Abstract

GaAsSb ternary alloys are fundamental components of advanced electronic and optoelectronic devices in the future. The presence of localized states could greatly affect the optical properties in GaAsSb alloy, which depend on the fluctuation of alloy composition. In order to optimize the optical properties, GaAsSb alloys were treated by rapid thermal annealing (RTA) at different temperatures, and the optical behaviors of the annealed samples were investigated in detail. During RTA, a significant reduction of the localized states was observed by photoluminescence (PL) spectral analysis. Furthermore, the RTA process also altered the distribution of the components of the GaAsSb alloy, which caused a slight red-shift of the maximum PL peak at 150 K. The relationship between the localized states and the temperature of the RTA process was also investigated. The process involving the conversion of localized carriers to free carriers was proposed. Under the suitable RTA conditions, the Sb component was homogenized and the depth of carrier localization was decreased.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of high temperature rapid thermal annealing on optical properties of InGaAsP grown by molecular beam epitaxy

Meng Xiao, Guifeng Chen, Runqing Yang, Wenxian Yang, Lian Ji, Zhengbing Yuan, Pan Dai, Ming Tan, Yuanyuan Wu, Xuefei Li, and Shulong Lu
Opt. Mater. Express 7(11) 3826-3835 (2017)

GaAsSb spacer effect in quasi-type-II InAs coupled-QDs for intraband absorption enhancement

David Jui-Yang Feng, Yen-Ju Lin, Yun-Cheng Ku, Han-Yun Jhang, Tzy-Rong Lin, and Mao-Kuen Kuo
Opt. Mater. Express 7(4) 1351-1364 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Shi, H. E. Jackson, L. M. Smith, N. Jiang, Q. Gao, H. H. Tan, C. Jagadish, C. Zheng, and J. Etheridge, “Emergence of localized states in narrow GaAs/AlGaAs nanowire quantum well tubes,” Nano Lett. 15(3), 1876–1882 (2015).
    [Crossref] [PubMed]
  2. M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
    [Crossref] [PubMed]
  3. L. Ma, W. Hu, Q. Zhang, P. Ren, X. Zhuang, H. Zhou, J. Xu, H. Li, Z. Shan, X. Wang, L. Liao, H. Q. Xu, and A. Pan, “Room-temperature near-infrared photodetectors based on single heterojunction nanowires,” Nano Lett. 14(2), 694–698 (2014).
    [Crossref] [PubMed]
  4. J. Kim, J. Hwang, K. Song, N. Kimet, J. C. Shin, and J. Lee, “Ultra-thin flexible GaAs photovoltaics in vertical forms printed on metal surfaces without interlayer adhesives,” Appl. Phys. Lett. 108(25), 253101 (2016).
    [Crossref]
  5. O. Persson, J. L. Webb, K. A. Dick, C. Thelander, A. Mikkelsen, and R. Timm, “Scanning Tunneling Spectroscopy on InAs-GaSb Esaki Diode Nanowire Devices during Operation,” Nano Lett. 15(6), 3684–3691 (2015).
    [Crossref] [PubMed]
  6. B. M. Borg, K. A. Dick, B. Ganjipour, M. E. Pistol, L. E. Wernersson, and C. Thelander, “InAs/GaSb heterostructure nanowires for tunnel field-effect transistors,” Nano Lett. 10(10), 4080–4085 (2010).
    [Crossref] [PubMed]
  7. Y. Sun, L. Yuan, X. Wu, Y. Cong, K. Huang, and S. Feng, “Infrared absorption enhancement by charge transfer in Ga-GaSb metal-semiconductor nanohybrids,” Langmuir 32(17), 4189–4193 (2016).
    [Crossref] [PubMed]
  8. W. S. Liu, H. L. Tseng, and P. C. Kuo, “Enhancing optical characteristics of InAs/InGaAsSb quantum dot structures with long-excited state emission at 1.31 μm,” Opt. Express 22(16), 18860–18869 (2014).
    [Crossref] [PubMed]
  9. F. Mezrag, N. Y. Aouina, and N. Bouarissa, “Optoelectronic and dielectric properties of GaAsxSb1-x ternary alloys,” J. Mater. Sci. 41(16), 5323–5328 (2006).
    [Crossref]
  10. K. A. Dao, D. K. Dao, T. D. Nguyen, A. T. Phan, and H. M. Do, “The effects of Au surface diffusion to fomation of Au droplets/clusters and nanowire growth on GaAs substrate using VLS method,” J. Mater. Sci. Mater. Electron. 23(11), 2065–2074 (2012).
    [Crossref]
  11. X. D. Luo, C. Y. Hu, Z. Y. Xu, H. L. Luo, Y. Q. Wang, J. N. Wang, and W. K. Ge, “Selectively excited photoluminescence of GaAs1−xSbx/GaAs single quantum wells,” Appl. Phys. Lett. 81(20), 3795–3797 (2002).
    [Crossref]
  12. Y. S. Chiu, M. H. Ya, W. S. Su, and Y. F. Chen, “Properties of photoluminescence in type-II GaAsSb/GaAs multiple quantum wells,” J. Appl. Phys. 92(10), 5810–5813 (2002).
    [Crossref]
  13. R. Kudrawiec, G. Sek, K. Ryczko, J. Misiewicz, and J. C. Harmand, “Photoreflectance investigations of oscillator strength and broadening of optical transitions for GaAsSb-GaInAs/GaAs bilayer quantum wells,” Appl. Phys. Lett. 84(18), 3453–3455 (2004).
    [Crossref]
  14. L. Ma, X. Zhang, H. Li, H. Tan, Y. Yang, Y. Xu, W. Hu, X. Zhu, X. Zhuang, and A. Pan, “Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31 μm,” Semicond. Sci. Technol. 30(10), 105033 (2015).
    [Crossref]
  15. Z. Li, X. Yuan, L. Fu, K. Peng, F. Wang, X. Fu, P. Caroff, T. P. White, H. Hoe Tan, and C. Jagadish, “Room temperature GaAsSb single nanowire infrared photodetectors,” Nanotechnology 26(44), 445202 (2015).
    [Crossref] [PubMed]
  16. J. Huh, H. Yun, D. C. Kim, A. M. Munshi, D. L. Dheeraj, H. Kauko, A. T. J. van Helvoort, S. Lee, B. O. Fimland, and H. Weman, “Rectifying single GaAsSb nanowire devices based on self-induced compositional gradients,” Nano Lett. 15(6), 3709–3715 (2015).
    [Crossref] [PubMed]
  17. D. Ren, D. L. Dheeraj, C. Jin, J. S. Nilsen, J. Huh, J. F. Reinertsen, A. M. Munshi, A. Gustafsson, A. T. J. van Helvoort, H. Weman, and B. O. Fimland, “New insights into the origins of Sb-induced effects on self-catalyzed GaAsSb nanowire arrays,” Nano Lett. 16(2), 1201–1209 (2016).
    [Crossref] [PubMed]
  18. H. Detz, A. M. Andrews, M. Nobile, P. Klang, E. Mujagić, G. Hesser, W. Schrenk, F. Schäffler, and G. Strasser, “Intersubband optoelectronics in the InGaAs/GaAsSb material system,” J. Vac. Sci. Technol. B 28(3), C3G19 (2010).
    [Crossref]
  19. X. Gao, Z. Wei, F. Zhao, Y. Yang, R. Chen, X. Fang, J. Tang, D. Fang, D. Wang, R. Li, X. Ge, X. Ma, and X. Wang, “Investigation of localized states in GaAsSb epilayers grown by molecular beam epitaxy,” Sci. Rep. 6, 29112 (2016).
    [Crossref] [PubMed]
  20. Y. Gao, H. Liu, R. Shi, N. Zhou, Z. Xu, Y. M. Zhu, J. F. Nie, and Y. Wang, “Simulation study of precipitation in an Mg-Y-Nd alloy,” Acta Mater. 60(12), 4819–4832 (2012).
    [Crossref]
  21. Y. Gao, N. Zhou, F. Yang, Y. Cui, L. Kovarik, N. Hatcher, R. Noebe, M. J. Mills, and Y. Wang, “P-phase precipitation and its effect on martensitic transformation in (Ni, Pt) Ti shape memory alloys,” Acta Mater. 60(4), 1514–1527 (2012).
    [Crossref]
  22. X. D. Luo, P. H. Tan, Z. Y. Xu, and W. K. Ge, “Selectively excited photoluminescence of GaAs1− xNx single quantum wells,” J. Appl. Phys. 94(8), 4863–4865 (2003).
    [Crossref]
  23. S. Shirakata, M. Kondow, and T. Kitatani, “Temperature-dependent photoluminescence of high-quality GaInNAs single quantum wells,” Appl. Phys. Lett. 80(12), 2087–2089 (2002).
    [Crossref]
  24. H. Zhu, C. X. Shan, B. H. Li, Z. Z. Zhang, J. Y. Zhang, B. Yao, D. Z. Shen, and X. W. Fan, “Enhanced photoluminescence caused by localized excitons observed in MgZnO alloy,” J. Appl. Phys. 105(10), 103508 (2009).
    [Crossref]
  25. X. Fang, Z. Wei, R. Chen, J. Tang, H. Zhao, L. Zhang, D. Zhao, D. Fang, J. Li, F. Fang, X. Chu, and X. Wang, “Influence of exciton localization on the emission and ultraviolet photoresponse of ZnO/ZnS core-shell nanowires,” ACS Appl. Mater. Interfaces 7(19), 10331–10336 (2015).
    [Crossref] [PubMed]
  26. X. Fang, Z. Wei, Y. Yang, R. Chen, Y. Li, J. Tang, D. Fang, H. Jia, D. Wang, J. Fan, X. Ma, B. Yao, and X. Wang, “Ultraviolet electroluminescence from ZnS@ ZnO core-shell nanowires/p-GaN introduced by exciton localization,” ACS Appl. Mater. Interfaces 8(3), 1661–1666 (2016).
    [Crossref] [PubMed]
  27. S. Jin, Y. Zheng, and A. Li, “Characterization of photoluminescence intensity and efficiency of free excitons in semiconductor quantum well structures,” J. Appl. Phys. 82(8), 3870–3873 (1997).
    [Crossref]
  28. J. A. Van Vechten and T. K. Bergstresser, “Electronic structures of semiconductor alloys,” Phys. Rev. B 1(8), 3351–3358 (1970).
    [Crossref]
  29. M. Aziz, J. F. Felix, D. Jameel, N. A. Saqri, F. S. A. Mashary, H. M. Alghamdi, H. M. A. Albalawi, D. Taylor, and M. Henini, “Rapid thermal annealing: An efficient method to improve the electrical properties of tellurium compensated Interfacial Misfit GaSb/GaAs heterostructures,” Superlattices Microstruct. 88, 80–89 (2015).
    [Crossref]
  30. R. Woscholski, M. K. Shakfa, S. Gies, M. Wiemer, A. Rahimi-Iman, M. Zimprich, S. Reinhard, K. Jandieri, S. D. Baranovskii, W. Heimbrodt, K. Volz, W. Stolz, and M. Koch, “Time-resolved photoluminescence of Ga (NAsP) multiple quantum wells grown on Si substrate: Effects of rapid thermal annealing,” Thin Solid Films 613, 55–58 (2016).
    [Crossref]
  31. O. Donmez, K. Kara, A. Erol, E. Akalin, H. Makhloufi, A. Arnoult, and C. Fontaine, “Thermal annealing effects optical and structural properties of GaBiAs epilayers: Origin of the thermal annealing-induced redshift in GaBiAs,” J. Alloys Compd. 686, 976–981 (2016).
    [Crossref]
  32. A. Jebali, N. Khemiri, and M. Kanzar, “The effect of annealing in N2 atmosphere on the physical properties of SnSb4S7 thin films,” J. Alloys Compd. 673, 38–46 (2016).
    [Crossref]
  33. P. Fan, J. Zhao, G. Liang, D. Gu, Z. Zheng, D. Zhang, X. Cai, J. Luo, and F. Ye, “Effects of annealing treatment on the properties of CZTSe thin films deposited by RF-magnetron sputtering,” J. Alloys Compd. 625, 171–174 (2015).
    [Crossref]
  34. A. Satake, Y. Masumoto, T. Miyajima, T. Asatsuma, F. Nakamura, and M. Ikeda, “Localized exciton and its stimulated emission in surface mode from single-layer InxGa1−xN,” Phys. Rev. B 57(4), R2041–R2044 (1998).
    [Crossref]
  35. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
    [Crossref]
  36. S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75(11), 1538–1540 (1999).
    [Crossref]
  37. V. V. Chaldyshev, A. L. Kolesnikova, N. A. Bert, and A. E. Romanov, “Investigation of dislocation loops associated with As-Sb nanoclusters in GaAs,” J. Appl. Phys. 97(2), 024309 (2005).
    [Crossref]
  38. D. F. Reyes, J. M. Ulloa, A. Guzman, A. Hierro, D. L. Sales, R. Beanland, A. M. Sanchez, and D. González, “Effect of annealing in the Sb and In distribution of type II GaAsSb-capped InAs quantum dots,” Semicond. Sci. Technol. 30(11), 114006 (2015).
    [Crossref]
  39. D. F. Reyes, D. González, J. M. Ulloa, D. L. Sales, L. Dominguez, A. Mayoral, and A. Hierro, “Impact of N on the atomic-scale Sb distribution in quaternary GaAsSbN-capped InAs quantum dots,” Nanoscale Res. Lett. 7(1), 653 (2012).
    [Crossref] [PubMed]
  40. S. Lee, A. Nathan, Y. Ye, Y. Guo, and J. Robertson, “Localized tail states and electron mobility in amorphous ZnON thin film transistors,” Sci. Rep. 5, 13467 (2015).
    [Crossref] [PubMed]

2016 (8)

J. Kim, J. Hwang, K. Song, N. Kimet, J. C. Shin, and J. Lee, “Ultra-thin flexible GaAs photovoltaics in vertical forms printed on metal surfaces without interlayer adhesives,” Appl. Phys. Lett. 108(25), 253101 (2016).
[Crossref]

Y. Sun, L. Yuan, X. Wu, Y. Cong, K. Huang, and S. Feng, “Infrared absorption enhancement by charge transfer in Ga-GaSb metal-semiconductor nanohybrids,” Langmuir 32(17), 4189–4193 (2016).
[Crossref] [PubMed]

X. Gao, Z. Wei, F. Zhao, Y. Yang, R. Chen, X. Fang, J. Tang, D. Fang, D. Wang, R. Li, X. Ge, X. Ma, and X. Wang, “Investigation of localized states in GaAsSb epilayers grown by molecular beam epitaxy,” Sci. Rep. 6, 29112 (2016).
[Crossref] [PubMed]

D. Ren, D. L. Dheeraj, C. Jin, J. S. Nilsen, J. Huh, J. F. Reinertsen, A. M. Munshi, A. Gustafsson, A. T. J. van Helvoort, H. Weman, and B. O. Fimland, “New insights into the origins of Sb-induced effects on self-catalyzed GaAsSb nanowire arrays,” Nano Lett. 16(2), 1201–1209 (2016).
[Crossref] [PubMed]

R. Woscholski, M. K. Shakfa, S. Gies, M. Wiemer, A. Rahimi-Iman, M. Zimprich, S. Reinhard, K. Jandieri, S. D. Baranovskii, W. Heimbrodt, K. Volz, W. Stolz, and M. Koch, “Time-resolved photoluminescence of Ga (NAsP) multiple quantum wells grown on Si substrate: Effects of rapid thermal annealing,” Thin Solid Films 613, 55–58 (2016).
[Crossref]

O. Donmez, K. Kara, A. Erol, E. Akalin, H. Makhloufi, A. Arnoult, and C. Fontaine, “Thermal annealing effects optical and structural properties of GaBiAs epilayers: Origin of the thermal annealing-induced redshift in GaBiAs,” J. Alloys Compd. 686, 976–981 (2016).
[Crossref]

A. Jebali, N. Khemiri, and M. Kanzar, “The effect of annealing in N2 atmosphere on the physical properties of SnSb4S7 thin films,” J. Alloys Compd. 673, 38–46 (2016).
[Crossref]

X. Fang, Z. Wei, Y. Yang, R. Chen, Y. Li, J. Tang, D. Fang, H. Jia, D. Wang, J. Fan, X. Ma, B. Yao, and X. Wang, “Ultraviolet electroluminescence from ZnS@ ZnO core-shell nanowires/p-GaN introduced by exciton localization,” ACS Appl. Mater. Interfaces 8(3), 1661–1666 (2016).
[Crossref] [PubMed]

2015 (10)

M. Aziz, J. F. Felix, D. Jameel, N. A. Saqri, F. S. A. Mashary, H. M. Alghamdi, H. M. A. Albalawi, D. Taylor, and M. Henini, “Rapid thermal annealing: An efficient method to improve the electrical properties of tellurium compensated Interfacial Misfit GaSb/GaAs heterostructures,” Superlattices Microstruct. 88, 80–89 (2015).
[Crossref]

D. F. Reyes, J. M. Ulloa, A. Guzman, A. Hierro, D. L. Sales, R. Beanland, A. M. Sanchez, and D. González, “Effect of annealing in the Sb and In distribution of type II GaAsSb-capped InAs quantum dots,” Semicond. Sci. Technol. 30(11), 114006 (2015).
[Crossref]

S. Lee, A. Nathan, Y. Ye, Y. Guo, and J. Robertson, “Localized tail states and electron mobility in amorphous ZnON thin film transistors,” Sci. Rep. 5, 13467 (2015).
[Crossref] [PubMed]

P. Fan, J. Zhao, G. Liang, D. Gu, Z. Zheng, D. Zhang, X. Cai, J. Luo, and F. Ye, “Effects of annealing treatment on the properties of CZTSe thin films deposited by RF-magnetron sputtering,” J. Alloys Compd. 625, 171–174 (2015).
[Crossref]

X. Fang, Z. Wei, R. Chen, J. Tang, H. Zhao, L. Zhang, D. Zhao, D. Fang, J. Li, F. Fang, X. Chu, and X. Wang, “Influence of exciton localization on the emission and ultraviolet photoresponse of ZnO/ZnS core-shell nanowires,” ACS Appl. Mater. Interfaces 7(19), 10331–10336 (2015).
[Crossref] [PubMed]

L. Ma, X. Zhang, H. Li, H. Tan, Y. Yang, Y. Xu, W. Hu, X. Zhu, X. Zhuang, and A. Pan, “Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31 μm,” Semicond. Sci. Technol. 30(10), 105033 (2015).
[Crossref]

Z. Li, X. Yuan, L. Fu, K. Peng, F. Wang, X. Fu, P. Caroff, T. P. White, H. Hoe Tan, and C. Jagadish, “Room temperature GaAsSb single nanowire infrared photodetectors,” Nanotechnology 26(44), 445202 (2015).
[Crossref] [PubMed]

J. Huh, H. Yun, D. C. Kim, A. M. Munshi, D. L. Dheeraj, H. Kauko, A. T. J. van Helvoort, S. Lee, B. O. Fimland, and H. Weman, “Rectifying single GaAsSb nanowire devices based on self-induced compositional gradients,” Nano Lett. 15(6), 3709–3715 (2015).
[Crossref] [PubMed]

O. Persson, J. L. Webb, K. A. Dick, C. Thelander, A. Mikkelsen, and R. Timm, “Scanning Tunneling Spectroscopy on InAs-GaSb Esaki Diode Nanowire Devices during Operation,” Nano Lett. 15(6), 3684–3691 (2015).
[Crossref] [PubMed]

T. Shi, H. E. Jackson, L. M. Smith, N. Jiang, Q. Gao, H. H. Tan, C. Jagadish, C. Zheng, and J. Etheridge, “Emergence of localized states in narrow GaAs/AlGaAs nanowire quantum well tubes,” Nano Lett. 15(3), 1876–1882 (2015).
[Crossref] [PubMed]

2014 (2)

W. S. Liu, H. L. Tseng, and P. C. Kuo, “Enhancing optical characteristics of InAs/InGaAsSb quantum dot structures with long-excited state emission at 1.31 μm,” Opt. Express 22(16), 18860–18869 (2014).
[Crossref] [PubMed]

L. Ma, W. Hu, Q. Zhang, P. Ren, X. Zhuang, H. Zhou, J. Xu, H. Li, Z. Shan, X. Wang, L. Liao, H. Q. Xu, and A. Pan, “Room-temperature near-infrared photodetectors based on single heterojunction nanowires,” Nano Lett. 14(2), 694–698 (2014).
[Crossref] [PubMed]

2013 (1)

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

2012 (4)

K. A. Dao, D. K. Dao, T. D. Nguyen, A. T. Phan, and H. M. Do, “The effects of Au surface diffusion to fomation of Au droplets/clusters and nanowire growth on GaAs substrate using VLS method,” J. Mater. Sci. Mater. Electron. 23(11), 2065–2074 (2012).
[Crossref]

Y. Gao, H. Liu, R. Shi, N. Zhou, Z. Xu, Y. M. Zhu, J. F. Nie, and Y. Wang, “Simulation study of precipitation in an Mg-Y-Nd alloy,” Acta Mater. 60(12), 4819–4832 (2012).
[Crossref]

Y. Gao, N. Zhou, F. Yang, Y. Cui, L. Kovarik, N. Hatcher, R. Noebe, M. J. Mills, and Y. Wang, “P-phase precipitation and its effect on martensitic transformation in (Ni, Pt) Ti shape memory alloys,” Acta Mater. 60(4), 1514–1527 (2012).
[Crossref]

D. F. Reyes, D. González, J. M. Ulloa, D. L. Sales, L. Dominguez, A. Mayoral, and A. Hierro, “Impact of N on the atomic-scale Sb distribution in quaternary GaAsSbN-capped InAs quantum dots,” Nanoscale Res. Lett. 7(1), 653 (2012).
[Crossref] [PubMed]

2010 (2)

H. Detz, A. M. Andrews, M. Nobile, P. Klang, E. Mujagić, G. Hesser, W. Schrenk, F. Schäffler, and G. Strasser, “Intersubband optoelectronics in the InGaAs/GaAsSb material system,” J. Vac. Sci. Technol. B 28(3), C3G19 (2010).
[Crossref]

B. M. Borg, K. A. Dick, B. Ganjipour, M. E. Pistol, L. E. Wernersson, and C. Thelander, “InAs/GaSb heterostructure nanowires for tunnel field-effect transistors,” Nano Lett. 10(10), 4080–4085 (2010).
[Crossref] [PubMed]

2009 (1)

H. Zhu, C. X. Shan, B. H. Li, Z. Z. Zhang, J. Y. Zhang, B. Yao, D. Z. Shen, and X. W. Fan, “Enhanced photoluminescence caused by localized excitons observed in MgZnO alloy,” J. Appl. Phys. 105(10), 103508 (2009).
[Crossref]

2006 (1)

F. Mezrag, N. Y. Aouina, and N. Bouarissa, “Optoelectronic and dielectric properties of GaAsxSb1-x ternary alloys,” J. Mater. Sci. 41(16), 5323–5328 (2006).
[Crossref]

2005 (1)

V. V. Chaldyshev, A. L. Kolesnikova, N. A. Bert, and A. E. Romanov, “Investigation of dislocation loops associated with As-Sb nanoclusters in GaAs,” J. Appl. Phys. 97(2), 024309 (2005).
[Crossref]

2004 (1)

R. Kudrawiec, G. Sek, K. Ryczko, J. Misiewicz, and J. C. Harmand, “Photoreflectance investigations of oscillator strength and broadening of optical transitions for GaAsSb-GaInAs/GaAs bilayer quantum wells,” Appl. Phys. Lett. 84(18), 3453–3455 (2004).
[Crossref]

2003 (1)

X. D. Luo, P. H. Tan, Z. Y. Xu, and W. K. Ge, “Selectively excited photoluminescence of GaAs1− xNx single quantum wells,” J. Appl. Phys. 94(8), 4863–4865 (2003).
[Crossref]

2002 (3)

S. Shirakata, M. Kondow, and T. Kitatani, “Temperature-dependent photoluminescence of high-quality GaInNAs single quantum wells,” Appl. Phys. Lett. 80(12), 2087–2089 (2002).
[Crossref]

X. D. Luo, C. Y. Hu, Z. Y. Xu, H. L. Luo, Y. Q. Wang, J. N. Wang, and W. K. Ge, “Selectively excited photoluminescence of GaAs1−xSbx/GaAs single quantum wells,” Appl. Phys. Lett. 81(20), 3795–3797 (2002).
[Crossref]

Y. S. Chiu, M. H. Ya, W. S. Su, and Y. F. Chen, “Properties of photoluminescence in type-II GaAsSb/GaAs multiple quantum wells,” J. Appl. Phys. 92(10), 5810–5813 (2002).
[Crossref]

1999 (1)

S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75(11), 1538–1540 (1999).
[Crossref]

1998 (1)

A. Satake, Y. Masumoto, T. Miyajima, T. Asatsuma, F. Nakamura, and M. Ikeda, “Localized exciton and its stimulated emission in surface mode from single-layer InxGa1−xN,” Phys. Rev. B 57(4), R2041–R2044 (1998).
[Crossref]

1997 (1)

S. Jin, Y. Zheng, and A. Li, “Characterization of photoluminescence intensity and efficiency of free excitons in semiconductor quantum well structures,” J. Appl. Phys. 82(8), 3870–3873 (1997).
[Crossref]

1970 (1)

J. A. Van Vechten and T. K. Bergstresser, “Electronic structures of semiconductor alloys,” Phys. Rev. B 1(8), 3351–3358 (1970).
[Crossref]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Akalin, E.

O. Donmez, K. Kara, A. Erol, E. Akalin, H. Makhloufi, A. Arnoult, and C. Fontaine, “Thermal annealing effects optical and structural properties of GaBiAs epilayers: Origin of the thermal annealing-induced redshift in GaBiAs,” J. Alloys Compd. 686, 976–981 (2016).
[Crossref]

Albalawi, H. M. A.

M. Aziz, J. F. Felix, D. Jameel, N. A. Saqri, F. S. A. Mashary, H. M. Alghamdi, H. M. A. Albalawi, D. Taylor, and M. Henini, “Rapid thermal annealing: An efficient method to improve the electrical properties of tellurium compensated Interfacial Misfit GaSb/GaAs heterostructures,” Superlattices Microstruct. 88, 80–89 (2015).
[Crossref]

Alghamdi, H. M.

M. Aziz, J. F. Felix, D. Jameel, N. A. Saqri, F. S. A. Mashary, H. M. Alghamdi, H. M. A. Albalawi, D. Taylor, and M. Henini, “Rapid thermal annealing: An efficient method to improve the electrical properties of tellurium compensated Interfacial Misfit GaSb/GaAs heterostructures,” Superlattices Microstruct. 88, 80–89 (2015).
[Crossref]

Andrews, A. M.

H. Detz, A. M. Andrews, M. Nobile, P. Klang, E. Mujagić, G. Hesser, W. Schrenk, F. Schäffler, and G. Strasser, “Intersubband optoelectronics in the InGaAs/GaAsSb material system,” J. Vac. Sci. Technol. B 28(3), C3G19 (2010).
[Crossref]

Aouina, N. Y.

F. Mezrag, N. Y. Aouina, and N. Bouarissa, “Optoelectronic and dielectric properties of GaAsxSb1-x ternary alloys,” J. Mater. Sci. 41(16), 5323–5328 (2006).
[Crossref]

Arbiol, J.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Arnoult, A.

O. Donmez, K. Kara, A. Erol, E. Akalin, H. Makhloufi, A. Arnoult, and C. Fontaine, “Thermal annealing effects optical and structural properties of GaBiAs epilayers: Origin of the thermal annealing-induced redshift in GaBiAs,” J. Alloys Compd. 686, 976–981 (2016).
[Crossref]

Asatsuma, T.

A. Satake, Y. Masumoto, T. Miyajima, T. Asatsuma, F. Nakamura, and M. Ikeda, “Localized exciton and its stimulated emission in surface mode from single-layer InxGa1−xN,” Phys. Rev. B 57(4), R2041–R2044 (1998).
[Crossref]

Aziz, M.

M. Aziz, J. F. Felix, D. Jameel, N. A. Saqri, F. S. A. Mashary, H. M. Alghamdi, H. M. A. Albalawi, D. Taylor, and M. Henini, “Rapid thermal annealing: An efficient method to improve the electrical properties of tellurium compensated Interfacial Misfit GaSb/GaAs heterostructures,” Superlattices Microstruct. 88, 80–89 (2015).
[Crossref]

Baranovskii, S. D.

R. Woscholski, M. K. Shakfa, S. Gies, M. Wiemer, A. Rahimi-Iman, M. Zimprich, S. Reinhard, K. Jandieri, S. D. Baranovskii, W. Heimbrodt, K. Volz, W. Stolz, and M. Koch, “Time-resolved photoluminescence of Ga (NAsP) multiple quantum wells grown on Si substrate: Effects of rapid thermal annealing,” Thin Solid Films 613, 55–58 (2016).
[Crossref]

Beanland, R.

D. F. Reyes, J. M. Ulloa, A. Guzman, A. Hierro, D. L. Sales, R. Beanland, A. M. Sanchez, and D. González, “Effect of annealing in the Sb and In distribution of type II GaAsSb-capped InAs quantum dots,” Semicond. Sci. Technol. 30(11), 114006 (2015).
[Crossref]

Bergstresser, T. K.

J. A. Van Vechten and T. K. Bergstresser, “Electronic structures of semiconductor alloys,” Phys. Rev. B 1(8), 3351–3358 (1970).
[Crossref]

Bert, N. A.

V. V. Chaldyshev, A. L. Kolesnikova, N. A. Bert, and A. E. Romanov, “Investigation of dislocation loops associated with As-Sb nanoclusters in GaAs,” J. Appl. Phys. 97(2), 024309 (2005).
[Crossref]

Borg, B. M.

B. M. Borg, K. A. Dick, B. Ganjipour, M. E. Pistol, L. E. Wernersson, and C. Thelander, “InAs/GaSb heterostructure nanowires for tunnel field-effect transistors,” Nano Lett. 10(10), 4080–4085 (2010).
[Crossref] [PubMed]

Bouarissa, N.

F. Mezrag, N. Y. Aouina, and N. Bouarissa, “Optoelectronic and dielectric properties of GaAsxSb1-x ternary alloys,” J. Mater. Sci. 41(16), 5323–5328 (2006).
[Crossref]

Cai, X.

P. Fan, J. Zhao, G. Liang, D. Gu, Z. Zheng, D. Zhang, X. Cai, J. Luo, and F. Ye, “Effects of annealing treatment on the properties of CZTSe thin films deposited by RF-magnetron sputtering,” J. Alloys Compd. 625, 171–174 (2015).
[Crossref]

Cantoni, M.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Caroff, P.

Z. Li, X. Yuan, L. Fu, K. Peng, F. Wang, X. Fu, P. Caroff, T. P. White, H. Hoe Tan, and C. Jagadish, “Room temperature GaAsSb single nanowire infrared photodetectors,” Nanotechnology 26(44), 445202 (2015).
[Crossref] [PubMed]

Chaldyshev, V. V.

V. V. Chaldyshev, A. L. Kolesnikova, N. A. Bert, and A. E. Romanov, “Investigation of dislocation loops associated with As-Sb nanoclusters in GaAs,” J. Appl. Phys. 97(2), 024309 (2005).
[Crossref]

Chen, R.

X. Fang, Z. Wei, Y. Yang, R. Chen, Y. Li, J. Tang, D. Fang, H. Jia, D. Wang, J. Fan, X. Ma, B. Yao, and X. Wang, “Ultraviolet electroluminescence from ZnS@ ZnO core-shell nanowires/p-GaN introduced by exciton localization,” ACS Appl. Mater. Interfaces 8(3), 1661–1666 (2016).
[Crossref] [PubMed]

X. Gao, Z. Wei, F. Zhao, Y. Yang, R. Chen, X. Fang, J. Tang, D. Fang, D. Wang, R. Li, X. Ge, X. Ma, and X. Wang, “Investigation of localized states in GaAsSb epilayers grown by molecular beam epitaxy,” Sci. Rep. 6, 29112 (2016).
[Crossref] [PubMed]

X. Fang, Z. Wei, R. Chen, J. Tang, H. Zhao, L. Zhang, D. Zhao, D. Fang, J. Li, F. Fang, X. Chu, and X. Wang, “Influence of exciton localization on the emission and ultraviolet photoresponse of ZnO/ZnS core-shell nanowires,” ACS Appl. Mater. Interfaces 7(19), 10331–10336 (2015).
[Crossref] [PubMed]

Chen, Y. F.

Y. S. Chiu, M. H. Ya, W. S. Su, and Y. F. Chen, “Properties of photoluminescence in type-II GaAsSb/GaAs multiple quantum wells,” J. Appl. Phys. 92(10), 5810–5813 (2002).
[Crossref]

Chiu, Y. S.

Y. S. Chiu, M. H. Ya, W. S. Su, and Y. F. Chen, “Properties of photoluminescence in type-II GaAsSb/GaAs multiple quantum wells,” J. Appl. Phys. 92(10), 5810–5813 (2002).
[Crossref]

Chu, X.

X. Fang, Z. Wei, R. Chen, J. Tang, H. Zhao, L. Zhang, D. Zhao, D. Fang, J. Li, F. Fang, X. Chu, and X. Wang, “Influence of exciton localization on the emission and ultraviolet photoresponse of ZnO/ZnS core-shell nanowires,” ACS Appl. Mater. Interfaces 7(19), 10331–10336 (2015).
[Crossref] [PubMed]

Conesa-Boj, S.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Cong, Y.

Y. Sun, L. Yuan, X. Wu, Y. Cong, K. Huang, and S. Feng, “Infrared absorption enhancement by charge transfer in Ga-GaSb metal-semiconductor nanohybrids,” Langmuir 32(17), 4189–4193 (2016).
[Crossref] [PubMed]

Cui, Y.

Y. Gao, N. Zhou, F. Yang, Y. Cui, L. Kovarik, N. Hatcher, R. Noebe, M. J. Mills, and Y. Wang, “P-phase precipitation and its effect on martensitic transformation in (Ni, Pt) Ti shape memory alloys,” Acta Mater. 60(4), 1514–1527 (2012).
[Crossref]

Dao, D. K.

K. A. Dao, D. K. Dao, T. D. Nguyen, A. T. Phan, and H. M. Do, “The effects of Au surface diffusion to fomation of Au droplets/clusters and nanowire growth on GaAs substrate using VLS method,” J. Mater. Sci. Mater. Electron. 23(11), 2065–2074 (2012).
[Crossref]

Dao, K. A.

K. A. Dao, D. K. Dao, T. D. Nguyen, A. T. Phan, and H. M. Do, “The effects of Au surface diffusion to fomation of Au droplets/clusters and nanowire growth on GaAs substrate using VLS method,” J. Mater. Sci. Mater. Electron. 23(11), 2065–2074 (2012).
[Crossref]

Detz, H.

H. Detz, A. M. Andrews, M. Nobile, P. Klang, E. Mujagić, G. Hesser, W. Schrenk, F. Schäffler, and G. Strasser, “Intersubband optoelectronics in the InGaAs/GaAsSb material system,” J. Vac. Sci. Technol. B 28(3), C3G19 (2010).
[Crossref]

Dheeraj, D. L.

D. Ren, D. L. Dheeraj, C. Jin, J. S. Nilsen, J. Huh, J. F. Reinertsen, A. M. Munshi, A. Gustafsson, A. T. J. van Helvoort, H. Weman, and B. O. Fimland, “New insights into the origins of Sb-induced effects on self-catalyzed GaAsSb nanowire arrays,” Nano Lett. 16(2), 1201–1209 (2016).
[Crossref] [PubMed]

J. Huh, H. Yun, D. C. Kim, A. M. Munshi, D. L. Dheeraj, H. Kauko, A. T. J. van Helvoort, S. Lee, B. O. Fimland, and H. Weman, “Rectifying single GaAsSb nanowire devices based on self-induced compositional gradients,” Nano Lett. 15(6), 3709–3715 (2015).
[Crossref] [PubMed]

Dick, K. A.

O. Persson, J. L. Webb, K. A. Dick, C. Thelander, A. Mikkelsen, and R. Timm, “Scanning Tunneling Spectroscopy on InAs-GaSb Esaki Diode Nanowire Devices during Operation,” Nano Lett. 15(6), 3684–3691 (2015).
[Crossref] [PubMed]

B. M. Borg, K. A. Dick, B. Ganjipour, M. E. Pistol, L. E. Wernersson, and C. Thelander, “InAs/GaSb heterostructure nanowires for tunnel field-effect transistors,” Nano Lett. 10(10), 4080–4085 (2010).
[Crossref] [PubMed]

Do, H. M.

K. A. Dao, D. K. Dao, T. D. Nguyen, A. T. Phan, and H. M. Do, “The effects of Au surface diffusion to fomation of Au droplets/clusters and nanowire growth on GaAs substrate using VLS method,” J. Mater. Sci. Mater. Electron. 23(11), 2065–2074 (2012).
[Crossref]

Dominguez, L.

D. F. Reyes, D. González, J. M. Ulloa, D. L. Sales, L. Dominguez, A. Mayoral, and A. Hierro, “Impact of N on the atomic-scale Sb distribution in quaternary GaAsSbN-capped InAs quantum dots,” Nanoscale Res. Lett. 7(1), 653 (2012).
[Crossref] [PubMed]

Donmez, O.

O. Donmez, K. Kara, A. Erol, E. Akalin, H. Makhloufi, A. Arnoult, and C. Fontaine, “Thermal annealing effects optical and structural properties of GaBiAs epilayers: Origin of the thermal annealing-induced redshift in GaBiAs,” J. Alloys Compd. 686, 976–981 (2016).
[Crossref]

Erol, A.

O. Donmez, K. Kara, A. Erol, E. Akalin, H. Makhloufi, A. Arnoult, and C. Fontaine, “Thermal annealing effects optical and structural properties of GaBiAs epilayers: Origin of the thermal annealing-induced redshift in GaBiAs,” J. Alloys Compd. 686, 976–981 (2016).
[Crossref]

Etheridge, J.

T. Shi, H. E. Jackson, L. M. Smith, N. Jiang, Q. Gao, H. H. Tan, C. Jagadish, C. Zheng, and J. Etheridge, “Emergence of localized states in narrow GaAs/AlGaAs nanowire quantum well tubes,” Nano Lett. 15(3), 1876–1882 (2015).
[Crossref] [PubMed]

Fan, J.

X. Fang, Z. Wei, Y. Yang, R. Chen, Y. Li, J. Tang, D. Fang, H. Jia, D. Wang, J. Fan, X. Ma, B. Yao, and X. Wang, “Ultraviolet electroluminescence from ZnS@ ZnO core-shell nanowires/p-GaN introduced by exciton localization,” ACS Appl. Mater. Interfaces 8(3), 1661–1666 (2016).
[Crossref] [PubMed]

Fan, P.

P. Fan, J. Zhao, G. Liang, D. Gu, Z. Zheng, D. Zhang, X. Cai, J. Luo, and F. Ye, “Effects of annealing treatment on the properties of CZTSe thin films deposited by RF-magnetron sputtering,” J. Alloys Compd. 625, 171–174 (2015).
[Crossref]

Fan, X. W.

H. Zhu, C. X. Shan, B. H. Li, Z. Z. Zhang, J. Y. Zhang, B. Yao, D. Z. Shen, and X. W. Fan, “Enhanced photoluminescence caused by localized excitons observed in MgZnO alloy,” J. Appl. Phys. 105(10), 103508 (2009).
[Crossref]

Fang, D.

X. Fang, Z. Wei, Y. Yang, R. Chen, Y. Li, J. Tang, D. Fang, H. Jia, D. Wang, J. Fan, X. Ma, B. Yao, and X. Wang, “Ultraviolet electroluminescence from ZnS@ ZnO core-shell nanowires/p-GaN introduced by exciton localization,” ACS Appl. Mater. Interfaces 8(3), 1661–1666 (2016).
[Crossref] [PubMed]

X. Gao, Z. Wei, F. Zhao, Y. Yang, R. Chen, X. Fang, J. Tang, D. Fang, D. Wang, R. Li, X. Ge, X. Ma, and X. Wang, “Investigation of localized states in GaAsSb epilayers grown by molecular beam epitaxy,” Sci. Rep. 6, 29112 (2016).
[Crossref] [PubMed]

X. Fang, Z. Wei, R. Chen, J. Tang, H. Zhao, L. Zhang, D. Zhao, D. Fang, J. Li, F. Fang, X. Chu, and X. Wang, “Influence of exciton localization on the emission and ultraviolet photoresponse of ZnO/ZnS core-shell nanowires,” ACS Appl. Mater. Interfaces 7(19), 10331–10336 (2015).
[Crossref] [PubMed]

Fang, F.

X. Fang, Z. Wei, R. Chen, J. Tang, H. Zhao, L. Zhang, D. Zhao, D. Fang, J. Li, F. Fang, X. Chu, and X. Wang, “Influence of exciton localization on the emission and ultraviolet photoresponse of ZnO/ZnS core-shell nanowires,” ACS Appl. Mater. Interfaces 7(19), 10331–10336 (2015).
[Crossref] [PubMed]

Fang, X.

X. Fang, Z. Wei, Y. Yang, R. Chen, Y. Li, J. Tang, D. Fang, H. Jia, D. Wang, J. Fan, X. Ma, B. Yao, and X. Wang, “Ultraviolet electroluminescence from ZnS@ ZnO core-shell nanowires/p-GaN introduced by exciton localization,” ACS Appl. Mater. Interfaces 8(3), 1661–1666 (2016).
[Crossref] [PubMed]

X. Gao, Z. Wei, F. Zhao, Y. Yang, R. Chen, X. Fang, J. Tang, D. Fang, D. Wang, R. Li, X. Ge, X. Ma, and X. Wang, “Investigation of localized states in GaAsSb epilayers grown by molecular beam epitaxy,” Sci. Rep. 6, 29112 (2016).
[Crossref] [PubMed]

X. Fang, Z. Wei, R. Chen, J. Tang, H. Zhao, L. Zhang, D. Zhao, D. Fang, J. Li, F. Fang, X. Chu, and X. Wang, “Influence of exciton localization on the emission and ultraviolet photoresponse of ZnO/ZnS core-shell nanowires,” ACS Appl. Mater. Interfaces 7(19), 10331–10336 (2015).
[Crossref] [PubMed]

Felix, J. F.

M. Aziz, J. F. Felix, D. Jameel, N. A. Saqri, F. S. A. Mashary, H. M. Alghamdi, H. M. A. Albalawi, D. Taylor, and M. Henini, “Rapid thermal annealing: An efficient method to improve the electrical properties of tellurium compensated Interfacial Misfit GaSb/GaAs heterostructures,” Superlattices Microstruct. 88, 80–89 (2015).
[Crossref]

Feng, S.

Y. Sun, L. Yuan, X. Wu, Y. Cong, K. Huang, and S. Feng, “Infrared absorption enhancement by charge transfer in Ga-GaSb metal-semiconductor nanohybrids,” Langmuir 32(17), 4189–4193 (2016).
[Crossref] [PubMed]

Fimland, B. O.

D. Ren, D. L. Dheeraj, C. Jin, J. S. Nilsen, J. Huh, J. F. Reinertsen, A. M. Munshi, A. Gustafsson, A. T. J. van Helvoort, H. Weman, and B. O. Fimland, “New insights into the origins of Sb-induced effects on self-catalyzed GaAsSb nanowire arrays,” Nano Lett. 16(2), 1201–1209 (2016).
[Crossref] [PubMed]

J. Huh, H. Yun, D. C. Kim, A. M. Munshi, D. L. Dheeraj, H. Kauko, A. T. J. van Helvoort, S. Lee, B. O. Fimland, and H. Weman, “Rectifying single GaAsSb nanowire devices based on self-induced compositional gradients,” Nano Lett. 15(6), 3709–3715 (2015).
[Crossref] [PubMed]

Fontaine, C.

O. Donmez, K. Kara, A. Erol, E. Akalin, H. Makhloufi, A. Arnoult, and C. Fontaine, “Thermal annealing effects optical and structural properties of GaBiAs epilayers: Origin of the thermal annealing-induced redshift in GaBiAs,” J. Alloys Compd. 686, 976–981 (2016).
[Crossref]

Fontana, Y.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Fontcuberta i Morral, A.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Francoeur, S.

S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75(11), 1538–1540 (1999).
[Crossref]

Fu, L.

Z. Li, X. Yuan, L. Fu, K. Peng, F. Wang, X. Fu, P. Caroff, T. P. White, H. Hoe Tan, and C. Jagadish, “Room temperature GaAsSb single nanowire infrared photodetectors,” Nanotechnology 26(44), 445202 (2015).
[Crossref] [PubMed]

Fu, X.

Z. Li, X. Yuan, L. Fu, K. Peng, F. Wang, X. Fu, P. Caroff, T. P. White, H. Hoe Tan, and C. Jagadish, “Room temperature GaAsSb single nanowire infrared photodetectors,” Nanotechnology 26(44), 445202 (2015).
[Crossref] [PubMed]

Ganjipour, B.

B. M. Borg, K. A. Dick, B. Ganjipour, M. E. Pistol, L. E. Wernersson, and C. Thelander, “InAs/GaSb heterostructure nanowires for tunnel field-effect transistors,” Nano Lett. 10(10), 4080–4085 (2010).
[Crossref] [PubMed]

Gao, Q.

T. Shi, H. E. Jackson, L. M. Smith, N. Jiang, Q. Gao, H. H. Tan, C. Jagadish, C. Zheng, and J. Etheridge, “Emergence of localized states in narrow GaAs/AlGaAs nanowire quantum well tubes,” Nano Lett. 15(3), 1876–1882 (2015).
[Crossref] [PubMed]

Gao, X.

X. Gao, Z. Wei, F. Zhao, Y. Yang, R. Chen, X. Fang, J. Tang, D. Fang, D. Wang, R. Li, X. Ge, X. Ma, and X. Wang, “Investigation of localized states in GaAsSb epilayers grown by molecular beam epitaxy,” Sci. Rep. 6, 29112 (2016).
[Crossref] [PubMed]

Gao, Y.

Y. Gao, H. Liu, R. Shi, N. Zhou, Z. Xu, Y. M. Zhu, J. F. Nie, and Y. Wang, “Simulation study of precipitation in an Mg-Y-Nd alloy,” Acta Mater. 60(12), 4819–4832 (2012).
[Crossref]

Y. Gao, N. Zhou, F. Yang, Y. Cui, L. Kovarik, N. Hatcher, R. Noebe, M. J. Mills, and Y. Wang, “P-phase precipitation and its effect on martensitic transformation in (Ni, Pt) Ti shape memory alloys,” Acta Mater. 60(4), 1514–1527 (2012).
[Crossref]

Ge, W. K.

X. D. Luo, P. H. Tan, Z. Y. Xu, and W. K. Ge, “Selectively excited photoluminescence of GaAs1− xNx single quantum wells,” J. Appl. Phys. 94(8), 4863–4865 (2003).
[Crossref]

X. D. Luo, C. Y. Hu, Z. Y. Xu, H. L. Luo, Y. Q. Wang, J. N. Wang, and W. K. Ge, “Selectively excited photoluminescence of GaAs1−xSbx/GaAs single quantum wells,” Appl. Phys. Lett. 81(20), 3795–3797 (2002).
[Crossref]

Ge, X.

X. Gao, Z. Wei, F. Zhao, Y. Yang, R. Chen, X. Fang, J. Tang, D. Fang, D. Wang, R. Li, X. Ge, X. Ma, and X. Wang, “Investigation of localized states in GaAsSb epilayers grown by molecular beam epitaxy,” Sci. Rep. 6, 29112 (2016).
[Crossref] [PubMed]

Gies, S.

R. Woscholski, M. K. Shakfa, S. Gies, M. Wiemer, A. Rahimi-Iman, M. Zimprich, S. Reinhard, K. Jandieri, S. D. Baranovskii, W. Heimbrodt, K. Volz, W. Stolz, and M. Koch, “Time-resolved photoluminescence of Ga (NAsP) multiple quantum wells grown on Si substrate: Effects of rapid thermal annealing,” Thin Solid Films 613, 55–58 (2016).
[Crossref]

González, D.

D. F. Reyes, J. M. Ulloa, A. Guzman, A. Hierro, D. L. Sales, R. Beanland, A. M. Sanchez, and D. González, “Effect of annealing in the Sb and In distribution of type II GaAsSb-capped InAs quantum dots,” Semicond. Sci. Technol. 30(11), 114006 (2015).
[Crossref]

D. F. Reyes, D. González, J. M. Ulloa, D. L. Sales, L. Dominguez, A. Mayoral, and A. Hierro, “Impact of N on the atomic-scale Sb distribution in quaternary GaAsSbN-capped InAs quantum dots,” Nanoscale Res. Lett. 7(1), 653 (2012).
[Crossref] [PubMed]

Gu, D.

P. Fan, J. Zhao, G. Liang, D. Gu, Z. Zheng, D. Zhang, X. Cai, J. Luo, and F. Ye, “Effects of annealing treatment on the properties of CZTSe thin films deposited by RF-magnetron sputtering,” J. Alloys Compd. 625, 171–174 (2015).
[Crossref]

Guo, Y.

S. Lee, A. Nathan, Y. Ye, Y. Guo, and J. Robertson, “Localized tail states and electron mobility in amorphous ZnON thin film transistors,” Sci. Rep. 5, 13467 (2015).
[Crossref] [PubMed]

Gustafsson, A.

D. Ren, D. L. Dheeraj, C. Jin, J. S. Nilsen, J. Huh, J. F. Reinertsen, A. M. Munshi, A. Gustafsson, A. T. J. van Helvoort, H. Weman, and B. O. Fimland, “New insights into the origins of Sb-induced effects on self-catalyzed GaAsSb nanowire arrays,” Nano Lett. 16(2), 1201–1209 (2016).
[Crossref] [PubMed]

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Guzman, A.

D. F. Reyes, J. M. Ulloa, A. Guzman, A. Hierro, D. L. Sales, R. Beanland, A. M. Sanchez, and D. González, “Effect of annealing in the Sb and In distribution of type II GaAsSb-capped InAs quantum dots,” Semicond. Sci. Technol. 30(11), 114006 (2015).
[Crossref]

Harmand, J. C.

R. Kudrawiec, G. Sek, K. Ryczko, J. Misiewicz, and J. C. Harmand, “Photoreflectance investigations of oscillator strength and broadening of optical transitions for GaAsSb-GaInAs/GaAs bilayer quantum wells,” Appl. Phys. Lett. 84(18), 3453–3455 (2004).
[Crossref]

Hatcher, N.

Y. Gao, N. Zhou, F. Yang, Y. Cui, L. Kovarik, N. Hatcher, R. Noebe, M. J. Mills, and Y. Wang, “P-phase precipitation and its effect on martensitic transformation in (Ni, Pt) Ti shape memory alloys,” Acta Mater. 60(4), 1514–1527 (2012).
[Crossref]

Heimbrodt, W.

R. Woscholski, M. K. Shakfa, S. Gies, M. Wiemer, A. Rahimi-Iman, M. Zimprich, S. Reinhard, K. Jandieri, S. D. Baranovskii, W. Heimbrodt, K. Volz, W. Stolz, and M. Koch, “Time-resolved photoluminescence of Ga (NAsP) multiple quantum wells grown on Si substrate: Effects of rapid thermal annealing,” Thin Solid Films 613, 55–58 (2016).
[Crossref]

Heiss, M.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Henini, M.

M. Aziz, J. F. Felix, D. Jameel, N. A. Saqri, F. S. A. Mashary, H. M. Alghamdi, H. M. A. Albalawi, D. Taylor, and M. Henini, “Rapid thermal annealing: An efficient method to improve the electrical properties of tellurium compensated Interfacial Misfit GaSb/GaAs heterostructures,” Superlattices Microstruct. 88, 80–89 (2015).
[Crossref]

Hesser, G.

H. Detz, A. M. Andrews, M. Nobile, P. Klang, E. Mujagić, G. Hesser, W. Schrenk, F. Schäffler, and G. Strasser, “Intersubband optoelectronics in the InGaAs/GaAsSb material system,” J. Vac. Sci. Technol. B 28(3), C3G19 (2010).
[Crossref]

Hierro, A.

D. F. Reyes, J. M. Ulloa, A. Guzman, A. Hierro, D. L. Sales, R. Beanland, A. M. Sanchez, and D. González, “Effect of annealing in the Sb and In distribution of type II GaAsSb-capped InAs quantum dots,” Semicond. Sci. Technol. 30(11), 114006 (2015).
[Crossref]

D. F. Reyes, D. González, J. M. Ulloa, D. L. Sales, L. Dominguez, A. Mayoral, and A. Hierro, “Impact of N on the atomic-scale Sb distribution in quaternary GaAsSbN-capped InAs quantum dots,” Nanoscale Res. Lett. 7(1), 653 (2012).
[Crossref] [PubMed]

Hoe Tan, H.

Z. Li, X. Yuan, L. Fu, K. Peng, F. Wang, X. Fu, P. Caroff, T. P. White, H. Hoe Tan, and C. Jagadish, “Room temperature GaAsSb single nanowire infrared photodetectors,” Nanotechnology 26(44), 445202 (2015).
[Crossref] [PubMed]

Houel, J.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Hu, C. Y.

X. D. Luo, C. Y. Hu, Z. Y. Xu, H. L. Luo, Y. Q. Wang, J. N. Wang, and W. K. Ge, “Selectively excited photoluminescence of GaAs1−xSbx/GaAs single quantum wells,” Appl. Phys. Lett. 81(20), 3795–3797 (2002).
[Crossref]

Hu, W.

L. Ma, X. Zhang, H. Li, H. Tan, Y. Yang, Y. Xu, W. Hu, X. Zhu, X. Zhuang, and A. Pan, “Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31 μm,” Semicond. Sci. Technol. 30(10), 105033 (2015).
[Crossref]

L. Ma, W. Hu, Q. Zhang, P. Ren, X. Zhuang, H. Zhou, J. Xu, H. Li, Z. Shan, X. Wang, L. Liao, H. Q. Xu, and A. Pan, “Room-temperature near-infrared photodetectors based on single heterojunction nanowires,” Nano Lett. 14(2), 694–698 (2014).
[Crossref] [PubMed]

Huang, K.

Y. Sun, L. Yuan, X. Wu, Y. Cong, K. Huang, and S. Feng, “Infrared absorption enhancement by charge transfer in Ga-GaSb metal-semiconductor nanohybrids,” Langmuir 32(17), 4189–4193 (2016).
[Crossref] [PubMed]

Huh, J.

D. Ren, D. L. Dheeraj, C. Jin, J. S. Nilsen, J. Huh, J. F. Reinertsen, A. M. Munshi, A. Gustafsson, A. T. J. van Helvoort, H. Weman, and B. O. Fimland, “New insights into the origins of Sb-induced effects on self-catalyzed GaAsSb nanowire arrays,” Nano Lett. 16(2), 1201–1209 (2016).
[Crossref] [PubMed]

J. Huh, H. Yun, D. C. Kim, A. M. Munshi, D. L. Dheeraj, H. Kauko, A. T. J. van Helvoort, S. Lee, B. O. Fimland, and H. Weman, “Rectifying single GaAsSb nanowire devices based on self-induced compositional gradients,” Nano Lett. 15(6), 3709–3715 (2015).
[Crossref] [PubMed]

Hwang, J.

J. Kim, J. Hwang, K. Song, N. Kimet, J. C. Shin, and J. Lee, “Ultra-thin flexible GaAs photovoltaics in vertical forms printed on metal surfaces without interlayer adhesives,” Appl. Phys. Lett. 108(25), 253101 (2016).
[Crossref]

Ikeda, M.

A. Satake, Y. Masumoto, T. Miyajima, T. Asatsuma, F. Nakamura, and M. Ikeda, “Localized exciton and its stimulated emission in surface mode from single-layer InxGa1−xN,” Phys. Rev. B 57(4), R2041–R2044 (1998).
[Crossref]

Jackson, H. E.

T. Shi, H. E. Jackson, L. M. Smith, N. Jiang, Q. Gao, H. H. Tan, C. Jagadish, C. Zheng, and J. Etheridge, “Emergence of localized states in narrow GaAs/AlGaAs nanowire quantum well tubes,” Nano Lett. 15(3), 1876–1882 (2015).
[Crossref] [PubMed]

Jagadish, C.

T. Shi, H. E. Jackson, L. M. Smith, N. Jiang, Q. Gao, H. H. Tan, C. Jagadish, C. Zheng, and J. Etheridge, “Emergence of localized states in narrow GaAs/AlGaAs nanowire quantum well tubes,” Nano Lett. 15(3), 1876–1882 (2015).
[Crossref] [PubMed]

Z. Li, X. Yuan, L. Fu, K. Peng, F. Wang, X. Fu, P. Caroff, T. P. White, H. Hoe Tan, and C. Jagadish, “Room temperature GaAsSb single nanowire infrared photodetectors,” Nanotechnology 26(44), 445202 (2015).
[Crossref] [PubMed]

Jameel, D.

M. Aziz, J. F. Felix, D. Jameel, N. A. Saqri, F. S. A. Mashary, H. M. Alghamdi, H. M. A. Albalawi, D. Taylor, and M. Henini, “Rapid thermal annealing: An efficient method to improve the electrical properties of tellurium compensated Interfacial Misfit GaSb/GaAs heterostructures,” Superlattices Microstruct. 88, 80–89 (2015).
[Crossref]

Jandieri, K.

R. Woscholski, M. K. Shakfa, S. Gies, M. Wiemer, A. Rahimi-Iman, M. Zimprich, S. Reinhard, K. Jandieri, S. D. Baranovskii, W. Heimbrodt, K. Volz, W. Stolz, and M. Koch, “Time-resolved photoluminescence of Ga (NAsP) multiple quantum wells grown on Si substrate: Effects of rapid thermal annealing,” Thin Solid Films 613, 55–58 (2016).
[Crossref]

Jebali, A.

A. Jebali, N. Khemiri, and M. Kanzar, “The effect of annealing in N2 atmosphere on the physical properties of SnSb4S7 thin films,” J. Alloys Compd. 673, 38–46 (2016).
[Crossref]

Jia, H.

X. Fang, Z. Wei, Y. Yang, R. Chen, Y. Li, J. Tang, D. Fang, H. Jia, D. Wang, J. Fan, X. Ma, B. Yao, and X. Wang, “Ultraviolet electroluminescence from ZnS@ ZnO core-shell nanowires/p-GaN introduced by exciton localization,” ACS Appl. Mater. Interfaces 8(3), 1661–1666 (2016).
[Crossref] [PubMed]

Jiang, N.

T. Shi, H. E. Jackson, L. M. Smith, N. Jiang, Q. Gao, H. H. Tan, C. Jagadish, C. Zheng, and J. Etheridge, “Emergence of localized states in narrow GaAs/AlGaAs nanowire quantum well tubes,” Nano Lett. 15(3), 1876–1882 (2015).
[Crossref] [PubMed]

Jin, C.

D. Ren, D. L. Dheeraj, C. Jin, J. S. Nilsen, J. Huh, J. F. Reinertsen, A. M. Munshi, A. Gustafsson, A. T. J. van Helvoort, H. Weman, and B. O. Fimland, “New insights into the origins of Sb-induced effects on self-catalyzed GaAsSb nanowire arrays,” Nano Lett. 16(2), 1201–1209 (2016).
[Crossref] [PubMed]

S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75(11), 1538–1540 (1999).
[Crossref]

Jin, S.

S. Jin, Y. Zheng, and A. Li, “Characterization of photoluminescence intensity and efficiency of free excitons in semiconductor quantum well structures,” J. Appl. Phys. 82(8), 3870–3873 (1997).
[Crossref]

Kanzar, M.

A. Jebali, N. Khemiri, and M. Kanzar, “The effect of annealing in N2 atmosphere on the physical properties of SnSb4S7 thin films,” J. Alloys Compd. 673, 38–46 (2016).
[Crossref]

Kara, K.

O. Donmez, K. Kara, A. Erol, E. Akalin, H. Makhloufi, A. Arnoult, and C. Fontaine, “Thermal annealing effects optical and structural properties of GaBiAs epilayers: Origin of the thermal annealing-induced redshift in GaBiAs,” J. Alloys Compd. 686, 976–981 (2016).
[Crossref]

Kauko, H.

J. Huh, H. Yun, D. C. Kim, A. M. Munshi, D. L. Dheeraj, H. Kauko, A. T. J. van Helvoort, S. Lee, B. O. Fimland, and H. Weman, “Rectifying single GaAsSb nanowire devices based on self-induced compositional gradients,” Nano Lett. 15(6), 3709–3715 (2015).
[Crossref] [PubMed]

Ketterer, B.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Khemiri, N.

A. Jebali, N. Khemiri, and M. Kanzar, “The effect of annealing in N2 atmosphere on the physical properties of SnSb4S7 thin films,” J. Alloys Compd. 673, 38–46 (2016).
[Crossref]

Kim, D. C.

J. Huh, H. Yun, D. C. Kim, A. M. Munshi, D. L. Dheeraj, H. Kauko, A. T. J. van Helvoort, S. Lee, B. O. Fimland, and H. Weman, “Rectifying single GaAsSb nanowire devices based on self-induced compositional gradients,” Nano Lett. 15(6), 3709–3715 (2015).
[Crossref] [PubMed]

Kim, J.

J. Kim, J. Hwang, K. Song, N. Kimet, J. C. Shin, and J. Lee, “Ultra-thin flexible GaAs photovoltaics in vertical forms printed on metal surfaces without interlayer adhesives,” Appl. Phys. Lett. 108(25), 253101 (2016).
[Crossref]

Kimet, N.

J. Kim, J. Hwang, K. Song, N. Kimet, J. C. Shin, and J. Lee, “Ultra-thin flexible GaAs photovoltaics in vertical forms printed on metal surfaces without interlayer adhesives,” Appl. Phys. Lett. 108(25), 253101 (2016).
[Crossref]

Kitatani, T.

S. Shirakata, M. Kondow, and T. Kitatani, “Temperature-dependent photoluminescence of high-quality GaInNAs single quantum wells,” Appl. Phys. Lett. 80(12), 2087–2089 (2002).
[Crossref]

Klang, P.

H. Detz, A. M. Andrews, M. Nobile, P. Klang, E. Mujagić, G. Hesser, W. Schrenk, F. Schäffler, and G. Strasser, “Intersubband optoelectronics in the InGaAs/GaAsSb material system,” J. Vac. Sci. Technol. B 28(3), C3G19 (2010).
[Crossref]

Koch, M.

R. Woscholski, M. K. Shakfa, S. Gies, M. Wiemer, A. Rahimi-Iman, M. Zimprich, S. Reinhard, K. Jandieri, S. D. Baranovskii, W. Heimbrodt, K. Volz, W. Stolz, and M. Koch, “Time-resolved photoluminescence of Ga (NAsP) multiple quantum wells grown on Si substrate: Effects of rapid thermal annealing,” Thin Solid Films 613, 55–58 (2016).
[Crossref]

Kolesnikova, A. L.

V. V. Chaldyshev, A. L. Kolesnikova, N. A. Bert, and A. E. Romanov, “Investigation of dislocation loops associated with As-Sb nanoclusters in GaAs,” J. Appl. Phys. 97(2), 024309 (2005).
[Crossref]

Kondow, M.

S. Shirakata, M. Kondow, and T. Kitatani, “Temperature-dependent photoluminescence of high-quality GaInNAs single quantum wells,” Appl. Phys. Lett. 80(12), 2087–2089 (2002).
[Crossref]

Kovarik, L.

Y. Gao, N. Zhou, F. Yang, Y. Cui, L. Kovarik, N. Hatcher, R. Noebe, M. J. Mills, and Y. Wang, “P-phase precipitation and its effect on martensitic transformation in (Ni, Pt) Ti shape memory alloys,” Acta Mater. 60(4), 1514–1527 (2012).
[Crossref]

Kudrawiec, R.

R. Kudrawiec, G. Sek, K. Ryczko, J. Misiewicz, and J. C. Harmand, “Photoreflectance investigations of oscillator strength and broadening of optical transitions for GaAsSb-GaInAs/GaAs bilayer quantum wells,” Appl. Phys. Lett. 84(18), 3453–3455 (2004).
[Crossref]

Kuhlmann, A. V.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Kuo, P. C.

Lee, J.

J. Kim, J. Hwang, K. Song, N. Kimet, J. C. Shin, and J. Lee, “Ultra-thin flexible GaAs photovoltaics in vertical forms printed on metal surfaces without interlayer adhesives,” Appl. Phys. Lett. 108(25), 253101 (2016).
[Crossref]

Lee, S.

J. Huh, H. Yun, D. C. Kim, A. M. Munshi, D. L. Dheeraj, H. Kauko, A. T. J. van Helvoort, S. Lee, B. O. Fimland, and H. Weman, “Rectifying single GaAsSb nanowire devices based on self-induced compositional gradients,” Nano Lett. 15(6), 3709–3715 (2015).
[Crossref] [PubMed]

S. Lee, A. Nathan, Y. Ye, Y. Guo, and J. Robertson, “Localized tail states and electron mobility in amorphous ZnON thin film transistors,” Sci. Rep. 5, 13467 (2015).
[Crossref] [PubMed]

Li, A.

S. Jin, Y. Zheng, and A. Li, “Characterization of photoluminescence intensity and efficiency of free excitons in semiconductor quantum well structures,” J. Appl. Phys. 82(8), 3870–3873 (1997).
[Crossref]

Li, B. H.

H. Zhu, C. X. Shan, B. H. Li, Z. Z. Zhang, J. Y. Zhang, B. Yao, D. Z. Shen, and X. W. Fan, “Enhanced photoluminescence caused by localized excitons observed in MgZnO alloy,” J. Appl. Phys. 105(10), 103508 (2009).
[Crossref]

Li, H.

L. Ma, X. Zhang, H. Li, H. Tan, Y. Yang, Y. Xu, W. Hu, X. Zhu, X. Zhuang, and A. Pan, “Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31 μm,” Semicond. Sci. Technol. 30(10), 105033 (2015).
[Crossref]

L. Ma, W. Hu, Q. Zhang, P. Ren, X. Zhuang, H. Zhou, J. Xu, H. Li, Z. Shan, X. Wang, L. Liao, H. Q. Xu, and A. Pan, “Room-temperature near-infrared photodetectors based on single heterojunction nanowires,” Nano Lett. 14(2), 694–698 (2014).
[Crossref] [PubMed]

Li, J.

X. Fang, Z. Wei, R. Chen, J. Tang, H. Zhao, L. Zhang, D. Zhao, D. Fang, J. Li, F. Fang, X. Chu, and X. Wang, “Influence of exciton localization on the emission and ultraviolet photoresponse of ZnO/ZnS core-shell nanowires,” ACS Appl. Mater. Interfaces 7(19), 10331–10336 (2015).
[Crossref] [PubMed]

Li, R.

X. Gao, Z. Wei, F. Zhao, Y. Yang, R. Chen, X. Fang, J. Tang, D. Fang, D. Wang, R. Li, X. Ge, X. Ma, and X. Wang, “Investigation of localized states in GaAsSb epilayers grown by molecular beam epitaxy,” Sci. Rep. 6, 29112 (2016).
[Crossref] [PubMed]

Li, Y.

X. Fang, Z. Wei, Y. Yang, R. Chen, Y. Li, J. Tang, D. Fang, H. Jia, D. Wang, J. Fan, X. Ma, B. Yao, and X. Wang, “Ultraviolet electroluminescence from ZnS@ ZnO core-shell nanowires/p-GaN introduced by exciton localization,” ACS Appl. Mater. Interfaces 8(3), 1661–1666 (2016).
[Crossref] [PubMed]

Li, Z.

Z. Li, X. Yuan, L. Fu, K. Peng, F. Wang, X. Fu, P. Caroff, T. P. White, H. Hoe Tan, and C. Jagadish, “Room temperature GaAsSb single nanowire infrared photodetectors,” Nanotechnology 26(44), 445202 (2015).
[Crossref] [PubMed]

Liang, G.

P. Fan, J. Zhao, G. Liang, D. Gu, Z. Zheng, D. Zhang, X. Cai, J. Luo, and F. Ye, “Effects of annealing treatment on the properties of CZTSe thin films deposited by RF-magnetron sputtering,” J. Alloys Compd. 625, 171–174 (2015).
[Crossref]

Liao, L.

L. Ma, W. Hu, Q. Zhang, P. Ren, X. Zhuang, H. Zhou, J. Xu, H. Li, Z. Shan, X. Wang, L. Liao, H. Q. Xu, and A. Pan, “Room-temperature near-infrared photodetectors based on single heterojunction nanowires,” Nano Lett. 14(2), 694–698 (2014).
[Crossref] [PubMed]

Liu, H.

Y. Gao, H. Liu, R. Shi, N. Zhou, Z. Xu, Y. M. Zhu, J. F. Nie, and Y. Wang, “Simulation study of precipitation in an Mg-Y-Nd alloy,” Acta Mater. 60(12), 4819–4832 (2012).
[Crossref]

Liu, W. S.

Luo, H. L.

X. D. Luo, C. Y. Hu, Z. Y. Xu, H. L. Luo, Y. Q. Wang, J. N. Wang, and W. K. Ge, “Selectively excited photoluminescence of GaAs1−xSbx/GaAs single quantum wells,” Appl. Phys. Lett. 81(20), 3795–3797 (2002).
[Crossref]

Luo, J.

P. Fan, J. Zhao, G. Liang, D. Gu, Z. Zheng, D. Zhang, X. Cai, J. Luo, and F. Ye, “Effects of annealing treatment on the properties of CZTSe thin films deposited by RF-magnetron sputtering,” J. Alloys Compd. 625, 171–174 (2015).
[Crossref]

Luo, J. W.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Luo, X. D.

X. D. Luo, P. H. Tan, Z. Y. Xu, and W. K. Ge, “Selectively excited photoluminescence of GaAs1− xNx single quantum wells,” J. Appl. Phys. 94(8), 4863–4865 (2003).
[Crossref]

X. D. Luo, C. Y. Hu, Z. Y. Xu, H. L. Luo, Y. Q. Wang, J. N. Wang, and W. K. Ge, “Selectively excited photoluminescence of GaAs1−xSbx/GaAs single quantum wells,” Appl. Phys. Lett. 81(20), 3795–3797 (2002).
[Crossref]

Ma, L.

L. Ma, X. Zhang, H. Li, H. Tan, Y. Yang, Y. Xu, W. Hu, X. Zhu, X. Zhuang, and A. Pan, “Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31 μm,” Semicond. Sci. Technol. 30(10), 105033 (2015).
[Crossref]

L. Ma, W. Hu, Q. Zhang, P. Ren, X. Zhuang, H. Zhou, J. Xu, H. Li, Z. Shan, X. Wang, L. Liao, H. Q. Xu, and A. Pan, “Room-temperature near-infrared photodetectors based on single heterojunction nanowires,” Nano Lett. 14(2), 694–698 (2014).
[Crossref] [PubMed]

Ma, X.

X. Gao, Z. Wei, F. Zhao, Y. Yang, R. Chen, X. Fang, J. Tang, D. Fang, D. Wang, R. Li, X. Ge, X. Ma, and X. Wang, “Investigation of localized states in GaAsSb epilayers grown by molecular beam epitaxy,” Sci. Rep. 6, 29112 (2016).
[Crossref] [PubMed]

X. Fang, Z. Wei, Y. Yang, R. Chen, Y. Li, J. Tang, D. Fang, H. Jia, D. Wang, J. Fan, X. Ma, B. Yao, and X. Wang, “Ultraviolet electroluminescence from ZnS@ ZnO core-shell nanowires/p-GaN introduced by exciton localization,” ACS Appl. Mater. Interfaces 8(3), 1661–1666 (2016).
[Crossref] [PubMed]

Magen, C.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Makhloufi, H.

O. Donmez, K. Kara, A. Erol, E. Akalin, H. Makhloufi, A. Arnoult, and C. Fontaine, “Thermal annealing effects optical and structural properties of GaBiAs epilayers: Origin of the thermal annealing-induced redshift in GaBiAs,” J. Alloys Compd. 686, 976–981 (2016).
[Crossref]

Marzari, N.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Mashary, F. S. A.

M. Aziz, J. F. Felix, D. Jameel, N. A. Saqri, F. S. A. Mashary, H. M. Alghamdi, H. M. A. Albalawi, D. Taylor, and M. Henini, “Rapid thermal annealing: An efficient method to improve the electrical properties of tellurium compensated Interfacial Misfit GaSb/GaAs heterostructures,” Superlattices Microstruct. 88, 80–89 (2015).
[Crossref]

Masumoto, Y.

A. Satake, Y. Masumoto, T. Miyajima, T. Asatsuma, F. Nakamura, and M. Ikeda, “Localized exciton and its stimulated emission in surface mode from single-layer InxGa1−xN,” Phys. Rev. B 57(4), R2041–R2044 (1998).
[Crossref]

Mayoral, A.

D. F. Reyes, D. González, J. M. Ulloa, D. L. Sales, L. Dominguez, A. Mayoral, and A. Hierro, “Impact of N on the atomic-scale Sb distribution in quaternary GaAsSbN-capped InAs quantum dots,” Nanoscale Res. Lett. 7(1), 653 (2012).
[Crossref] [PubMed]

Mezrag, F.

F. Mezrag, N. Y. Aouina, and N. Bouarissa, “Optoelectronic and dielectric properties of GaAsxSb1-x ternary alloys,” J. Mater. Sci. 41(16), 5323–5328 (2006).
[Crossref]

Mikkelsen, A.

O. Persson, J. L. Webb, K. A. Dick, C. Thelander, A. Mikkelsen, and R. Timm, “Scanning Tunneling Spectroscopy on InAs-GaSb Esaki Diode Nanowire Devices during Operation,” Nano Lett. 15(6), 3684–3691 (2015).
[Crossref] [PubMed]

Mills, M. J.

Y. Gao, N. Zhou, F. Yang, Y. Cui, L. Kovarik, N. Hatcher, R. Noebe, M. J. Mills, and Y. Wang, “P-phase precipitation and its effect on martensitic transformation in (Ni, Pt) Ti shape memory alloys,” Acta Mater. 60(4), 1514–1527 (2012).
[Crossref]

Misiewicz, J.

R. Kudrawiec, G. Sek, K. Ryczko, J. Misiewicz, and J. C. Harmand, “Photoreflectance investigations of oscillator strength and broadening of optical transitions for GaAsSb-GaInAs/GaAs bilayer quantum wells,” Appl. Phys. Lett. 84(18), 3453–3455 (2004).
[Crossref]

Miyajima, T.

A. Satake, Y. Masumoto, T. Miyajima, T. Asatsuma, F. Nakamura, and M. Ikeda, “Localized exciton and its stimulated emission in surface mode from single-layer InxGa1−xN,” Phys. Rev. B 57(4), R2041–R2044 (1998).
[Crossref]

Morante, J. R.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Mujagic, E.

H. Detz, A. M. Andrews, M. Nobile, P. Klang, E. Mujagić, G. Hesser, W. Schrenk, F. Schäffler, and G. Strasser, “Intersubband optoelectronics in the InGaAs/GaAsSb material system,” J. Vac. Sci. Technol. B 28(3), C3G19 (2010).
[Crossref]

Munshi, A. M.

D. Ren, D. L. Dheeraj, C. Jin, J. S. Nilsen, J. Huh, J. F. Reinertsen, A. M. Munshi, A. Gustafsson, A. T. J. van Helvoort, H. Weman, and B. O. Fimland, “New insights into the origins of Sb-induced effects on self-catalyzed GaAsSb nanowire arrays,” Nano Lett. 16(2), 1201–1209 (2016).
[Crossref] [PubMed]

J. Huh, H. Yun, D. C. Kim, A. M. Munshi, D. L. Dheeraj, H. Kauko, A. T. J. van Helvoort, S. Lee, B. O. Fimland, and H. Weman, “Rectifying single GaAsSb nanowire devices based on self-induced compositional gradients,” Nano Lett. 15(6), 3709–3715 (2015).
[Crossref] [PubMed]

Nakamura, F.

A. Satake, Y. Masumoto, T. Miyajima, T. Asatsuma, F. Nakamura, and M. Ikeda, “Localized exciton and its stimulated emission in surface mode from single-layer InxGa1−xN,” Phys. Rev. B 57(4), R2041–R2044 (1998).
[Crossref]

Nathan, A.

S. Lee, A. Nathan, Y. Ye, Y. Guo, and J. Robertson, “Localized tail states and electron mobility in amorphous ZnON thin film transistors,” Sci. Rep. 5, 13467 (2015).
[Crossref] [PubMed]

Nguyen, T. D.

K. A. Dao, D. K. Dao, T. D. Nguyen, A. T. Phan, and H. M. Do, “The effects of Au surface diffusion to fomation of Au droplets/clusters and nanowire growth on GaAs substrate using VLS method,” J. Mater. Sci. Mater. Electron. 23(11), 2065–2074 (2012).
[Crossref]

Nie, J. F.

Y. Gao, H. Liu, R. Shi, N. Zhou, Z. Xu, Y. M. Zhu, J. F. Nie, and Y. Wang, “Simulation study of precipitation in an Mg-Y-Nd alloy,” Acta Mater. 60(12), 4819–4832 (2012).
[Crossref]

Nikishin, S. A.

S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75(11), 1538–1540 (1999).
[Crossref]

Nilsen, J. S.

D. Ren, D. L. Dheeraj, C. Jin, J. S. Nilsen, J. Huh, J. F. Reinertsen, A. M. Munshi, A. Gustafsson, A. T. J. van Helvoort, H. Weman, and B. O. Fimland, “New insights into the origins of Sb-induced effects on self-catalyzed GaAsSb nanowire arrays,” Nano Lett. 16(2), 1201–1209 (2016).
[Crossref] [PubMed]

Nobile, M.

H. Detz, A. M. Andrews, M. Nobile, P. Klang, E. Mujagić, G. Hesser, W. Schrenk, F. Schäffler, and G. Strasser, “Intersubband optoelectronics in the InGaAs/GaAsSb material system,” J. Vac. Sci. Technol. B 28(3), C3G19 (2010).
[Crossref]

Noebe, R.

Y. Gao, N. Zhou, F. Yang, Y. Cui, L. Kovarik, N. Hatcher, R. Noebe, M. J. Mills, and Y. Wang, “P-phase precipitation and its effect on martensitic transformation in (Ni, Pt) Ti shape memory alloys,” Acta Mater. 60(4), 1514–1527 (2012).
[Crossref]

O’Regan, D. D.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Pan, A.

L. Ma, X. Zhang, H. Li, H. Tan, Y. Yang, Y. Xu, W. Hu, X. Zhu, X. Zhuang, and A. Pan, “Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31 μm,” Semicond. Sci. Technol. 30(10), 105033 (2015).
[Crossref]

L. Ma, W. Hu, Q. Zhang, P. Ren, X. Zhuang, H. Zhou, J. Xu, H. Li, Z. Shan, X. Wang, L. Liao, H. Q. Xu, and A. Pan, “Room-temperature near-infrared photodetectors based on single heterojunction nanowires,” Nano Lett. 14(2), 694–698 (2014).
[Crossref] [PubMed]

Peng, K.

Z. Li, X. Yuan, L. Fu, K. Peng, F. Wang, X. Fu, P. Caroff, T. P. White, H. Hoe Tan, and C. Jagadish, “Room temperature GaAsSb single nanowire infrared photodetectors,” Nanotechnology 26(44), 445202 (2015).
[Crossref] [PubMed]

Persson, O.

O. Persson, J. L. Webb, K. A. Dick, C. Thelander, A. Mikkelsen, and R. Timm, “Scanning Tunneling Spectroscopy on InAs-GaSb Esaki Diode Nanowire Devices during Operation,” Nano Lett. 15(6), 3684–3691 (2015).
[Crossref] [PubMed]

Phan, A. T.

K. A. Dao, D. K. Dao, T. D. Nguyen, A. T. Phan, and H. M. Do, “The effects of Au surface diffusion to fomation of Au droplets/clusters and nanowire growth on GaAs substrate using VLS method,” J. Mater. Sci. Mater. Electron. 23(11), 2065–2074 (2012).
[Crossref]

Pistol, M. E.

B. M. Borg, K. A. Dick, B. Ganjipour, M. E. Pistol, L. E. Wernersson, and C. Thelander, “InAs/GaSb heterostructure nanowires for tunnel field-effect transistors,” Nano Lett. 10(10), 4080–4085 (2010).
[Crossref] [PubMed]

Qiu, Y.

S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75(11), 1538–1540 (1999).
[Crossref]

Rahimi-Iman, A.

R. Woscholski, M. K. Shakfa, S. Gies, M. Wiemer, A. Rahimi-Iman, M. Zimprich, S. Reinhard, K. Jandieri, S. D. Baranovskii, W. Heimbrodt, K. Volz, W. Stolz, and M. Koch, “Time-resolved photoluminescence of Ga (NAsP) multiple quantum wells grown on Si substrate: Effects of rapid thermal annealing,” Thin Solid Films 613, 55–58 (2016).
[Crossref]

Reinertsen, J. F.

D. Ren, D. L. Dheeraj, C. Jin, J. S. Nilsen, J. Huh, J. F. Reinertsen, A. M. Munshi, A. Gustafsson, A. T. J. van Helvoort, H. Weman, and B. O. Fimland, “New insights into the origins of Sb-induced effects on self-catalyzed GaAsSb nanowire arrays,” Nano Lett. 16(2), 1201–1209 (2016).
[Crossref] [PubMed]

Reinhard, S.

R. Woscholski, M. K. Shakfa, S. Gies, M. Wiemer, A. Rahimi-Iman, M. Zimprich, S. Reinhard, K. Jandieri, S. D. Baranovskii, W. Heimbrodt, K. Volz, W. Stolz, and M. Koch, “Time-resolved photoluminescence of Ga (NAsP) multiple quantum wells grown on Si substrate: Effects of rapid thermal annealing,” Thin Solid Films 613, 55–58 (2016).
[Crossref]

Ren, D.

D. Ren, D. L. Dheeraj, C. Jin, J. S. Nilsen, J. Huh, J. F. Reinertsen, A. M. Munshi, A. Gustafsson, A. T. J. van Helvoort, H. Weman, and B. O. Fimland, “New insights into the origins of Sb-induced effects on self-catalyzed GaAsSb nanowire arrays,” Nano Lett. 16(2), 1201–1209 (2016).
[Crossref] [PubMed]

Ren, P.

L. Ma, W. Hu, Q. Zhang, P. Ren, X. Zhuang, H. Zhou, J. Xu, H. Li, Z. Shan, X. Wang, L. Liao, H. Q. Xu, and A. Pan, “Room-temperature near-infrared photodetectors based on single heterojunction nanowires,” Nano Lett. 14(2), 694–698 (2014).
[Crossref] [PubMed]

Reyes, D. F.

D. F. Reyes, J. M. Ulloa, A. Guzman, A. Hierro, D. L. Sales, R. Beanland, A. M. Sanchez, and D. González, “Effect of annealing in the Sb and In distribution of type II GaAsSb-capped InAs quantum dots,” Semicond. Sci. Technol. 30(11), 114006 (2015).
[Crossref]

D. F. Reyes, D. González, J. M. Ulloa, D. L. Sales, L. Dominguez, A. Mayoral, and A. Hierro, “Impact of N on the atomic-scale Sb distribution in quaternary GaAsSbN-capped InAs quantum dots,” Nanoscale Res. Lett. 7(1), 653 (2012).
[Crossref] [PubMed]

Robertson, J.

S. Lee, A. Nathan, Y. Ye, Y. Guo, and J. Robertson, “Localized tail states and electron mobility in amorphous ZnON thin film transistors,” Sci. Rep. 5, 13467 (2015).
[Crossref] [PubMed]

Romanov, A. E.

V. V. Chaldyshev, A. L. Kolesnikova, N. A. Bert, and A. E. Romanov, “Investigation of dislocation loops associated with As-Sb nanoclusters in GaAs,” J. Appl. Phys. 97(2), 024309 (2005).
[Crossref]

Russo-Averchi, E.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Ryczko, K.

R. Kudrawiec, G. Sek, K. Ryczko, J. Misiewicz, and J. C. Harmand, “Photoreflectance investigations of oscillator strength and broadening of optical transitions for GaAsSb-GaInAs/GaAs bilayer quantum wells,” Appl. Phys. Lett. 84(18), 3453–3455 (2004).
[Crossref]

Sales, D. L.

D. F. Reyes, J. M. Ulloa, A. Guzman, A. Hierro, D. L. Sales, R. Beanland, A. M. Sanchez, and D. González, “Effect of annealing in the Sb and In distribution of type II GaAsSb-capped InAs quantum dots,” Semicond. Sci. Technol. 30(11), 114006 (2015).
[Crossref]

D. F. Reyes, D. González, J. M. Ulloa, D. L. Sales, L. Dominguez, A. Mayoral, and A. Hierro, “Impact of N on the atomic-scale Sb distribution in quaternary GaAsSbN-capped InAs quantum dots,” Nanoscale Res. Lett. 7(1), 653 (2012).
[Crossref] [PubMed]

Sanchez, A. M.

D. F. Reyes, J. M. Ulloa, A. Guzman, A. Hierro, D. L. Sales, R. Beanland, A. M. Sanchez, and D. González, “Effect of annealing in the Sb and In distribution of type II GaAsSb-capped InAs quantum dots,” Semicond. Sci. Technol. 30(11), 114006 (2015).
[Crossref]

Saqri, N. A.

M. Aziz, J. F. Felix, D. Jameel, N. A. Saqri, F. S. A. Mashary, H. M. Alghamdi, H. M. A. Albalawi, D. Taylor, and M. Henini, “Rapid thermal annealing: An efficient method to improve the electrical properties of tellurium compensated Interfacial Misfit GaSb/GaAs heterostructures,” Superlattices Microstruct. 88, 80–89 (2015).
[Crossref]

Satake, A.

A. Satake, Y. Masumoto, T. Miyajima, T. Asatsuma, F. Nakamura, and M. Ikeda, “Localized exciton and its stimulated emission in surface mode from single-layer InxGa1−xN,” Phys. Rev. B 57(4), R2041–R2044 (1998).
[Crossref]

Schäffler, F.

H. Detz, A. M. Andrews, M. Nobile, P. Klang, E. Mujagić, G. Hesser, W. Schrenk, F. Schäffler, and G. Strasser, “Intersubband optoelectronics in the InGaAs/GaAsSb material system,” J. Vac. Sci. Technol. B 28(3), C3G19 (2010).
[Crossref]

Schrenk, W.

H. Detz, A. M. Andrews, M. Nobile, P. Klang, E. Mujagić, G. Hesser, W. Schrenk, F. Schäffler, and G. Strasser, “Intersubband optoelectronics in the InGaAs/GaAsSb material system,” J. Vac. Sci. Technol. B 28(3), C3G19 (2010).
[Crossref]

Sek, G.

R. Kudrawiec, G. Sek, K. Ryczko, J. Misiewicz, and J. C. Harmand, “Photoreflectance investigations of oscillator strength and broadening of optical transitions for GaAsSb-GaInAs/GaAs bilayer quantum wells,” Appl. Phys. Lett. 84(18), 3453–3455 (2004).
[Crossref]

Shakfa, M. K.

R. Woscholski, M. K. Shakfa, S. Gies, M. Wiemer, A. Rahimi-Iman, M. Zimprich, S. Reinhard, K. Jandieri, S. D. Baranovskii, W. Heimbrodt, K. Volz, W. Stolz, and M. Koch, “Time-resolved photoluminescence of Ga (NAsP) multiple quantum wells grown on Si substrate: Effects of rapid thermal annealing,” Thin Solid Films 613, 55–58 (2016).
[Crossref]

Shan, C. X.

H. Zhu, C. X. Shan, B. H. Li, Z. Z. Zhang, J. Y. Zhang, B. Yao, D. Z. Shen, and X. W. Fan, “Enhanced photoluminescence caused by localized excitons observed in MgZnO alloy,” J. Appl. Phys. 105(10), 103508 (2009).
[Crossref]

Shan, Z.

L. Ma, W. Hu, Q. Zhang, P. Ren, X. Zhuang, H. Zhou, J. Xu, H. Li, Z. Shan, X. Wang, L. Liao, H. Q. Xu, and A. Pan, “Room-temperature near-infrared photodetectors based on single heterojunction nanowires,” Nano Lett. 14(2), 694–698 (2014).
[Crossref] [PubMed]

Shen, D. Z.

H. Zhu, C. X. Shan, B. H. Li, Z. Z. Zhang, J. Y. Zhang, B. Yao, D. Z. Shen, and X. W. Fan, “Enhanced photoluminescence caused by localized excitons observed in MgZnO alloy,” J. Appl. Phys. 105(10), 103508 (2009).
[Crossref]

Shi, R.

Y. Gao, H. Liu, R. Shi, N. Zhou, Z. Xu, Y. M. Zhu, J. F. Nie, and Y. Wang, “Simulation study of precipitation in an Mg-Y-Nd alloy,” Acta Mater. 60(12), 4819–4832 (2012).
[Crossref]

Shi, T.

T. Shi, H. E. Jackson, L. M. Smith, N. Jiang, Q. Gao, H. H. Tan, C. Jagadish, C. Zheng, and J. Etheridge, “Emergence of localized states in narrow GaAs/AlGaAs nanowire quantum well tubes,” Nano Lett. 15(3), 1876–1882 (2015).
[Crossref] [PubMed]

Shin, J. C.

J. Kim, J. Hwang, K. Song, N. Kimet, J. C. Shin, and J. Lee, “Ultra-thin flexible GaAs photovoltaics in vertical forms printed on metal surfaces without interlayer adhesives,” Appl. Phys. Lett. 108(25), 253101 (2016).
[Crossref]

Shirakata, S.

S. Shirakata, M. Kondow, and T. Kitatani, “Temperature-dependent photoluminescence of high-quality GaInNAs single quantum wells,” Appl. Phys. Lett. 80(12), 2087–2089 (2002).
[Crossref]

Smith, L. M.

T. Shi, H. E. Jackson, L. M. Smith, N. Jiang, Q. Gao, H. H. Tan, C. Jagadish, C. Zheng, and J. Etheridge, “Emergence of localized states in narrow GaAs/AlGaAs nanowire quantum well tubes,” Nano Lett. 15(3), 1876–1882 (2015).
[Crossref] [PubMed]

Song, K.

J. Kim, J. Hwang, K. Song, N. Kimet, J. C. Shin, and J. Lee, “Ultra-thin flexible GaAs photovoltaics in vertical forms printed on metal surfaces without interlayer adhesives,” Appl. Phys. Lett. 108(25), 253101 (2016).
[Crossref]

Stolz, W.

R. Woscholski, M. K. Shakfa, S. Gies, M. Wiemer, A. Rahimi-Iman, M. Zimprich, S. Reinhard, K. Jandieri, S. D. Baranovskii, W. Heimbrodt, K. Volz, W. Stolz, and M. Koch, “Time-resolved photoluminescence of Ga (NAsP) multiple quantum wells grown on Si substrate: Effects of rapid thermal annealing,” Thin Solid Films 613, 55–58 (2016).
[Crossref]

Strasser, G.

H. Detz, A. M. Andrews, M. Nobile, P. Klang, E. Mujagić, G. Hesser, W. Schrenk, F. Schäffler, and G. Strasser, “Intersubband optoelectronics in the InGaAs/GaAsSb material system,” J. Vac. Sci. Technol. B 28(3), C3G19 (2010).
[Crossref]

Su, W. S.

Y. S. Chiu, M. H. Ya, W. S. Su, and Y. F. Chen, “Properties of photoluminescence in type-II GaAsSb/GaAs multiple quantum wells,” J. Appl. Phys. 92(10), 5810–5813 (2002).
[Crossref]

Sun, Y.

Y. Sun, L. Yuan, X. Wu, Y. Cong, K. Huang, and S. Feng, “Infrared absorption enhancement by charge transfer in Ga-GaSb metal-semiconductor nanohybrids,” Langmuir 32(17), 4189–4193 (2016).
[Crossref] [PubMed]

Tan, H.

L. Ma, X. Zhang, H. Li, H. Tan, Y. Yang, Y. Xu, W. Hu, X. Zhu, X. Zhuang, and A. Pan, “Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31 μm,” Semicond. Sci. Technol. 30(10), 105033 (2015).
[Crossref]

Tan, H. H.

T. Shi, H. E. Jackson, L. M. Smith, N. Jiang, Q. Gao, H. H. Tan, C. Jagadish, C. Zheng, and J. Etheridge, “Emergence of localized states in narrow GaAs/AlGaAs nanowire quantum well tubes,” Nano Lett. 15(3), 1876–1882 (2015).
[Crossref] [PubMed]

Tan, P. H.

X. D. Luo, P. H. Tan, Z. Y. Xu, and W. K. Ge, “Selectively excited photoluminescence of GaAs1− xNx single quantum wells,” J. Appl. Phys. 94(8), 4863–4865 (2003).
[Crossref]

Tang, J.

X. Gao, Z. Wei, F. Zhao, Y. Yang, R. Chen, X. Fang, J. Tang, D. Fang, D. Wang, R. Li, X. Ge, X. Ma, and X. Wang, “Investigation of localized states in GaAsSb epilayers grown by molecular beam epitaxy,” Sci. Rep. 6, 29112 (2016).
[Crossref] [PubMed]

X. Fang, Z. Wei, Y. Yang, R. Chen, Y. Li, J. Tang, D. Fang, H. Jia, D. Wang, J. Fan, X. Ma, B. Yao, and X. Wang, “Ultraviolet electroluminescence from ZnS@ ZnO core-shell nanowires/p-GaN introduced by exciton localization,” ACS Appl. Mater. Interfaces 8(3), 1661–1666 (2016).
[Crossref] [PubMed]

X. Fang, Z. Wei, R. Chen, J. Tang, H. Zhao, L. Zhang, D. Zhao, D. Fang, J. Li, F. Fang, X. Chu, and X. Wang, “Influence of exciton localization on the emission and ultraviolet photoresponse of ZnO/ZnS core-shell nanowires,” ACS Appl. Mater. Interfaces 7(19), 10331–10336 (2015).
[Crossref] [PubMed]

Taylor, D.

M. Aziz, J. F. Felix, D. Jameel, N. A. Saqri, F. S. A. Mashary, H. M. Alghamdi, H. M. A. Albalawi, D. Taylor, and M. Henini, “Rapid thermal annealing: An efficient method to improve the electrical properties of tellurium compensated Interfacial Misfit GaSb/GaAs heterostructures,” Superlattices Microstruct. 88, 80–89 (2015).
[Crossref]

Temkin, H.

S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75(11), 1538–1540 (1999).
[Crossref]

Thelander, C.

O. Persson, J. L. Webb, K. A. Dick, C. Thelander, A. Mikkelsen, and R. Timm, “Scanning Tunneling Spectroscopy on InAs-GaSb Esaki Diode Nanowire Devices during Operation,” Nano Lett. 15(6), 3684–3691 (2015).
[Crossref] [PubMed]

B. M. Borg, K. A. Dick, B. Ganjipour, M. E. Pistol, L. E. Wernersson, and C. Thelander, “InAs/GaSb heterostructure nanowires for tunnel field-effect transistors,” Nano Lett. 10(10), 4080–4085 (2010).
[Crossref] [PubMed]

Timm, R.

O. Persson, J. L. Webb, K. A. Dick, C. Thelander, A. Mikkelsen, and R. Timm, “Scanning Tunneling Spectroscopy on InAs-GaSb Esaki Diode Nanowire Devices during Operation,” Nano Lett. 15(6), 3684–3691 (2015).
[Crossref] [PubMed]

Tseng, H. L.

Ulloa, J. M.

D. F. Reyes, J. M. Ulloa, A. Guzman, A. Hierro, D. L. Sales, R. Beanland, A. M. Sanchez, and D. González, “Effect of annealing in the Sb and In distribution of type II GaAsSb-capped InAs quantum dots,” Semicond. Sci. Technol. 30(11), 114006 (2015).
[Crossref]

D. F. Reyes, D. González, J. M. Ulloa, D. L. Sales, L. Dominguez, A. Mayoral, and A. Hierro, “Impact of N on the atomic-scale Sb distribution in quaternary GaAsSbN-capped InAs quantum dots,” Nanoscale Res. Lett. 7(1), 653 (2012).
[Crossref] [PubMed]

van Helvoort, A. T. J.

D. Ren, D. L. Dheeraj, C. Jin, J. S. Nilsen, J. Huh, J. F. Reinertsen, A. M. Munshi, A. Gustafsson, A. T. J. van Helvoort, H. Weman, and B. O. Fimland, “New insights into the origins of Sb-induced effects on self-catalyzed GaAsSb nanowire arrays,” Nano Lett. 16(2), 1201–1209 (2016).
[Crossref] [PubMed]

J. Huh, H. Yun, D. C. Kim, A. M. Munshi, D. L. Dheeraj, H. Kauko, A. T. J. van Helvoort, S. Lee, B. O. Fimland, and H. Weman, “Rectifying single GaAsSb nanowire devices based on self-induced compositional gradients,” Nano Lett. 15(6), 3709–3715 (2015).
[Crossref] [PubMed]

Van Vechten, J. A.

J. A. Van Vechten and T. K. Bergstresser, “Electronic structures of semiconductor alloys,” Phys. Rev. B 1(8), 3351–3358 (1970).
[Crossref]

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Volz, K.

R. Woscholski, M. K. Shakfa, S. Gies, M. Wiemer, A. Rahimi-Iman, M. Zimprich, S. Reinhard, K. Jandieri, S. D. Baranovskii, W. Heimbrodt, K. Volz, W. Stolz, and M. Koch, “Time-resolved photoluminescence of Ga (NAsP) multiple quantum wells grown on Si substrate: Effects of rapid thermal annealing,” Thin Solid Films 613, 55–58 (2016).
[Crossref]

Wang, D.

X. Fang, Z. Wei, Y. Yang, R. Chen, Y. Li, J. Tang, D. Fang, H. Jia, D. Wang, J. Fan, X. Ma, B. Yao, and X. Wang, “Ultraviolet electroluminescence from ZnS@ ZnO core-shell nanowires/p-GaN introduced by exciton localization,” ACS Appl. Mater. Interfaces 8(3), 1661–1666 (2016).
[Crossref] [PubMed]

X. Gao, Z. Wei, F. Zhao, Y. Yang, R. Chen, X. Fang, J. Tang, D. Fang, D. Wang, R. Li, X. Ge, X. Ma, and X. Wang, “Investigation of localized states in GaAsSb epilayers grown by molecular beam epitaxy,” Sci. Rep. 6, 29112 (2016).
[Crossref] [PubMed]

Wang, F.

Z. Li, X. Yuan, L. Fu, K. Peng, F. Wang, X. Fu, P. Caroff, T. P. White, H. Hoe Tan, and C. Jagadish, “Room temperature GaAsSb single nanowire infrared photodetectors,” Nanotechnology 26(44), 445202 (2015).
[Crossref] [PubMed]

Wang, J. N.

X. D. Luo, C. Y. Hu, Z. Y. Xu, H. L. Luo, Y. Q. Wang, J. N. Wang, and W. K. Ge, “Selectively excited photoluminescence of GaAs1−xSbx/GaAs single quantum wells,” Appl. Phys. Lett. 81(20), 3795–3797 (2002).
[Crossref]

Wang, X.

X. Gao, Z. Wei, F. Zhao, Y. Yang, R. Chen, X. Fang, J. Tang, D. Fang, D. Wang, R. Li, X. Ge, X. Ma, and X. Wang, “Investigation of localized states in GaAsSb epilayers grown by molecular beam epitaxy,” Sci. Rep. 6, 29112 (2016).
[Crossref] [PubMed]

X. Fang, Z. Wei, Y. Yang, R. Chen, Y. Li, J. Tang, D. Fang, H. Jia, D. Wang, J. Fan, X. Ma, B. Yao, and X. Wang, “Ultraviolet electroluminescence from ZnS@ ZnO core-shell nanowires/p-GaN introduced by exciton localization,” ACS Appl. Mater. Interfaces 8(3), 1661–1666 (2016).
[Crossref] [PubMed]

X. Fang, Z. Wei, R. Chen, J. Tang, H. Zhao, L. Zhang, D. Zhao, D. Fang, J. Li, F. Fang, X. Chu, and X. Wang, “Influence of exciton localization on the emission and ultraviolet photoresponse of ZnO/ZnS core-shell nanowires,” ACS Appl. Mater. Interfaces 7(19), 10331–10336 (2015).
[Crossref] [PubMed]

L. Ma, W. Hu, Q. Zhang, P. Ren, X. Zhuang, H. Zhou, J. Xu, H. Li, Z. Shan, X. Wang, L. Liao, H. Q. Xu, and A. Pan, “Room-temperature near-infrared photodetectors based on single heterojunction nanowires,” Nano Lett. 14(2), 694–698 (2014).
[Crossref] [PubMed]

Wang, Y.

Y. Gao, H. Liu, R. Shi, N. Zhou, Z. Xu, Y. M. Zhu, J. F. Nie, and Y. Wang, “Simulation study of precipitation in an Mg-Y-Nd alloy,” Acta Mater. 60(12), 4819–4832 (2012).
[Crossref]

Y. Gao, N. Zhou, F. Yang, Y. Cui, L. Kovarik, N. Hatcher, R. Noebe, M. J. Mills, and Y. Wang, “P-phase precipitation and its effect on martensitic transformation in (Ni, Pt) Ti shape memory alloys,” Acta Mater. 60(4), 1514–1527 (2012).
[Crossref]

Wang, Y. Q.

X. D. Luo, C. Y. Hu, Z. Y. Xu, H. L. Luo, Y. Q. Wang, J. N. Wang, and W. K. Ge, “Selectively excited photoluminescence of GaAs1−xSbx/GaAs single quantum wells,” Appl. Phys. Lett. 81(20), 3795–3797 (2002).
[Crossref]

Warburton, R. J.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Webb, J. L.

O. Persson, J. L. Webb, K. A. Dick, C. Thelander, A. Mikkelsen, and R. Timm, “Scanning Tunneling Spectroscopy on InAs-GaSb Esaki Diode Nanowire Devices during Operation,” Nano Lett. 15(6), 3684–3691 (2015).
[Crossref] [PubMed]

Wei, Z.

X. Gao, Z. Wei, F. Zhao, Y. Yang, R. Chen, X. Fang, J. Tang, D. Fang, D. Wang, R. Li, X. Ge, X. Ma, and X. Wang, “Investigation of localized states in GaAsSb epilayers grown by molecular beam epitaxy,” Sci. Rep. 6, 29112 (2016).
[Crossref] [PubMed]

X. Fang, Z. Wei, Y. Yang, R. Chen, Y. Li, J. Tang, D. Fang, H. Jia, D. Wang, J. Fan, X. Ma, B. Yao, and X. Wang, “Ultraviolet electroluminescence from ZnS@ ZnO core-shell nanowires/p-GaN introduced by exciton localization,” ACS Appl. Mater. Interfaces 8(3), 1661–1666 (2016).
[Crossref] [PubMed]

X. Fang, Z. Wei, R. Chen, J. Tang, H. Zhao, L. Zhang, D. Zhao, D. Fang, J. Li, F. Fang, X. Chu, and X. Wang, “Influence of exciton localization on the emission and ultraviolet photoresponse of ZnO/ZnS core-shell nanowires,” ACS Appl. Mater. Interfaces 7(19), 10331–10336 (2015).
[Crossref] [PubMed]

Weman, H.

D. Ren, D. L. Dheeraj, C. Jin, J. S. Nilsen, J. Huh, J. F. Reinertsen, A. M. Munshi, A. Gustafsson, A. T. J. van Helvoort, H. Weman, and B. O. Fimland, “New insights into the origins of Sb-induced effects on self-catalyzed GaAsSb nanowire arrays,” Nano Lett. 16(2), 1201–1209 (2016).
[Crossref] [PubMed]

J. Huh, H. Yun, D. C. Kim, A. M. Munshi, D. L. Dheeraj, H. Kauko, A. T. J. van Helvoort, S. Lee, B. O. Fimland, and H. Weman, “Rectifying single GaAsSb nanowire devices based on self-induced compositional gradients,” Nano Lett. 15(6), 3709–3715 (2015).
[Crossref] [PubMed]

Wernersson, L. E.

B. M. Borg, K. A. Dick, B. Ganjipour, M. E. Pistol, L. E. Wernersson, and C. Thelander, “InAs/GaSb heterostructure nanowires for tunnel field-effect transistors,” Nano Lett. 10(10), 4080–4085 (2010).
[Crossref] [PubMed]

White, T. P.

Z. Li, X. Yuan, L. Fu, K. Peng, F. Wang, X. Fu, P. Caroff, T. P. White, H. Hoe Tan, and C. Jagadish, “Room temperature GaAsSb single nanowire infrared photodetectors,” Nanotechnology 26(44), 445202 (2015).
[Crossref] [PubMed]

Wiemer, M.

R. Woscholski, M. K. Shakfa, S. Gies, M. Wiemer, A. Rahimi-Iman, M. Zimprich, S. Reinhard, K. Jandieri, S. D. Baranovskii, W. Heimbrodt, K. Volz, W. Stolz, and M. Koch, “Time-resolved photoluminescence of Ga (NAsP) multiple quantum wells grown on Si substrate: Effects of rapid thermal annealing,” Thin Solid Films 613, 55–58 (2016).
[Crossref]

Woscholski, R.

R. Woscholski, M. K. Shakfa, S. Gies, M. Wiemer, A. Rahimi-Iman, M. Zimprich, S. Reinhard, K. Jandieri, S. D. Baranovskii, W. Heimbrodt, K. Volz, W. Stolz, and M. Koch, “Time-resolved photoluminescence of Ga (NAsP) multiple quantum wells grown on Si substrate: Effects of rapid thermal annealing,” Thin Solid Films 613, 55–58 (2016).
[Crossref]

Wu, X.

Y. Sun, L. Yuan, X. Wu, Y. Cong, K. Huang, and S. Feng, “Infrared absorption enhancement by charge transfer in Ga-GaSb metal-semiconductor nanohybrids,” Langmuir 32(17), 4189–4193 (2016).
[Crossref] [PubMed]

Wüst, G.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Xu, H. Q.

L. Ma, W. Hu, Q. Zhang, P. Ren, X. Zhuang, H. Zhou, J. Xu, H. Li, Z. Shan, X. Wang, L. Liao, H. Q. Xu, and A. Pan, “Room-temperature near-infrared photodetectors based on single heterojunction nanowires,” Nano Lett. 14(2), 694–698 (2014).
[Crossref] [PubMed]

Xu, J.

L. Ma, W. Hu, Q. Zhang, P. Ren, X. Zhuang, H. Zhou, J. Xu, H. Li, Z. Shan, X. Wang, L. Liao, H. Q. Xu, and A. Pan, “Room-temperature near-infrared photodetectors based on single heterojunction nanowires,” Nano Lett. 14(2), 694–698 (2014).
[Crossref] [PubMed]

Xu, Y.

L. Ma, X. Zhang, H. Li, H. Tan, Y. Yang, Y. Xu, W. Hu, X. Zhu, X. Zhuang, and A. Pan, “Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31 μm,” Semicond. Sci. Technol. 30(10), 105033 (2015).
[Crossref]

Xu, Z.

Y. Gao, H. Liu, R. Shi, N. Zhou, Z. Xu, Y. M. Zhu, J. F. Nie, and Y. Wang, “Simulation study of precipitation in an Mg-Y-Nd alloy,” Acta Mater. 60(12), 4819–4832 (2012).
[Crossref]

Xu, Z. Y.

X. D. Luo, P. H. Tan, Z. Y. Xu, and W. K. Ge, “Selectively excited photoluminescence of GaAs1− xNx single quantum wells,” J. Appl. Phys. 94(8), 4863–4865 (2003).
[Crossref]

X. D. Luo, C. Y. Hu, Z. Y. Xu, H. L. Luo, Y. Q. Wang, J. N. Wang, and W. K. Ge, “Selectively excited photoluminescence of GaAs1−xSbx/GaAs single quantum wells,” Appl. Phys. Lett. 81(20), 3795–3797 (2002).
[Crossref]

Ya, M. H.

Y. S. Chiu, M. H. Ya, W. S. Su, and Y. F. Chen, “Properties of photoluminescence in type-II GaAsSb/GaAs multiple quantum wells,” J. Appl. Phys. 92(10), 5810–5813 (2002).
[Crossref]

Yang, F.

Y. Gao, N. Zhou, F. Yang, Y. Cui, L. Kovarik, N. Hatcher, R. Noebe, M. J. Mills, and Y. Wang, “P-phase precipitation and its effect on martensitic transformation in (Ni, Pt) Ti shape memory alloys,” Acta Mater. 60(4), 1514–1527 (2012).
[Crossref]

Yang, Y.

X. Gao, Z. Wei, F. Zhao, Y. Yang, R. Chen, X. Fang, J. Tang, D. Fang, D. Wang, R. Li, X. Ge, X. Ma, and X. Wang, “Investigation of localized states in GaAsSb epilayers grown by molecular beam epitaxy,” Sci. Rep. 6, 29112 (2016).
[Crossref] [PubMed]

X. Fang, Z. Wei, Y. Yang, R. Chen, Y. Li, J. Tang, D. Fang, H. Jia, D. Wang, J. Fan, X. Ma, B. Yao, and X. Wang, “Ultraviolet electroluminescence from ZnS@ ZnO core-shell nanowires/p-GaN introduced by exciton localization,” ACS Appl. Mater. Interfaces 8(3), 1661–1666 (2016).
[Crossref] [PubMed]

L. Ma, X. Zhang, H. Li, H. Tan, Y. Yang, Y. Xu, W. Hu, X. Zhu, X. Zhuang, and A. Pan, “Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31 μm,” Semicond. Sci. Technol. 30(10), 105033 (2015).
[Crossref]

Yao, B.

X. Fang, Z. Wei, Y. Yang, R. Chen, Y. Li, J. Tang, D. Fang, H. Jia, D. Wang, J. Fan, X. Ma, B. Yao, and X. Wang, “Ultraviolet electroluminescence from ZnS@ ZnO core-shell nanowires/p-GaN introduced by exciton localization,” ACS Appl. Mater. Interfaces 8(3), 1661–1666 (2016).
[Crossref] [PubMed]

H. Zhu, C. X. Shan, B. H. Li, Z. Z. Zhang, J. Y. Zhang, B. Yao, D. Z. Shen, and X. W. Fan, “Enhanced photoluminescence caused by localized excitons observed in MgZnO alloy,” J. Appl. Phys. 105(10), 103508 (2009).
[Crossref]

Ye, F.

P. Fan, J. Zhao, G. Liang, D. Gu, Z. Zheng, D. Zhang, X. Cai, J. Luo, and F. Ye, “Effects of annealing treatment on the properties of CZTSe thin films deposited by RF-magnetron sputtering,” J. Alloys Compd. 625, 171–174 (2015).
[Crossref]

Ye, Y.

S. Lee, A. Nathan, Y. Ye, Y. Guo, and J. Robertson, “Localized tail states and electron mobility in amorphous ZnON thin film transistors,” Sci. Rep. 5, 13467 (2015).
[Crossref] [PubMed]

Yuan, L.

Y. Sun, L. Yuan, X. Wu, Y. Cong, K. Huang, and S. Feng, “Infrared absorption enhancement by charge transfer in Ga-GaSb metal-semiconductor nanohybrids,” Langmuir 32(17), 4189–4193 (2016).
[Crossref] [PubMed]

Yuan, X.

Z. Li, X. Yuan, L. Fu, K. Peng, F. Wang, X. Fu, P. Caroff, T. P. White, H. Hoe Tan, and C. Jagadish, “Room temperature GaAsSb single nanowire infrared photodetectors,” Nanotechnology 26(44), 445202 (2015).
[Crossref] [PubMed]

Yun, H.

J. Huh, H. Yun, D. C. Kim, A. M. Munshi, D. L. Dheeraj, H. Kauko, A. T. J. van Helvoort, S. Lee, B. O. Fimland, and H. Weman, “Rectifying single GaAsSb nanowire devices based on self-induced compositional gradients,” Nano Lett. 15(6), 3709–3715 (2015).
[Crossref] [PubMed]

Zhang, D.

P. Fan, J. Zhao, G. Liang, D. Gu, Z. Zheng, D. Zhang, X. Cai, J. Luo, and F. Ye, “Effects of annealing treatment on the properties of CZTSe thin films deposited by RF-magnetron sputtering,” J. Alloys Compd. 625, 171–174 (2015).
[Crossref]

Zhang, J. Y.

H. Zhu, C. X. Shan, B. H. Li, Z. Z. Zhang, J. Y. Zhang, B. Yao, D. Z. Shen, and X. W. Fan, “Enhanced photoluminescence caused by localized excitons observed in MgZnO alloy,” J. Appl. Phys. 105(10), 103508 (2009).
[Crossref]

Zhang, L.

X. Fang, Z. Wei, R. Chen, J. Tang, H. Zhao, L. Zhang, D. Zhao, D. Fang, J. Li, F. Fang, X. Chu, and X. Wang, “Influence of exciton localization on the emission and ultraviolet photoresponse of ZnO/ZnS core-shell nanowires,” ACS Appl. Mater. Interfaces 7(19), 10331–10336 (2015).
[Crossref] [PubMed]

Zhang, Q.

L. Ma, W. Hu, Q. Zhang, P. Ren, X. Zhuang, H. Zhou, J. Xu, H. Li, Z. Shan, X. Wang, L. Liao, H. Q. Xu, and A. Pan, “Room-temperature near-infrared photodetectors based on single heterojunction nanowires,” Nano Lett. 14(2), 694–698 (2014).
[Crossref] [PubMed]

Zhang, X.

L. Ma, X. Zhang, H. Li, H. Tan, Y. Yang, Y. Xu, W. Hu, X. Zhu, X. Zhuang, and A. Pan, “Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31 μm,” Semicond. Sci. Technol. 30(10), 105033 (2015).
[Crossref]

Zhang, Z. Z.

H. Zhu, C. X. Shan, B. H. Li, Z. Z. Zhang, J. Y. Zhang, B. Yao, D. Z. Shen, and X. W. Fan, “Enhanced photoluminescence caused by localized excitons observed in MgZnO alloy,” J. Appl. Phys. 105(10), 103508 (2009).
[Crossref]

Zhao, D.

X. Fang, Z. Wei, R. Chen, J. Tang, H. Zhao, L. Zhang, D. Zhao, D. Fang, J. Li, F. Fang, X. Chu, and X. Wang, “Influence of exciton localization on the emission and ultraviolet photoresponse of ZnO/ZnS core-shell nanowires,” ACS Appl. Mater. Interfaces 7(19), 10331–10336 (2015).
[Crossref] [PubMed]

Zhao, F.

X. Gao, Z. Wei, F. Zhao, Y. Yang, R. Chen, X. Fang, J. Tang, D. Fang, D. Wang, R. Li, X. Ge, X. Ma, and X. Wang, “Investigation of localized states in GaAsSb epilayers grown by molecular beam epitaxy,” Sci. Rep. 6, 29112 (2016).
[Crossref] [PubMed]

Zhao, H.

X. Fang, Z. Wei, R. Chen, J. Tang, H. Zhao, L. Zhang, D. Zhao, D. Fang, J. Li, F. Fang, X. Chu, and X. Wang, “Influence of exciton localization on the emission and ultraviolet photoresponse of ZnO/ZnS core-shell nanowires,” ACS Appl. Mater. Interfaces 7(19), 10331–10336 (2015).
[Crossref] [PubMed]

Zhao, J.

P. Fan, J. Zhao, G. Liang, D. Gu, Z. Zheng, D. Zhang, X. Cai, J. Luo, and F. Ye, “Effects of annealing treatment on the properties of CZTSe thin films deposited by RF-magnetron sputtering,” J. Alloys Compd. 625, 171–174 (2015).
[Crossref]

Zheng, C.

T. Shi, H. E. Jackson, L. M. Smith, N. Jiang, Q. Gao, H. H. Tan, C. Jagadish, C. Zheng, and J. Etheridge, “Emergence of localized states in narrow GaAs/AlGaAs nanowire quantum well tubes,” Nano Lett. 15(3), 1876–1882 (2015).
[Crossref] [PubMed]

Zheng, Y.

S. Jin, Y. Zheng, and A. Li, “Characterization of photoluminescence intensity and efficiency of free excitons in semiconductor quantum well structures,” J. Appl. Phys. 82(8), 3870–3873 (1997).
[Crossref]

Zheng, Z.

P. Fan, J. Zhao, G. Liang, D. Gu, Z. Zheng, D. Zhang, X. Cai, J. Luo, and F. Ye, “Effects of annealing treatment on the properties of CZTSe thin films deposited by RF-magnetron sputtering,” J. Alloys Compd. 625, 171–174 (2015).
[Crossref]

Zhou, H.

L. Ma, W. Hu, Q. Zhang, P. Ren, X. Zhuang, H. Zhou, J. Xu, H. Li, Z. Shan, X. Wang, L. Liao, H. Q. Xu, and A. Pan, “Room-temperature near-infrared photodetectors based on single heterojunction nanowires,” Nano Lett. 14(2), 694–698 (2014).
[Crossref] [PubMed]

Zhou, N.

Y. Gao, H. Liu, R. Shi, N. Zhou, Z. Xu, Y. M. Zhu, J. F. Nie, and Y. Wang, “Simulation study of precipitation in an Mg-Y-Nd alloy,” Acta Mater. 60(12), 4819–4832 (2012).
[Crossref]

Y. Gao, N. Zhou, F. Yang, Y. Cui, L. Kovarik, N. Hatcher, R. Noebe, M. J. Mills, and Y. Wang, “P-phase precipitation and its effect on martensitic transformation in (Ni, Pt) Ti shape memory alloys,” Acta Mater. 60(4), 1514–1527 (2012).
[Crossref]

Zhu, H.

H. Zhu, C. X. Shan, B. H. Li, Z. Z. Zhang, J. Y. Zhang, B. Yao, D. Z. Shen, and X. W. Fan, “Enhanced photoluminescence caused by localized excitons observed in MgZnO alloy,” J. Appl. Phys. 105(10), 103508 (2009).
[Crossref]

Zhu, X.

L. Ma, X. Zhang, H. Li, H. Tan, Y. Yang, Y. Xu, W. Hu, X. Zhu, X. Zhuang, and A. Pan, “Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31 μm,” Semicond. Sci. Technol. 30(10), 105033 (2015).
[Crossref]

Zhu, Y. M.

Y. Gao, H. Liu, R. Shi, N. Zhou, Z. Xu, Y. M. Zhu, J. F. Nie, and Y. Wang, “Simulation study of precipitation in an Mg-Y-Nd alloy,” Acta Mater. 60(12), 4819–4832 (2012).
[Crossref]

Zhuang, X.

L. Ma, X. Zhang, H. Li, H. Tan, Y. Yang, Y. Xu, W. Hu, X. Zhu, X. Zhuang, and A. Pan, “Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31 μm,” Semicond. Sci. Technol. 30(10), 105033 (2015).
[Crossref]

L. Ma, W. Hu, Q. Zhang, P. Ren, X. Zhuang, H. Zhou, J. Xu, H. Li, Z. Shan, X. Wang, L. Liao, H. Q. Xu, and A. Pan, “Room-temperature near-infrared photodetectors based on single heterojunction nanowires,” Nano Lett. 14(2), 694–698 (2014).
[Crossref] [PubMed]

Zimprich, M.

R. Woscholski, M. K. Shakfa, S. Gies, M. Wiemer, A. Rahimi-Iman, M. Zimprich, S. Reinhard, K. Jandieri, S. D. Baranovskii, W. Heimbrodt, K. Volz, W. Stolz, and M. Koch, “Time-resolved photoluminescence of Ga (NAsP) multiple quantum wells grown on Si substrate: Effects of rapid thermal annealing,” Thin Solid Films 613, 55–58 (2016).
[Crossref]

Zunger, A.

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (2)

X. Fang, Z. Wei, R. Chen, J. Tang, H. Zhao, L. Zhang, D. Zhao, D. Fang, J. Li, F. Fang, X. Chu, and X. Wang, “Influence of exciton localization on the emission and ultraviolet photoresponse of ZnO/ZnS core-shell nanowires,” ACS Appl. Mater. Interfaces 7(19), 10331–10336 (2015).
[Crossref] [PubMed]

X. Fang, Z. Wei, Y. Yang, R. Chen, Y. Li, J. Tang, D. Fang, H. Jia, D. Wang, J. Fan, X. Ma, B. Yao, and X. Wang, “Ultraviolet electroluminescence from ZnS@ ZnO core-shell nanowires/p-GaN introduced by exciton localization,” ACS Appl. Mater. Interfaces 8(3), 1661–1666 (2016).
[Crossref] [PubMed]

Acta Mater. (2)

Y. Gao, H. Liu, R. Shi, N. Zhou, Z. Xu, Y. M. Zhu, J. F. Nie, and Y. Wang, “Simulation study of precipitation in an Mg-Y-Nd alloy,” Acta Mater. 60(12), 4819–4832 (2012).
[Crossref]

Y. Gao, N. Zhou, F. Yang, Y. Cui, L. Kovarik, N. Hatcher, R. Noebe, M. J. Mills, and Y. Wang, “P-phase precipitation and its effect on martensitic transformation in (Ni, Pt) Ti shape memory alloys,” Acta Mater. 60(4), 1514–1527 (2012).
[Crossref]

Appl. Phys. Lett. (5)

X. D. Luo, C. Y. Hu, Z. Y. Xu, H. L. Luo, Y. Q. Wang, J. N. Wang, and W. K. Ge, “Selectively excited photoluminescence of GaAs1−xSbx/GaAs single quantum wells,” Appl. Phys. Lett. 81(20), 3795–3797 (2002).
[Crossref]

R. Kudrawiec, G. Sek, K. Ryczko, J. Misiewicz, and J. C. Harmand, “Photoreflectance investigations of oscillator strength and broadening of optical transitions for GaAsSb-GaInAs/GaAs bilayer quantum wells,” Appl. Phys. Lett. 84(18), 3453–3455 (2004).
[Crossref]

S. Shirakata, M. Kondow, and T. Kitatani, “Temperature-dependent photoluminescence of high-quality GaInNAs single quantum wells,” Appl. Phys. Lett. 80(12), 2087–2089 (2002).
[Crossref]

S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75(11), 1538–1540 (1999).
[Crossref]

J. Kim, J. Hwang, K. Song, N. Kimet, J. C. Shin, and J. Lee, “Ultra-thin flexible GaAs photovoltaics in vertical forms printed on metal surfaces without interlayer adhesives,” Appl. Phys. Lett. 108(25), 253101 (2016).
[Crossref]

J. Alloys Compd. (3)

O. Donmez, K. Kara, A. Erol, E. Akalin, H. Makhloufi, A. Arnoult, and C. Fontaine, “Thermal annealing effects optical and structural properties of GaBiAs epilayers: Origin of the thermal annealing-induced redshift in GaBiAs,” J. Alloys Compd. 686, 976–981 (2016).
[Crossref]

A. Jebali, N. Khemiri, and M. Kanzar, “The effect of annealing in N2 atmosphere on the physical properties of SnSb4S7 thin films,” J. Alloys Compd. 673, 38–46 (2016).
[Crossref]

P. Fan, J. Zhao, G. Liang, D. Gu, Z. Zheng, D. Zhang, X. Cai, J. Luo, and F. Ye, “Effects of annealing treatment on the properties of CZTSe thin films deposited by RF-magnetron sputtering,” J. Alloys Compd. 625, 171–174 (2015).
[Crossref]

J. Appl. Phys. (5)

V. V. Chaldyshev, A. L. Kolesnikova, N. A. Bert, and A. E. Romanov, “Investigation of dislocation loops associated with As-Sb nanoclusters in GaAs,” J. Appl. Phys. 97(2), 024309 (2005).
[Crossref]

H. Zhu, C. X. Shan, B. H. Li, Z. Z. Zhang, J. Y. Zhang, B. Yao, D. Z. Shen, and X. W. Fan, “Enhanced photoluminescence caused by localized excitons observed in MgZnO alloy,” J. Appl. Phys. 105(10), 103508 (2009).
[Crossref]

Y. S. Chiu, M. H. Ya, W. S. Su, and Y. F. Chen, “Properties of photoluminescence in type-II GaAsSb/GaAs multiple quantum wells,” J. Appl. Phys. 92(10), 5810–5813 (2002).
[Crossref]

X. D. Luo, P. H. Tan, Z. Y. Xu, and W. K. Ge, “Selectively excited photoluminescence of GaAs1− xNx single quantum wells,” J. Appl. Phys. 94(8), 4863–4865 (2003).
[Crossref]

S. Jin, Y. Zheng, and A. Li, “Characterization of photoluminescence intensity and efficiency of free excitons in semiconductor quantum well structures,” J. Appl. Phys. 82(8), 3870–3873 (1997).
[Crossref]

J. Mater. Sci. (1)

F. Mezrag, N. Y. Aouina, and N. Bouarissa, “Optoelectronic and dielectric properties of GaAsxSb1-x ternary alloys,” J. Mater. Sci. 41(16), 5323–5328 (2006).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

K. A. Dao, D. K. Dao, T. D. Nguyen, A. T. Phan, and H. M. Do, “The effects of Au surface diffusion to fomation of Au droplets/clusters and nanowire growth on GaAs substrate using VLS method,” J. Mater. Sci. Mater. Electron. 23(11), 2065–2074 (2012).
[Crossref]

J. Vac. Sci. Technol. B (1)

H. Detz, A. M. Andrews, M. Nobile, P. Klang, E. Mujagić, G. Hesser, W. Schrenk, F. Schäffler, and G. Strasser, “Intersubband optoelectronics in the InGaAs/GaAsSb material system,” J. Vac. Sci. Technol. B 28(3), C3G19 (2010).
[Crossref]

Langmuir (1)

Y. Sun, L. Yuan, X. Wu, Y. Cong, K. Huang, and S. Feng, “Infrared absorption enhancement by charge transfer in Ga-GaSb metal-semiconductor nanohybrids,” Langmuir 32(17), 4189–4193 (2016).
[Crossref] [PubMed]

Nano Lett. (6)

J. Huh, H. Yun, D. C. Kim, A. M. Munshi, D. L. Dheeraj, H. Kauko, A. T. J. van Helvoort, S. Lee, B. O. Fimland, and H. Weman, “Rectifying single GaAsSb nanowire devices based on self-induced compositional gradients,” Nano Lett. 15(6), 3709–3715 (2015).
[Crossref] [PubMed]

D. Ren, D. L. Dheeraj, C. Jin, J. S. Nilsen, J. Huh, J. F. Reinertsen, A. M. Munshi, A. Gustafsson, A. T. J. van Helvoort, H. Weman, and B. O. Fimland, “New insights into the origins of Sb-induced effects on self-catalyzed GaAsSb nanowire arrays,” Nano Lett. 16(2), 1201–1209 (2016).
[Crossref] [PubMed]

O. Persson, J. L. Webb, K. A. Dick, C. Thelander, A. Mikkelsen, and R. Timm, “Scanning Tunneling Spectroscopy on InAs-GaSb Esaki Diode Nanowire Devices during Operation,” Nano Lett. 15(6), 3684–3691 (2015).
[Crossref] [PubMed]

B. M. Borg, K. A. Dick, B. Ganjipour, M. E. Pistol, L. E. Wernersson, and C. Thelander, “InAs/GaSb heterostructure nanowires for tunnel field-effect transistors,” Nano Lett. 10(10), 4080–4085 (2010).
[Crossref] [PubMed]

L. Ma, W. Hu, Q. Zhang, P. Ren, X. Zhuang, H. Zhou, J. Xu, H. Li, Z. Shan, X. Wang, L. Liao, H. Q. Xu, and A. Pan, “Room-temperature near-infrared photodetectors based on single heterojunction nanowires,” Nano Lett. 14(2), 694–698 (2014).
[Crossref] [PubMed]

T. Shi, H. E. Jackson, L. M. Smith, N. Jiang, Q. Gao, H. H. Tan, C. Jagadish, C. Zheng, and J. Etheridge, “Emergence of localized states in narrow GaAs/AlGaAs nanowire quantum well tubes,” Nano Lett. 15(3), 1876–1882 (2015).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

D. F. Reyes, D. González, J. M. Ulloa, D. L. Sales, L. Dominguez, A. Mayoral, and A. Hierro, “Impact of N on the atomic-scale Sb distribution in quaternary GaAsSbN-capped InAs quantum dots,” Nanoscale Res. Lett. 7(1), 653 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

Z. Li, X. Yuan, L. Fu, K. Peng, F. Wang, X. Fu, P. Caroff, T. P. White, H. Hoe Tan, and C. Jagadish, “Room temperature GaAsSb single nanowire infrared photodetectors,” Nanotechnology 26(44), 445202 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O’Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, “Self-assembled quantum dots in a nanowire system for quantum photonics,” Nat. Mater. 12(5), 439–444 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. B (2)

A. Satake, Y. Masumoto, T. Miyajima, T. Asatsuma, F. Nakamura, and M. Ikeda, “Localized exciton and its stimulated emission in surface mode from single-layer InxGa1−xN,” Phys. Rev. B 57(4), R2041–R2044 (1998).
[Crossref]

J. A. Van Vechten and T. K. Bergstresser, “Electronic structures of semiconductor alloys,” Phys. Rev. B 1(8), 3351–3358 (1970).
[Crossref]

Physica (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Sci. Rep. (2)

S. Lee, A. Nathan, Y. Ye, Y. Guo, and J. Robertson, “Localized tail states and electron mobility in amorphous ZnON thin film transistors,” Sci. Rep. 5, 13467 (2015).
[Crossref] [PubMed]

X. Gao, Z. Wei, F. Zhao, Y. Yang, R. Chen, X. Fang, J. Tang, D. Fang, D. Wang, R. Li, X. Ge, X. Ma, and X. Wang, “Investigation of localized states in GaAsSb epilayers grown by molecular beam epitaxy,” Sci. Rep. 6, 29112 (2016).
[Crossref] [PubMed]

Semicond. Sci. Technol. (2)

L. Ma, X. Zhang, H. Li, H. Tan, Y. Yang, Y. Xu, W. Hu, X. Zhu, X. Zhuang, and A. Pan, “Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31 μm,” Semicond. Sci. Technol. 30(10), 105033 (2015).
[Crossref]

D. F. Reyes, J. M. Ulloa, A. Guzman, A. Hierro, D. L. Sales, R. Beanland, A. M. Sanchez, and D. González, “Effect of annealing in the Sb and In distribution of type II GaAsSb-capped InAs quantum dots,” Semicond. Sci. Technol. 30(11), 114006 (2015).
[Crossref]

Superlattices Microstruct. (1)

M. Aziz, J. F. Felix, D. Jameel, N. A. Saqri, F. S. A. Mashary, H. M. Alghamdi, H. M. A. Albalawi, D. Taylor, and M. Henini, “Rapid thermal annealing: An efficient method to improve the electrical properties of tellurium compensated Interfacial Misfit GaSb/GaAs heterostructures,” Superlattices Microstruct. 88, 80–89 (2015).
[Crossref]

Thin Solid Films (1)

R. Woscholski, M. K. Shakfa, S. Gies, M. Wiemer, A. Rahimi-Iman, M. Zimprich, S. Reinhard, K. Jandieri, S. D. Baranovskii, W. Heimbrodt, K. Volz, W. Stolz, and M. Koch, “Time-resolved photoluminescence of Ga (NAsP) multiple quantum wells grown on Si substrate: Effects of rapid thermal annealing,” Thin Solid Films 613, 55–58 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 PL spectra of the samples at 150 K; inset shows the changes of peak position and FWHM with different annealing temperatures.
Fig. 2
Fig. 2 (a) Gaussian-fitting results of the low-temperature PL spectra of the samples at 10 K; (b) Intensity of the P1 and P2 emissions in each sample; (c) Intensity ratio of P1 to P2 in each sample.
Fig. 3
Fig. 3 Temperature-dependent PLspectra of the samples.
Fig. 4
Fig. 4 Low-temperature (10 K) power-dependent PL spectra of GaAsSb sample annealed at 700 °C.
Fig. 5
Fig. 5 Photon energy of the emission peaks of the samples with increasing temperature. The insets are the AFM images of the samples.
Fig. 6
Fig. 6 Schematic illustration showing the transition processes of carriers between different localized states and the free-carrier state.

Metrics