PubMed]

Yu, Z.

Zetts, J. S.

J. G. Grote, J. A. Hagan, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108(25), 8584–8591 (2004).
[Crossref]

Zhang, C.

J. G. Grote, J. A. Hagan, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108(25), 8584–8591 (2004).
[Crossref]

Zhang, J.

X. Zhao, X. Li, Y. Zhao, J. Zhang, J. Pan, and J. Zhou, “Amplified spontaneous emission from 2,7-bis(4-pyridyl)fluorene-doped DNA cetyltrimethyl ammonium complex films,” Opt. Eng. 52(10), 106109 (2013).
[Crossref]

Zhao, X.

X. Zhao, X. Li, Y. Zhao, J. Zhang, J. Pan, and J. Zhou, “Amplified spontaneous emission from 2,7-bis(4-pyridyl)fluorene-doped DNA cetyltrimethyl ammonium complex films,” Opt. Eng. 52(10), 106109 (2013).
[Crossref]

Zhao, Y.

X. Zhao, X. Li, Y. Zhao, J. Zhang, J. Pan, and J. Zhou, “Amplified spontaneous emission from 2,7-bis(4-pyridyl)fluorene-doped DNA cetyltrimethyl ammonium complex films,” Opt. Eng. 52(10), 106109 (2013).
[Crossref]

Zhou, J.

X. Zhao, X. Li, Y. Zhao, J. Zhang, J. Pan, and J. Zhou, “Amplified spontaneous emission from 2,7-bis(4-pyridyl)fluorene-doped DNA cetyltrimethyl ammonium complex films,” Opt. Eng. 52(10), 106109 (2013).
[Crossref]

Zhou, Y.

Adv. Mater. (1)

Y. Kawabe, L. Wang, S. Hirinouchi, and N. Ogata, “Amplified spontaneous emission from fluorescent-dye-doped DNA-surfactant complex films,” Adv. Mater. 12(17), 1281–1283 (2000).
[Crossref]

Adv. Opt. Mater. (1)

M. Ibisate, J. F. Galisteo-Lopez, V. Esteso, and C. Lopez, “FRET-mediated amplified spontaneous emission in DNA-CTMA complexes,” Adv. Opt. Mater. 1(9), 651–656 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Y. Kawabe, L. Wang, T. Nakamura, and N. Ogata, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81(8), 1372–1374 (2002).
[Crossref]

L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Barkiewicz, I. Rau, F. Kajzar, and A. Miniewicz, “Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing,” Appl. Phys. Lett. 99(3), 031107 (2011).
[Crossref]

J. Mysliwiec, L. Sznitko, S. Bartkiewicz, A. Miniewicz, Z. Essaidi, F. Kajzar, and B. Sahraoui, “Amplified spontaneous emission in the spiropyran-biopolymer based system,” Appl. Phys. Lett. 94(24), 241106 (2009).
[Crossref]

Chem. Mater. (1)

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13(4), 1273–1281 (2001).
[Crossref]

Chem. Phys. (1)

A. Tomlinson, B. Frezza, M. Kofke, M. Wang, B. A. Armitage, and D. Yaron, “A structural model for cyanine dyes templated into the minor groove of DNA,” Chem. Phys. 325(1), 36–47 (2006).
[Crossref]

Chem. Phys. Lett. (1)

C. Pawlik, A. C. Mitus, J. Mysliwiec, A. Miniewicz, and J. G. Grote, “Photochromic dye semi-intercalation into DNA-based polymeric matrix: computer modeling and experiment,” Chem. Phys. Lett. 484(4-6), 321–323 (2010).
[Crossref]

J. Am. Chem. Soc. (1)

J. L. Seifert, R. E. Connor, S. A. Kushon, M. Wang, and B. A. Armitage, “Spontaneous assembly of helical cyanine dye aggregates on DNA templates,” J. Am. Chem. Soc. 121(13), 2987–2995 (1999).
[Crossref]

J. Mater. Chem. (1)

Y.-W. Kwon, C. H. Lee, D.-H. Choi, and J.-I. Jin, “Materials science of DNA,” J. Mater. Chem. 19(10), 1353–1380 (2009).
[Crossref]

J. Mol. Biol. (1)

J.-B. Lepecq and C. Paoletti, “A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization,” J. Mol. Biol. 27(1), 87–106 (1967).
[Crossref] [PubMed]

J. Photochem. Photobiol. Chem. (1)

C. V. Kumar, R. S. Turner, and E. H. Asuncion, “Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect,” J. Photochem. Photobiol. Chem. 74(2–3), 231–238 (1993).
[Crossref]

J. Phys. Chem. B (1)

J. G. Grote, J. A. Hagan, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108(25), 8584–8591 (2004).
[Crossref]

Langmuir (1)

H. You, H. Spaeth, V. N. Linhard, and A. J. Steckl, “Role of surfactants in the interaction of dye molecules in natural DNA polymers,” Langmuir 25(19), 11698–11702 (2009).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

C. Pradeep, C. P. G. Vallabhan, P. Radhakrishnan, and V. P. N. Nampoori, “Amplified spontaneous emission from PicoGreen dye intercalated in deoxyribonucleic acid lipid complex,” Laser Phys. Lett. 12(12), 125802 (2015).
[Crossref]

Nonlinear Opt. Quantum Opt. (2)

Y. Kawabe, T. Suzuki, and Y. Iisaka, “Light amplification in DNA and other polyion complexes stained with simple immersion technique,” Nonlinear Opt. Quantum Opt. 47(1–3), 211–221 (2015).

T. Chida and Y. Kawabe, “Hemicyanine-DNA-complex: Application to Solid-State Dye Lasers,” Nonlinear Opt. Quantum Opt. 45(1–2), 85–91 (2012).

Opt. Eng. (1)

X. Zhao, X. Li, Y. Zhao, J. Zhang, J. Pan, and J. Zhou, “Amplified spontaneous emission from 2,7-bis(4-pyridyl)fluorene-doped DNA cetyltrimethyl ammonium complex films,” Opt. Eng. 52(10), 106109 (2013).
[Crossref]

Opt. Mater. Express (1)

Proc. SPIE (2)

Y. Kawabe, T. Suzuki, and Y. Iisaka, “Light amplification and lasing from dyes doped in DNA-complex thin films prepared by soaking method,” Proc. SPIE 9171, 91710G (2014).

Y. Suzuki and Y. Kawabe, “Tunable lasers based on hemicyanines embedded in DNA complex,” Proc. SPIE 9928, 992809 (2016).
[Crossref]

Other (1)

J.-I. Jin and J. Grote, eds., Materials Science of DNA (CRC Press, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Molecular structures of hemicyanines employed. (a) 4-[4-(dimethylamino)styryl]-1-methylpyridinium (p-hemi1), (b) 2-[4-(dimethylamino)styryl]-1-methylpyridinium (o-hemi1), and (c) 4-[4-(dimethylamino)styryl]-1-dococypyridinium (p-hemi22).
Fig. 2
Fig. 2 Dependence of absorption spectra for p-hemi1 (1 x 10−5 M) on the concentration of (a) DNA and (b) DNA-CTMA. Solvents were (a) water and (b) ethanol.
Fig. 3
Fig. 3 Dependence of fluorescence spectra for p-hemi1 on the concentration of (a) DNA and (b) DNA-CTMA obtained with the same solutions used for Fig. 2. Excitation wavelength was 440nm for both.
Fig. 4
Fig. 4 Relationship between fluorescence intensity and DNA molar ratio for hemicyanines interacting with DNA or DNA-complex in solutions. Intensities are normalized by absorbed excitation light flux.
Fig. 5
Fig. 5 Absorption and emission spectra under 440nm excitation for p- and o-hemi1 prepared with conventional and immersion methods. Fluorescence curves were normalized with peak values.
Fig. 6
Fig. 6 (a) Emission spectra for two o-hemi1 devices observed under the pumping above the threshold. (b) Spectral peak intensity as a function of time.

Tables (1)

Tables Icon

Table 1 Threshold values and lasing lifetime for dye doped DNA complex films prepared with two methods.

Metrics