Abstract

The low temperature photoluminescence (PL) of ZnO and Al-capped ZnO have been investigated to reveal the influence of Al capping on optical properties of ZnO. Near band edge (NBE) emission of Al-capped ZnO presents an enhancement and negative thermal quenching temperature dependence compared with bare ZnO due to the resonant coupling between excitons in ZnO and surface plasmons (SPs) of Al nanoparticles. SPs have a prominent influence on less localized excitons. This feature of SPs together, with the decreased non-radiative recombination rate, gives rise to the increasing enhancement ratio of NBE emission after Al capping with increasing temperature.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Parametric study on photoluminescence enhancement of high-quality zinc oxide single-crystal capping with dielectric microsphere array

Yinzhou Yan, Jinwen Liu, Cheng Xing, Qiang Wang, Yong Zeng, Yan Zhao, and Yijian Jiang
Appl. Opt. 57(27) 7740-7749 (2018)

Effect of the defect on photoluminescence property of Al-coated ZnO nanostructures

Yanjun Fang, Yewu Wang, Lin Gu, Ren Lu, and Jian Sha
Opt. Express 21(3) 3492-3500 (2013)

Sandwich-structure-modulated photoluminescence enhancement of wide bandgap semiconductors capping with dielectric microsphere arrays

Lixue Yang, Yinzhou Yan, Qiang Wang, Yong Zeng, Feifei Liu, Lin Li, Yan Zhao, and Yijian Jiang
Opt. Express 25(6) 6000-6014 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292(5523), 1897–1899 (2001).
    [Crossref] [PubMed]
  2. S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
    [Crossref] [PubMed]
  3. X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen, and Z. L. Wang, “Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film,” Adv. Mater. 21(27), 2767–2770 (2009).
    [Crossref]
  4. C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface Plasmon Enhanced Band Edge Luminescence of ZnO Nanorods by Capping Au Nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
    [Crossref]
  5. P. H. Cheng, D. S. Li, Z. Z. Yuan, P. L. Chen, and D. R. Yang, “Enhancement of ZnO Light Emission via Coupling with Localized Surface Plasmon of Ag Island Film,” Appl. Phys. Lett. 92(4), 041119 (2008).
    [Crossref]
  6. J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, “Giant Enhancement of Bandgap Emission of ZnO Nanorods by Platinum Nanoparticles,” Nanotechnology 17(17), 4391–4394 (2006).
    [Crossref]
  7. J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
    [Crossref] [PubMed]
  8. G. Bao, D. Li, X. Sun, M. Jiang, Z. Li, H. Song, H. Jiang, Y. Chen, G. Miao, and Z. Zhang, “Enhanced spectral response of an AlGaN-based solar-blind ultraviolet photodetector with Al nanoparticles,” Opt. Express 22(20), 24286–24293 (2014).
    [Crossref] [PubMed]
  9. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for Better Plasmonic Materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  10. Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett. 98(3), 033103 (2011).
    [Crossref]
  11. X. Ding, Y. Fang, H. Qian, M. Zhao, W. Wang, J. Sha, and Y. Wang, “Influence of the precursor anion on the photoluminescence properties of ZnO,” Opt. Express 24(22), 25876–25884 (2016).
    [Crossref] [PubMed]
  12. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
    [Crossref]
  13. K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79(17), 6480–6487 (2007).
    [Crossref] [PubMed]
  14. M. Watanabe, M. Sakai, H. Shibata, C. Satou, S. Satou, T. Shibayama, H. Tampo, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Maeda, and I. Niikura, “Negative thermal quenching of photoluminescence in ZnO,” Physica B 376–377, 711–714 (2006).
    [Crossref]
  15. J. Yin, C. Yue, Y. Zang, C. H. Chiu, J. Li, H. C. Kuo, Z. Wu, J. Li, Y. Fang, and C. Chen, “Effect of the surface-plasmon-exciton coupling and charge transfer process on the photoluminescence of metal-semiconductor nanostructures,” Nanoscale 5(10), 4436–4442 (2013).
    [Crossref] [PubMed]
  16. J. P. Richters, T. Voss, L. Wischmeier, I. Rückmann, and J. Gutowski, “Influence of polymer coating on the low-temperature photoluminescence properties of ZnO nanowires,” Appl. Phys. Lett. 92(1), 011103 (2008).
    [Crossref]
  17. J. P. Richters, T. Voss, D. S. Kim, R. Scholz, and M. Zacharias, “Enhanced surface-excitonic emission in ZnO/Al(2)O(3) core-shell nanowires,” Nanotechnology 19(30), 305202 (2008).
    [Crossref] [PubMed]
  18. C. Bekeny, T. Voss, B. Hilker, J. Gutowski, R. Hauschild, H. Kalt, B. Postels, A. Bakin, and A. Waag, “Influence of ZnO seed crystals and annealing on the optical quality of low-temperature grown ZnO nanorods,” J. Appl. Phys. 102(4), 044908 (2007).
    [Crossref]
  19. B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
    [Crossref]
  20. D. C. Reynolds, D. C. Look, and B. Jogai, “Fine structure on the green band in ZnO,” J. Appl. Phys. 89(11), 6189–6191 (2001).
    [Crossref]
  21. W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, and J. J. Song, “Nature of room-temperature photoluminescence in ZnO,” Appl. Phys. Lett. 86(19), 191911 (2005).
    [Crossref]
  22. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica Amsterdam 34(1), 149–154 (1967).
    [Crossref]
  23. L. Wang and N. C. Giles, “Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy,” J. Appl. Phys. 94(2), 973–978 (2003).
    [Crossref]
  24. W. K. Hong, G. Jo, M. Choe, T. Lee, J. I. Sohn, and M. E. Welland, “Influence of surface structure on the phonon-assisted emission process in the ZnO nanowires grown on homoepitaxial films,” Appl. Phys. Lett. 94(4), 043103 (2009).
    [Crossref]
  25. A. Pescaglini and D. Iacopino, “Metal nanoparticle–semiconductor nanowire hybrid nanostructures for plasmon-enhanced optoelectronics and sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(45), 11785–11800 (2015).
    [Crossref]
  26. Y. Wang, H. He, Y. Zhang, L. Sun, L. Hu, K. Wu, J. Huang, and Z. Ye, “Metal enhanced photoluminescence from Al-capped ZnMgO films: The roles of plasmonic coupling and non-radiative recombination,” Appl. Phys. Lett. 100(11), 112103 (2012).
    [Crossref]
  27. H. Shibata, “Negative thermal quenching curves in photoluminescence of solids,” Jpn. J. Appl. Phys. 37(2), 550–553 (1998).
    [Crossref]
  28. H. He, Y. Wang, J. Wang, and Z. Ye, “Extraction of the surface trap level from photoluminescence: a case study of ZnO nanostructures,” Phys. Chem. Chem. Phys. 13(33), 14902–14905 (2011).
    [Crossref] [PubMed]
  29. M. Hauser, A. Hepting, R. Hauschild, H. Zhou, J. Fallert, H. Kalt, and C. Klingshirn, “Absolute external luminescence quantum efficiency of zinc oxide,” Appl. Phys. Lett. 92(21), 211105 (2008).
    [Crossref]
  30. C. Chen, H. He, Y. Lu, K. Wu, and Z. Ye, “Surface passivation effect on the photoluminescence of ZnO nanorods,” ACS Appl. Mater. Interfaces 5(13), 6354–6359 (2013).
    [Crossref] [PubMed]
  31. M. Watanabe, M. Sakai, H. Shibata, H. Tampo, P. Fons, K. Iwata, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Nakahara, and H. Takasu, “Photoluminescence characterization of excitonic centers in ZnO epitaxial films,” Appl. Phys. Lett. 86(22), 221907 (2005).
    [Crossref]
  32. M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
    [Crossref]
  33. Z. Xu, H. He, L. Sun, Y. Jin, B. Zhao, and Z. Ye, “Localized exciton emission from ZnO nanocrystalline films,” J. Appl. Phys. 107(5), 053524 (2010).
    [Crossref]
  34. B. J. Niu, L. L. Wu, W. Tang, X. T. Zhang, and Q. G. Meng, “Enhancement of near-band edge emission of Au/ZnO composite nanobelts by surface plasmon resonance,” CrystEngComm 13(11), 3678 (2011).
    [Crossref]
  35. I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
    [Crossref]
  36. Z. L. Cao and H. C. Ong, “Determination of coupling rate of light emitter to surface plasmon polaritons supported on nanohole array,” Appl. Phys. Lett. 102(24), 241109 (2013).
    [Crossref]
  37. J. Li and H. C. Ong, “Temperature dependence of surface plasmon mediated emission from metal-capped ZnO films,” Appl. Phys. Lett. 92(12), 121107 (2008).
    [Crossref]

2016 (1)

2015 (1)

A. Pescaglini and D. Iacopino, “Metal nanoparticle–semiconductor nanowire hybrid nanostructures for plasmon-enhanced optoelectronics and sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(45), 11785–11800 (2015).
[Crossref]

2014 (2)

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

G. Bao, D. Li, X. Sun, M. Jiang, Z. Li, H. Song, H. Jiang, Y. Chen, G. Miao, and Z. Zhang, “Enhanced spectral response of an AlGaN-based solar-blind ultraviolet photodetector with Al nanoparticles,” Opt. Express 22(20), 24286–24293 (2014).
[Crossref] [PubMed]

2013 (3)

J. Yin, C. Yue, Y. Zang, C. H. Chiu, J. Li, H. C. Kuo, Z. Wu, J. Li, Y. Fang, and C. Chen, “Effect of the surface-plasmon-exciton coupling and charge transfer process on the photoluminescence of metal-semiconductor nanostructures,” Nanoscale 5(10), 4436–4442 (2013).
[Crossref] [PubMed]

C. Chen, H. He, Y. Lu, K. Wu, and Z. Ye, “Surface passivation effect on the photoluminescence of ZnO nanorods,” ACS Appl. Mater. Interfaces 5(13), 6354–6359 (2013).
[Crossref] [PubMed]

Z. L. Cao and H. C. Ong, “Determination of coupling rate of light emitter to surface plasmon polaritons supported on nanohole array,” Appl. Phys. Lett. 102(24), 241109 (2013).
[Crossref]

2012 (1)

Y. Wang, H. He, Y. Zhang, L. Sun, L. Hu, K. Wu, J. Huang, and Z. Ye, “Metal enhanced photoluminescence from Al-capped ZnMgO films: The roles of plasmonic coupling and non-radiative recombination,” Appl. Phys. Lett. 100(11), 112103 (2012).
[Crossref]

2011 (4)

H. He, Y. Wang, J. Wang, and Z. Ye, “Extraction of the surface trap level from photoluminescence: a case study of ZnO nanostructures,” Phys. Chem. Chem. Phys. 13(33), 14902–14905 (2011).
[Crossref] [PubMed]

B. J. Niu, L. L. Wu, W. Tang, X. T. Zhang, and Q. G. Meng, “Enhancement of near-band edge emission of Au/ZnO composite nanobelts by surface plasmon resonance,” CrystEngComm 13(11), 3678 (2011).
[Crossref]

Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett. 98(3), 033103 (2011).
[Crossref]

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

2010 (4)

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface Plasmon Enhanced Band Edge Luminescence of ZnO Nanorods by Capping Au Nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for Better Plasmonic Materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[Crossref]

Z. Xu, H. He, L. Sun, Y. Jin, B. Zhao, and Z. Ye, “Localized exciton emission from ZnO nanocrystalline films,” J. Appl. Phys. 107(5), 053524 (2010).
[Crossref]

2009 (2)

W. K. Hong, G. Jo, M. Choe, T. Lee, J. I. Sohn, and M. E. Welland, “Influence of surface structure on the phonon-assisted emission process in the ZnO nanowires grown on homoepitaxial films,” Appl. Phys. Lett. 94(4), 043103 (2009).
[Crossref]

X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen, and Z. L. Wang, “Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film,” Adv. Mater. 21(27), 2767–2770 (2009).
[Crossref]

2008 (5)

P. H. Cheng, D. S. Li, Z. Z. Yuan, P. L. Chen, and D. R. Yang, “Enhancement of ZnO Light Emission via Coupling with Localized Surface Plasmon of Ag Island Film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[Crossref]

J. P. Richters, T. Voss, L. Wischmeier, I. Rückmann, and J. Gutowski, “Influence of polymer coating on the low-temperature photoluminescence properties of ZnO nanowires,” Appl. Phys. Lett. 92(1), 011103 (2008).
[Crossref]

J. P. Richters, T. Voss, D. S. Kim, R. Scholz, and M. Zacharias, “Enhanced surface-excitonic emission in ZnO/Al(2)O(3) core-shell nanowires,” Nanotechnology 19(30), 305202 (2008).
[Crossref] [PubMed]

M. Hauser, A. Hepting, R. Hauschild, H. Zhou, J. Fallert, H. Kalt, and C. Klingshirn, “Absolute external luminescence quantum efficiency of zinc oxide,” Appl. Phys. Lett. 92(21), 211105 (2008).
[Crossref]

J. Li and H. C. Ong, “Temperature dependence of surface plasmon mediated emission from metal-capped ZnO films,” Appl. Phys. Lett. 92(12), 121107 (2008).
[Crossref]

2007 (2)

C. Bekeny, T. Voss, B. Hilker, J. Gutowski, R. Hauschild, H. Kalt, B. Postels, A. Bakin, and A. Waag, “Influence of ZnO seed crystals and annealing on the optical quality of low-temperature grown ZnO nanorods,” J. Appl. Phys. 102(4), 044908 (2007).
[Crossref]

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79(17), 6480–6487 (2007).
[Crossref] [PubMed]

2006 (2)

M. Watanabe, M. Sakai, H. Shibata, C. Satou, S. Satou, T. Shibayama, H. Tampo, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Maeda, and I. Niikura, “Negative thermal quenching of photoluminescence in ZnO,” Physica B 376–377, 711–714 (2006).
[Crossref]

J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, “Giant Enhancement of Bandgap Emission of ZnO Nanorods by Platinum Nanoparticles,” Nanotechnology 17(17), 4391–4394 (2006).
[Crossref]

2005 (2)

M. Watanabe, M. Sakai, H. Shibata, H. Tampo, P. Fons, K. Iwata, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Nakahara, and H. Takasu, “Photoluminescence characterization of excitonic centers in ZnO epitaxial films,” Appl. Phys. Lett. 86(22), 221907 (2005).
[Crossref]

W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, and J. J. Song, “Nature of room-temperature photoluminescence in ZnO,” Appl. Phys. Lett. 86(19), 191911 (2005).
[Crossref]

2003 (1)

L. Wang and N. C. Giles, “Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy,” J. Appl. Phys. 94(2), 973–978 (2003).
[Crossref]

2001 (2)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

D. C. Reynolds, D. C. Look, and B. Jogai, “Fine structure on the green band in ZnO,” J. Appl. Phys. 89(11), 6189–6191 (2001).
[Crossref]

1999 (2)

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[Crossref]

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

1998 (1)

H. Shibata, “Negative thermal quenching curves in photoluminescence of solids,” Jpn. J. Appl. Phys. 37(2), 550–553 (1998).
[Crossref]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica Amsterdam 34(1), 149–154 (1967).
[Crossref]

Ager, J. W.

W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, and J. J. Song, “Nature of room-temperature photoluminescence in ZnO,” Appl. Phys. Lett. 86(19), 191911 (2005).
[Crossref]

Alves, H.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Bakin, A.

C. Bekeny, T. Voss, B. Hilker, J. Gutowski, R. Hauschild, H. Kalt, B. Postels, A. Bakin, and A. Waag, “Influence of ZnO seed crystals and annealing on the optical quality of low-temperature grown ZnO nanorods,” J. Appl. Phys. 102(4), 044908 (2007).
[Crossref]

Bao, G.

Beaumont, B.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[Crossref]

Bekeny, C.

C. Bekeny, T. Voss, B. Hilker, J. Gutowski, R. Hauschild, H. Kalt, B. Postels, A. Bakin, and A. Waag, “Influence of ZnO seed crystals and annealing on the optical quality of low-temperature grown ZnO nanorods,” J. Appl. Phys. 102(4), 044908 (2007).
[Crossref]

Bertram, F.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Boltasseva, A.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for Better Plasmonic Materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Boroditsky, M.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Cai, W.

H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[Crossref]

Cantwell, G.

W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, and J. J. Song, “Nature of room-temperature photoluminescence in ZnO,” Appl. Phys. Lett. 86(19), 191911 (2005).
[Crossref]

Cao, Z. L.

Z. L. Cao and H. C. Ong, “Determination of coupling rate of light emitter to surface plasmon polaritons supported on nanohole array,” Appl. Phys. Lett. 102(24), 241109 (2013).
[Crossref]

Chen, C.

C. Chen, H. He, Y. Lu, K. Wu, and Z. Ye, “Surface passivation effect on the photoluminescence of ZnO nanorods,” ACS Appl. Mater. Interfaces 5(13), 6354–6359 (2013).
[Crossref] [PubMed]

J. Yin, C. Yue, Y. Zang, C. H. Chiu, J. Li, H. C. Kuo, Z. Wu, J. Li, Y. Fang, and C. Chen, “Effect of the surface-plasmon-exciton coupling and charge transfer process on the photoluminescence of metal-semiconductor nanostructures,” Nanoscale 5(10), 4436–4442 (2013).
[Crossref] [PubMed]

Chen, L. J.

X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen, and Z. L. Wang, “Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film,” Adv. Mater. 21(27), 2767–2770 (2009).
[Crossref]

Chen, P. L.

P. H. Cheng, D. S. Li, Z. Z. Yuan, P. L. Chen, and D. R. Yang, “Enhancement of ZnO Light Emission via Coupling with Localized Surface Plasmon of Ag Island Film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[Crossref]

Chen, Y.

Chen, Y. F.

J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, “Giant Enhancement of Bandgap Emission of ZnO Nanorods by Platinum Nanoparticles,” Nanotechnology 17(17), 4391–4394 (2006).
[Crossref]

Cheng, C. L.

J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, “Giant Enhancement of Bandgap Emission of ZnO Nanorods by Platinum Nanoparticles,” Nanotechnology 17(17), 4391–4394 (2006).
[Crossref]

Cheng, C. W.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface Plasmon Enhanced Band Edge Luminescence of ZnO Nanorods by Capping Au Nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

Cheng, P. H.

P. H. Cheng, D. S. Li, Z. Z. Yuan, P. L. Chen, and D. R. Yang, “Enhancement of ZnO Light Emission via Coupling with Localized Surface Plasmon of Ag Island Film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[Crossref]

Chernyak, L.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Chiu, C. H.

J. Yin, C. Yue, Y. Zang, C. H. Chiu, J. Li, H. C. Kuo, Z. Wu, J. Li, Y. Fang, and C. Chen, “Effect of the surface-plasmon-exciton coupling and charge transfer process on the photoluminescence of metal-semiconductor nanostructures,” Nanoscale 5(10), 4436–4442 (2013).
[Crossref] [PubMed]

Choe, M.

W. K. Hong, G. Jo, M. Choe, T. Lee, J. I. Sohn, and M. E. Welland, “Influence of surface structure on the phonon-assisted emission process in the ZnO nanowires grown on homoepitaxial films,” Appl. Phys. Lett. 94(4), 043103 (2009).
[Crossref]

Chowdhury, M. H.

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79(17), 6480–6487 (2007).
[Crossref] [PubMed]

Christen, J.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Chu, S.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Dai, J.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

DenBaars, S. P.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Ding, X.

Duan, G.

H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[Crossref]

Dworzak, M.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for Better Plasmonic Materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Fallert, J.

M. Hauser, A. Hepting, R. Hauschild, H. Zhou, J. Fallert, H. Kalt, and C. Klingshirn, “Absolute external luminescence quantum efficiency of zinc oxide,” Appl. Phys. Lett. 92(21), 211105 (2008).
[Crossref]

Fan, H. J.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface Plasmon Enhanced Band Edge Luminescence of ZnO Nanorods by Capping Au Nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

Fang, Y.

X. Ding, Y. Fang, H. Qian, M. Zhao, W. Wang, J. Sha, and Y. Wang, “Influence of the precursor anion on the photoluminescence properties of ZnO,” Opt. Express 24(22), 25876–25884 (2016).
[Crossref] [PubMed]

J. Yin, C. Yue, Y. Zang, C. H. Chiu, J. Li, H. C. Kuo, Z. Wu, J. Li, Y. Fang, and C. Chen, “Effect of the surface-plasmon-exciton coupling and charge transfer process on the photoluminescence of metal-semiconductor nanostructures,” Nanoscale 5(10), 4436–4442 (2013).
[Crossref] [PubMed]

Fang, Y. J.

Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett. 98(3), 033103 (2011).
[Crossref]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Fons, P.

M. Watanabe, M. Sakai, H. Shibata, H. Tampo, P. Fons, K. Iwata, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Nakahara, and H. Takasu, “Photoluminescence characterization of excitonic centers in ZnO epitaxial films,” Appl. Phys. Lett. 86(22), 221907 (2005).
[Crossref]

Forster, D.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Gibart, P.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[Crossref]

Giles, N. C.

L. Wang and N. C. Giles, “Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy,” J. Appl. Phys. 94(2), 973–978 (2003).
[Crossref]

Gontijo, I.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Grandjean, N.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[Crossref]

Gutowski, J.

J. P. Richters, T. Voss, L. Wischmeier, I. Rückmann, and J. Gutowski, “Influence of polymer coating on the low-temperature photoluminescence properties of ZnO nanowires,” Appl. Phys. Lett. 92(1), 011103 (2008).
[Crossref]

C. Bekeny, T. Voss, B. Hilker, J. Gutowski, R. Hauschild, H. Kalt, B. Postels, A. Bakin, and A. Waag, “Influence of ZnO seed crystals and annealing on the optical quality of low-temperature grown ZnO nanorods,” J. Appl. Phys. 102(4), 044908 (2007).
[Crossref]

Haboeck, U.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Hauschild, R.

M. Hauser, A. Hepting, R. Hauschild, H. Zhou, J. Fallert, H. Kalt, and C. Klingshirn, “Absolute external luminescence quantum efficiency of zinc oxide,” Appl. Phys. Lett. 92(21), 211105 (2008).
[Crossref]

C. Bekeny, T. Voss, B. Hilker, J. Gutowski, R. Hauschild, H. Kalt, B. Postels, A. Bakin, and A. Waag, “Influence of ZnO seed crystals and annealing on the optical quality of low-temperature grown ZnO nanorods,” J. Appl. Phys. 102(4), 044908 (2007).
[Crossref]

Hauser, M.

M. Hauser, A. Hepting, R. Hauschild, H. Zhou, J. Fallert, H. Kalt, and C. Klingshirn, “Absolute external luminescence quantum efficiency of zinc oxide,” Appl. Phys. Lett. 92(21), 211105 (2008).
[Crossref]

He, H.

C. Chen, H. He, Y. Lu, K. Wu, and Z. Ye, “Surface passivation effect on the photoluminescence of ZnO nanorods,” ACS Appl. Mater. Interfaces 5(13), 6354–6359 (2013).
[Crossref] [PubMed]

Y. Wang, H. He, Y. Zhang, L. Sun, L. Hu, K. Wu, J. Huang, and Z. Ye, “Metal enhanced photoluminescence from Al-capped ZnMgO films: The roles of plasmonic coupling and non-radiative recombination,” Appl. Phys. Lett. 100(11), 112103 (2012).
[Crossref]

H. He, Y. Wang, J. Wang, and Z. Ye, “Extraction of the surface trap level from photoluminescence: a case study of ZnO nanostructures,” Phys. Chem. Chem. Phys. 13(33), 14902–14905 (2011).
[Crossref] [PubMed]

Z. Xu, H. He, L. Sun, Y. Jin, B. Zhao, and Z. Ye, “Localized exciton emission from ZnO nanocrystalline films,” J. Appl. Phys. 107(5), 053524 (2010).
[Crossref]

Hepting, A.

M. Hauser, A. Hepting, R. Hauschild, H. Zhou, J. Fallert, H. Kalt, and C. Klingshirn, “Absolute external luminescence quantum efficiency of zinc oxide,” Appl. Phys. Lett. 92(21), 211105 (2008).
[Crossref]

Hilker, B.

C. Bekeny, T. Voss, B. Hilker, J. Gutowski, R. Hauschild, H. Kalt, B. Postels, A. Bakin, and A. Waag, “Influence of ZnO seed crystals and annealing on the optical quality of low-temperature grown ZnO nanorods,” J. Appl. Phys. 102(4), 044908 (2007).
[Crossref]

Hoffmann, A.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Hofmann, D. M.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Hong, W. K.

W. K. Hong, G. Jo, M. Choe, T. Lee, J. I. Sohn, and M. E. Welland, “Influence of surface structure on the phonon-assisted emission process in the ZnO nanowires grown on homoepitaxial films,” Appl. Phys. Lett. 94(4), 043103 (2009).
[Crossref]

Hu, L.

Y. Wang, H. He, Y. Zhang, L. Sun, L. Hu, K. Wu, J. Huang, and Z. Ye, “Metal enhanced photoluminescence from Al-capped ZnMgO films: The roles of plasmonic coupling and non-radiative recombination,” Appl. Phys. Lett. 100(11), 112103 (2012).
[Crossref]

Huan, C. H. A.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface Plasmon Enhanced Band Edge Luminescence of ZnO Nanorods by Capping Au Nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

Huang, J.

Y. Wang, H. He, Y. Zhang, L. Sun, L. Hu, K. Wu, J. Huang, and Z. Ye, “Metal enhanced photoluminescence from Al-capped ZnMgO films: The roles of plasmonic coupling and non-radiative recombination,” Appl. Phys. Lett. 100(11), 112103 (2012).
[Crossref]

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Iacopino, D.

A. Pescaglini and D. Iacopino, “Metal nanoparticle–semiconductor nanowire hybrid nanostructures for plasmon-enhanced optoelectronics and sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(45), 11785–11800 (2015).
[Crossref]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for Better Plasmonic Materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Ishizuka, S.

M. Watanabe, M. Sakai, H. Shibata, C. Satou, S. Satou, T. Shibayama, H. Tampo, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Maeda, and I. Niikura, “Negative thermal quenching of photoluminescence in ZnO,” Physica B 376–377, 711–714 (2006).
[Crossref]

M. Watanabe, M. Sakai, H. Shibata, H. Tampo, P. Fons, K. Iwata, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Nakahara, and H. Takasu, “Photoluminescence characterization of excitonic centers in ZnO epitaxial films,” Appl. Phys. Lett. 86(22), 221907 (2005).
[Crossref]

Iwata, K.

M. Watanabe, M. Sakai, H. Shibata, H. Tampo, P. Fons, K. Iwata, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Nakahara, and H. Takasu, “Photoluminescence characterization of excitonic centers in ZnO epitaxial films,” Appl. Phys. Lett. 86(22), 221907 (2005).
[Crossref]

Jiang, H.

Jiang, M.

Jin, Y.

Z. Xu, H. He, L. Sun, Y. Jin, B. Zhao, and Z. Ye, “Localized exciton emission from ZnO nanocrystalline films,” J. Appl. Phys. 107(5), 053524 (2010).
[Crossref]

Jo, G.

W. K. Hong, G. Jo, M. Choe, T. Lee, J. I. Sohn, and M. E. Welland, “Influence of surface structure on the phonon-assisted emission process in the ZnO nanowires grown on homoepitaxial films,” Appl. Phys. Lett. 94(4), 043103 (2009).
[Crossref]

Jogai, B.

D. C. Reynolds, D. C. Look, and B. Jogai, “Fine structure on the green band in ZnO,” J. Appl. Phys. 89(11), 6189–6191 (2001).
[Crossref]

Kalt, H.

M. Hauser, A. Hepting, R. Hauschild, H. Zhou, J. Fallert, H. Kalt, and C. Klingshirn, “Absolute external luminescence quantum efficiency of zinc oxide,” Appl. Phys. Lett. 92(21), 211105 (2008).
[Crossref]

C. Bekeny, T. Voss, B. Hilker, J. Gutowski, R. Hauschild, H. Kalt, B. Postels, A. Bakin, and A. Waag, “Influence of ZnO seed crystals and annealing on the optical quality of low-temperature grown ZnO nanorods,” J. Appl. Phys. 102(4), 044908 (2007).
[Crossref]

Keller, S.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Kim, D. S.

J. P. Richters, T. Voss, D. S. Kim, R. Scholz, and M. Zacharias, “Enhanced surface-excitonic emission in ZnO/Al(2)O(3) core-shell nanowires,” Nanotechnology 19(30), 305202 (2008).
[Crossref] [PubMed]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Klingshirn, C.

M. Hauser, A. Hepting, R. Hauschild, H. Zhou, J. Fallert, H. Kalt, and C. Klingshirn, “Absolute external luminescence quantum efficiency of zinc oxide,” Appl. Phys. Lett. 92(21), 211105 (2008).
[Crossref]

Kong, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Kriegseis, W.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Kuo, H. C.

J. Yin, C. Yue, Y. Zang, C. H. Chiu, J. Li, H. C. Kuo, Z. Wu, J. Li, Y. Fang, and C. Chen, “Effect of the surface-plasmon-exciton coupling and charge transfer process on the photoluminescence of metal-semiconductor nanostructures,” Nanoscale 5(10), 4436–4442 (2013).
[Crossref] [PubMed]

Lakowicz, J. R.

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79(17), 6480–6487 (2007).
[Crossref] [PubMed]

Lee, T.

W. K. Hong, G. Jo, M. Choe, T. Lee, J. I. Sohn, and M. E. Welland, “Influence of surface structure on the phonon-assisted emission process in the ZnO nanowires grown on homoepitaxial films,” Appl. Phys. Lett. 94(4), 043103 (2009).
[Crossref]

Leroux, M.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[Crossref]

Li, D.

Li, D. S.

P. H. Cheng, D. S. Li, Z. Z. Yuan, P. L. Chen, and D. R. Yang, “Enhancement of ZnO Light Emission via Coupling with Localized Surface Plasmon of Ag Island Film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[Crossref]

Li, J.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

J. Yin, C. Yue, Y. Zang, C. H. Chiu, J. Li, H. C. Kuo, Z. Wu, J. Li, Y. Fang, and C. Chen, “Effect of the surface-plasmon-exciton coupling and charge transfer process on the photoluminescence of metal-semiconductor nanostructures,” Nanoscale 5(10), 4436–4442 (2013).
[Crossref] [PubMed]

J. Yin, C. Yue, Y. Zang, C. H. Chiu, J. Li, H. C. Kuo, Z. Wu, J. Li, Y. Fang, and C. Chen, “Effect of the surface-plasmon-exciton coupling and charge transfer process on the photoluminescence of metal-semiconductor nanostructures,” Nanoscale 5(10), 4436–4442 (2013).
[Crossref] [PubMed]

J. Li and H. C. Ong, “Temperature dependence of surface plasmon mediated emission from metal-capped ZnO films,” Appl. Phys. Lett. 92(12), 121107 (2008).
[Crossref]

Li, L.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Li, Y.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[Crossref]

Li, Z.

Lin, H. Y.

J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, “Giant Enhancement of Bandgap Emission of ZnO Nanorods by Platinum Nanoparticles,” Nanotechnology 17(17), 4391–4394 (2006).
[Crossref]

Lin, J. M.

J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, “Giant Enhancement of Bandgap Emission of ZnO Nanorods by Platinum Nanoparticles,” Nanotechnology 17(17), 4391–4394 (2006).
[Crossref]

Lin, Y.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Liu, B.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface Plasmon Enhanced Band Edge Luminescence of ZnO Nanorods by Capping Au Nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

Liu, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Look, D. C.

D. C. Reynolds, D. C. Look, and B. Jogai, “Fine structure on the green band in ZnO,” J. Appl. Phys. 89(11), 6189–6191 (2001).
[Crossref]

Lu, J.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

Lu, M. Y.

X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen, and Z. L. Wang, “Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film,” Adv. Mater. 21(27), 2767–2770 (2009).
[Crossref]

Lu, Y.

C. Chen, H. He, Y. Lu, K. Wu, and Z. Ye, “Surface passivation effect on the photoluminescence of ZnO nanorods,” ACS Appl. Mater. Interfaces 5(13), 6354–6359 (2013).
[Crossref] [PubMed]

Maeda, K.

M. Watanabe, M. Sakai, H. Shibata, C. Satou, S. Satou, T. Shibayama, H. Tampo, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Maeda, and I. Niikura, “Negative thermal quenching of photoluminescence in ZnO,” Physica B 376–377, 711–714 (2006).
[Crossref]

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Massies, J.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[Crossref]

Matsubara, K.

M. Watanabe, M. Sakai, H. Shibata, C. Satou, S. Satou, T. Shibayama, H. Tampo, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Maeda, and I. Niikura, “Negative thermal quenching of photoluminescence in ZnO,” Physica B 376–377, 711–714 (2006).
[Crossref]

M. Watanabe, M. Sakai, H. Shibata, H. Tampo, P. Fons, K. Iwata, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Nakahara, and H. Takasu, “Photoluminescence characterization of excitonic centers in ZnO epitaxial films,” Appl. Phys. Lett. 86(22), 221907 (2005).
[Crossref]

Meng, Q. G.

B. J. Niu, L. L. Wu, W. Tang, X. T. Zhang, and Q. G. Meng, “Enhancement of near-band edge emission of Au/ZnO composite nanobelts by surface plasmon resonance,” CrystEngComm 13(11), 3678 (2011).
[Crossref]

Meyer, B. K.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Miao, G.

Mishra, U. K.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for Better Plasmonic Materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nakahara, K.

M. Watanabe, M. Sakai, H. Shibata, H. Tampo, P. Fons, K. Iwata, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Nakahara, and H. Takasu, “Photoluminescence characterization of excitonic centers in ZnO epitaxial films,” Appl. Phys. Lett. 86(22), 221907 (2005).
[Crossref]

Nataf, G.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[Crossref]

Niikura, I.

M. Watanabe, M. Sakai, H. Shibata, C. Satou, S. Satou, T. Shibayama, H. Tampo, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Maeda, and I. Niikura, “Negative thermal quenching of photoluminescence in ZnO,” Physica B 376–377, 711–714 (2006).
[Crossref]

Niki, S.

M. Watanabe, M. Sakai, H. Shibata, C. Satou, S. Satou, T. Shibayama, H. Tampo, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Maeda, and I. Niikura, “Negative thermal quenching of photoluminescence in ZnO,” Physica B 376–377, 711–714 (2006).
[Crossref]

M. Watanabe, M. Sakai, H. Shibata, H. Tampo, P. Fons, K. Iwata, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Nakahara, and H. Takasu, “Photoluminescence characterization of excitonic centers in ZnO epitaxial films,” Appl. Phys. Lett. 86(22), 221907 (2005).
[Crossref]

Niu, B. J.

B. J. Niu, L. L. Wu, W. Tang, X. T. Zhang, and Q. G. Meng, “Enhancement of near-band edge emission of Au/ZnO composite nanobelts by surface plasmon resonance,” CrystEngComm 13(11), 3678 (2011).
[Crossref]

Ong, H. C.

Z. L. Cao and H. C. Ong, “Determination of coupling rate of light emitter to surface plasmon polaritons supported on nanohole array,” Appl. Phys. Lett. 102(24), 241109 (2013).
[Crossref]

J. Li and H. C. Ong, “Temperature dependence of surface plasmon mediated emission from metal-capped ZnO films,” Appl. Phys. Lett. 92(12), 121107 (2008).
[Crossref]

Pescaglini, A.

A. Pescaglini and D. Iacopino, “Metal nanoparticle–semiconductor nanowire hybrid nanostructures for plasmon-enhanced optoelectronics and sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(45), 11785–11800 (2015).
[Crossref]

Postels, B.

C. Bekeny, T. Voss, B. Hilker, J. Gutowski, R. Hauschild, H. Kalt, B. Postels, A. Bakin, and A. Waag, “Influence of ZnO seed crystals and annealing on the optical quality of low-temperature grown ZnO nanorods,” J. Appl. Phys. 102(4), 044908 (2007).
[Crossref]

Qian, H.

Ray, K.

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79(17), 6480–6487 (2007).
[Crossref] [PubMed]

Ren, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Reynolds, D. C.

D. C. Reynolds, D. C. Look, and B. Jogai, “Fine structure on the green band in ZnO,” J. Appl. Phys. 89(11), 6189–6191 (2001).
[Crossref]

Richters, J. P.

J. P. Richters, T. Voss, D. S. Kim, R. Scholz, and M. Zacharias, “Enhanced surface-excitonic emission in ZnO/Al(2)O(3) core-shell nanowires,” Nanotechnology 19(30), 305202 (2008).
[Crossref] [PubMed]

J. P. Richters, T. Voss, L. Wischmeier, I. Rückmann, and J. Gutowski, “Influence of polymer coating on the low-temperature photoluminescence properties of ZnO nanowires,” Appl. Phys. Lett. 92(1), 011103 (2008).
[Crossref]

Rodina, A. V.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Rückmann, I.

J. P. Richters, T. Voss, L. Wischmeier, I. Rückmann, and J. Gutowski, “Influence of polymer coating on the low-temperature photoluminescence properties of ZnO nanowires,” Appl. Phys. Lett. 92(1), 011103 (2008).
[Crossref]

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Sakai, M.

M. Watanabe, M. Sakai, H. Shibata, C. Satou, S. Satou, T. Shibayama, H. Tampo, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Maeda, and I. Niikura, “Negative thermal quenching of photoluminescence in ZnO,” Physica B 376–377, 711–714 (2006).
[Crossref]

M. Watanabe, M. Sakai, H. Shibata, H. Tampo, P. Fons, K. Iwata, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Nakahara, and H. Takasu, “Photoluminescence characterization of excitonic centers in ZnO epitaxial films,” Appl. Phys. Lett. 86(22), 221907 (2005).
[Crossref]

Sakurai, K.

M. Watanabe, M. Sakai, H. Shibata, C. Satou, S. Satou, T. Shibayama, H. Tampo, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Maeda, and I. Niikura, “Negative thermal quenching of photoluminescence in ZnO,” Physica B 376–377, 711–714 (2006).
[Crossref]

M. Watanabe, M. Sakai, H. Shibata, H. Tampo, P. Fons, K. Iwata, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Nakahara, and H. Takasu, “Photoluminescence characterization of excitonic centers in ZnO epitaxial films,” Appl. Phys. Lett. 86(22), 221907 (2005).
[Crossref]

Satou, C.

M. Watanabe, M. Sakai, H. Shibata, C. Satou, S. Satou, T. Shibayama, H. Tampo, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Maeda, and I. Niikura, “Negative thermal quenching of photoluminescence in ZnO,” Physica B 376–377, 711–714 (2006).
[Crossref]

Satou, S.

M. Watanabe, M. Sakai, H. Shibata, C. Satou, S. Satou, T. Shibayama, H. Tampo, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Maeda, and I. Niikura, “Negative thermal quenching of photoluminescence in ZnO,” Physica B 376–377, 711–714 (2006).
[Crossref]

Scholz, R.

J. P. Richters, T. Voss, D. S. Kim, R. Scholz, and M. Zacharias, “Enhanced surface-excitonic emission in ZnO/Al(2)O(3) core-shell nanowires,” Nanotechnology 19(30), 305202 (2008).
[Crossref] [PubMed]

Semond, F.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[Crossref]

Sha, J.

X. Ding, Y. Fang, H. Qian, M. Zhao, W. Wang, J. Sha, and Y. Wang, “Influence of the precursor anion on the photoluminescence properties of ZnO,” Opt. Express 24(22), 25876–25884 (2016).
[Crossref] [PubMed]

Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett. 98(3), 033103 (2011).
[Crossref]

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for Better Plasmonic Materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Shan, W.

W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, and J. J. Song, “Nature of room-temperature photoluminescence in ZnO,” Appl. Phys. Lett. 86(19), 191911 (2005).
[Crossref]

Shibata, H.

M. Watanabe, M. Sakai, H. Shibata, C. Satou, S. Satou, T. Shibayama, H. Tampo, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Maeda, and I. Niikura, “Negative thermal quenching of photoluminescence in ZnO,” Physica B 376–377, 711–714 (2006).
[Crossref]

M. Watanabe, M. Sakai, H. Shibata, H. Tampo, P. Fons, K. Iwata, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Nakahara, and H. Takasu, “Photoluminescence characterization of excitonic centers in ZnO epitaxial films,” Appl. Phys. Lett. 86(22), 221907 (2005).
[Crossref]

H. Shibata, “Negative thermal quenching curves in photoluminescence of solids,” Jpn. J. Appl. Phys. 37(2), 550–553 (1998).
[Crossref]

Shibayama, T.

M. Watanabe, M. Sakai, H. Shibata, C. Satou, S. Satou, T. Shibayama, H. Tampo, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Maeda, and I. Niikura, “Negative thermal quenching of photoluminescence in ZnO,” Physica B 376–377, 711–714 (2006).
[Crossref]

Sie, E. J.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface Plasmon Enhanced Band Edge Luminescence of ZnO Nanorods by Capping Au Nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

Sohn, J. I.

W. K. Hong, G. Jo, M. Choe, T. Lee, J. I. Sohn, and M. E. Welland, “Influence of surface structure on the phonon-assisted emission process in the ZnO nanowires grown on homoepitaxial films,” Appl. Phys. Lett. 94(4), 043103 (2009).
[Crossref]

Song, H.

Song, J. J.

W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, and J. J. Song, “Nature of room-temperature photoluminescence in ZnO,” Appl. Phys. Lett. 86(19), 191911 (2005).
[Crossref]

Straßburg, M.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Sum, T. C.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface Plasmon Enhanced Band Edge Luminescence of ZnO Nanorods by Capping Au Nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

Sun, H. D.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface Plasmon Enhanced Band Edge Luminescence of ZnO Nanorods by Capping Au Nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

Sun, L.

Y. Wang, H. He, Y. Zhang, L. Sun, L. Hu, K. Wu, J. Huang, and Z. Ye, “Metal enhanced photoluminescence from Al-capped ZnMgO films: The roles of plasmonic coupling and non-radiative recombination,” Appl. Phys. Lett. 100(11), 112103 (2012).
[Crossref]

Z. Xu, H. He, L. Sun, Y. Jin, B. Zhao, and Z. Ye, “Localized exciton emission from ZnO nanocrystalline films,” J. Appl. Phys. 107(5), 053524 (2010).
[Crossref]

Sun, X.

Takasu, H.

M. Watanabe, M. Sakai, H. Shibata, H. Tampo, P. Fons, K. Iwata, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Nakahara, and H. Takasu, “Photoluminescence characterization of excitonic centers in ZnO epitaxial films,” Appl. Phys. Lett. 86(22), 221907 (2005).
[Crossref]

Tampo, H.

M. Watanabe, M. Sakai, H. Shibata, C. Satou, S. Satou, T. Shibayama, H. Tampo, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Maeda, and I. Niikura, “Negative thermal quenching of photoluminescence in ZnO,” Physica B 376–377, 711–714 (2006).
[Crossref]

M. Watanabe, M. Sakai, H. Shibata, H. Tampo, P. Fons, K. Iwata, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Nakahara, and H. Takasu, “Photoluminescence characterization of excitonic centers in ZnO epitaxial films,” Appl. Phys. Lett. 86(22), 221907 (2005).
[Crossref]

Tang, W.

B. J. Niu, L. L. Wu, W. Tang, X. T. Zhang, and Q. G. Meng, “Enhancement of near-band edge emission of Au/ZnO composite nanobelts by surface plasmon resonance,” CrystEngComm 13(11), 3678 (2011).
[Crossref]

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica Amsterdam 34(1), 149–154 (1967).
[Crossref]

Voss, T.

J. P. Richters, T. Voss, D. S. Kim, R. Scholz, and M. Zacharias, “Enhanced surface-excitonic emission in ZnO/Al(2)O(3) core-shell nanowires,” Nanotechnology 19(30), 305202 (2008).
[Crossref] [PubMed]

J. P. Richters, T. Voss, L. Wischmeier, I. Rückmann, and J. Gutowski, “Influence of polymer coating on the low-temperature photoluminescence properties of ZnO nanowires,” Appl. Phys. Lett. 92(1), 011103 (2008).
[Crossref]

C. Bekeny, T. Voss, B. Hilker, J. Gutowski, R. Hauschild, H. Kalt, B. Postels, A. Bakin, and A. Waag, “Influence of ZnO seed crystals and annealing on the optical quality of low-temperature grown ZnO nanorods,” J. Appl. Phys. 102(4), 044908 (2007).
[Crossref]

Waag, A.

C. Bekeny, T. Voss, B. Hilker, J. Gutowski, R. Hauschild, H. Kalt, B. Postels, A. Bakin, and A. Waag, “Influence of ZnO seed crystals and annealing on the optical quality of low-temperature grown ZnO nanorods,” J. Appl. Phys. 102(4), 044908 (2007).
[Crossref]

Walukiewicz, W.

W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, and J. J. Song, “Nature of room-temperature photoluminescence in ZnO,” Appl. Phys. Lett. 86(19), 191911 (2005).
[Crossref]

Wan, Y. T.

Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett. 98(3), 033103 (2011).
[Crossref]

Wang, G.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Wang, J.

H. He, Y. Wang, J. Wang, and Z. Ye, “Extraction of the surface trap level from photoluminescence: a case study of ZnO nanostructures,” Phys. Chem. Chem. Phys. 13(33), 14902–14905 (2011).
[Crossref] [PubMed]

Wang, L.

L. Wang and N. C. Giles, “Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy,” J. Appl. Phys. 94(2), 973–978 (2003).
[Crossref]

Wang, S.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

Wang, W.

Wang, Y.

X. Ding, Y. Fang, H. Qian, M. Zhao, W. Wang, J. Sha, and Y. Wang, “Influence of the precursor anion on the photoluminescence properties of ZnO,” Opt. Express 24(22), 25876–25884 (2016).
[Crossref] [PubMed]

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

Y. Wang, H. He, Y. Zhang, L. Sun, L. Hu, K. Wu, J. Huang, and Z. Ye, “Metal enhanced photoluminescence from Al-capped ZnMgO films: The roles of plasmonic coupling and non-radiative recombination,” Appl. Phys. Lett. 100(11), 112103 (2012).
[Crossref]

H. He, Y. Wang, J. Wang, and Z. Ye, “Extraction of the surface trap level from photoluminescence: a case study of ZnO nanostructures,” Phys. Chem. Chem. Phys. 13(33), 14902–14905 (2011).
[Crossref] [PubMed]

Wang, Y. W.

Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett. 98(3), 033103 (2011).
[Crossref]

Wang, Z. L.

Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett. 98(3), 033103 (2011).
[Crossref]

X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen, and Z. L. Wang, “Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film,” Adv. Mater. 21(27), 2767–2770 (2009).
[Crossref]

Watanabe, M.

M. Watanabe, M. Sakai, H. Shibata, C. Satou, S. Satou, T. Shibayama, H. Tampo, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Maeda, and I. Niikura, “Negative thermal quenching of photoluminescence in ZnO,” Physica B 376–377, 711–714 (2006).
[Crossref]

M. Watanabe, M. Sakai, H. Shibata, H. Tampo, P. Fons, K. Iwata, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Nakahara, and H. Takasu, “Photoluminescence characterization of excitonic centers in ZnO epitaxial films,” Appl. Phys. Lett. 86(22), 221907 (2005).
[Crossref]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Welland, M. E.

W. K. Hong, G. Jo, M. Choe, T. Lee, J. I. Sohn, and M. E. Welland, “Influence of surface structure on the phonon-assisted emission process in the ZnO nanowires grown on homoepitaxial films,” Appl. Phys. Lett. 94(4), 043103 (2009).
[Crossref]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for Better Plasmonic Materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Wischmeier, L.

J. P. Richters, T. Voss, L. Wischmeier, I. Rückmann, and J. Gutowski, “Influence of polymer coating on the low-temperature photoluminescence properties of ZnO nanowires,” Appl. Phys. Lett. 92(1), 011103 (2008).
[Crossref]

Wu, K.

C. Chen, H. He, Y. Lu, K. Wu, and Z. Ye, “Surface passivation effect on the photoluminescence of ZnO nanorods,” ACS Appl. Mater. Interfaces 5(13), 6354–6359 (2013).
[Crossref] [PubMed]

Y. Wang, H. He, Y. Zhang, L. Sun, L. Hu, K. Wu, J. Huang, and Z. Ye, “Metal enhanced photoluminescence from Al-capped ZnMgO films: The roles of plasmonic coupling and non-radiative recombination,” Appl. Phys. Lett. 100(11), 112103 (2012).
[Crossref]

Wu, L. L.

B. J. Niu, L. L. Wu, W. Tang, X. T. Zhang, and Q. G. Meng, “Enhancement of near-band edge emission of Au/ZnO composite nanobelts by surface plasmon resonance,” CrystEngComm 13(11), 3678 (2011).
[Crossref]

Wu, Y.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Wu, Z.

J. Yin, C. Yue, Y. Zang, C. H. Chiu, J. Li, H. C. Kuo, Z. Wu, J. Li, Y. Fang, and C. Chen, “Effect of the surface-plasmon-exciton coupling and charge transfer process on the photoluminescence of metal-semiconductor nanostructures,” Nanoscale 5(10), 4436–4442 (2013).
[Crossref] [PubMed]

Xia, W. W.

Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett. 98(3), 033103 (2011).
[Crossref]

Xin, H. P.

W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, and J. J. Song, “Nature of room-temperature photoluminescence in ZnO,” Appl. Phys. Lett. 86(19), 191911 (2005).
[Crossref]

Xu, C.

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

Xu, X.

H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[Crossref]

Xu, Z.

Z. Xu, H. He, L. Sun, Y. Jin, B. Zhao, and Z. Ye, “Localized exciton emission from ZnO nanocrystalline films,” J. Appl. Phys. 107(5), 053524 (2010).
[Crossref]

Yablonovitch, E.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Yamada, A.

M. Watanabe, M. Sakai, H. Shibata, C. Satou, S. Satou, T. Shibayama, H. Tampo, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Maeda, and I. Niikura, “Negative thermal quenching of photoluminescence in ZnO,” Physica B 376–377, 711–714 (2006).
[Crossref]

M. Watanabe, M. Sakai, H. Shibata, H. Tampo, P. Fons, K. Iwata, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Nakahara, and H. Takasu, “Photoluminescence characterization of excitonic centers in ZnO epitaxial films,” Appl. Phys. Lett. 86(22), 221907 (2005).
[Crossref]

Yan, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Yang, D. R.

P. H. Cheng, D. S. Li, Z. Z. Yuan, P. L. Chen, and D. R. Yang, “Enhancement of ZnO Light Emission via Coupling with Localized Surface Plasmon of Ag Island Film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[Crossref]

Yang, P.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Yang, S.

H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[Crossref]

Ye, Z.

C. Chen, H. He, Y. Lu, K. Wu, and Z. Ye, “Surface passivation effect on the photoluminescence of ZnO nanorods,” ACS Appl. Mater. Interfaces 5(13), 6354–6359 (2013).
[Crossref] [PubMed]

Y. Wang, H. He, Y. Zhang, L. Sun, L. Hu, K. Wu, J. Huang, and Z. Ye, “Metal enhanced photoluminescence from Al-capped ZnMgO films: The roles of plasmonic coupling and non-radiative recombination,” Appl. Phys. Lett. 100(11), 112103 (2012).
[Crossref]

H. He, Y. Wang, J. Wang, and Z. Ye, “Extraction of the surface trap level from photoluminescence: a case study of ZnO nanostructures,” Phys. Chem. Chem. Phys. 13(33), 14902–14905 (2011).
[Crossref] [PubMed]

Z. Xu, H. He, L. Sun, Y. Jin, B. Zhao, and Z. Ye, “Localized exciton emission from ZnO nanocrystalline films,” J. Appl. Phys. 107(5), 053524 (2010).
[Crossref]

Yin, J.

J. Yin, C. Yue, Y. Zang, C. H. Chiu, J. Li, H. C. Kuo, Z. Wu, J. Li, Y. Fang, and C. Chen, “Effect of the surface-plasmon-exciton coupling and charge transfer process on the photoluminescence of metal-semiconductor nanostructures,” Nanoscale 5(10), 4436–4442 (2013).
[Crossref] [PubMed]

Yu, K. M.

W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, and J. J. Song, “Nature of room-temperature photoluminescence in ZnO,” Appl. Phys. Lett. 86(19), 191911 (2005).
[Crossref]

Yuan, H. B.

W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, and J. J. Song, “Nature of room-temperature photoluminescence in ZnO,” Appl. Phys. Lett. 86(19), 191911 (2005).
[Crossref]

Yuan, Z. Z.

P. H. Cheng, D. S. Li, Z. Z. Yuan, P. L. Chen, and D. R. Yang, “Enhancement of ZnO Light Emission via Coupling with Localized Surface Plasmon of Ag Island Film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[Crossref]

Yue, C.

J. Yin, C. Yue, Y. Zang, C. H. Chiu, J. Li, H. C. Kuo, Z. Wu, J. Li, Y. Fang, and C. Chen, “Effect of the surface-plasmon-exciton coupling and charge transfer process on the photoluminescence of metal-semiconductor nanostructures,” Nanoscale 5(10), 4436–4442 (2013).
[Crossref] [PubMed]

Zacharias, M.

J. P. Richters, T. Voss, D. S. Kim, R. Scholz, and M. Zacharias, “Enhanced surface-excitonic emission in ZnO/Al(2)O(3) core-shell nanowires,” Nanotechnology 19(30), 305202 (2008).
[Crossref] [PubMed]

Zang, Y.

J. Yin, C. Yue, Y. Zang, C. H. Chiu, J. Li, H. C. Kuo, Z. Wu, J. Li, Y. Fang, and C. Chen, “Effect of the surface-plasmon-exciton coupling and charge transfer process on the photoluminescence of metal-semiconductor nanostructures,” Nanoscale 5(10), 4436–4442 (2013).
[Crossref] [PubMed]

Zeng, H.

H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[Crossref]

Zhang, X. M.

X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen, and Z. L. Wang, “Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film,” Adv. Mater. 21(27), 2767–2770 (2009).
[Crossref]

Zhang, X. T.

B. J. Niu, L. L. Wu, W. Tang, X. T. Zhang, and Q. G. Meng, “Enhancement of near-band edge emission of Au/ZnO composite nanobelts by surface plasmon resonance,” CrystEngComm 13(11), 3678 (2011).
[Crossref]

Zhang, Y.

Y. Wang, H. He, Y. Zhang, L. Sun, L. Hu, K. Wu, J. Huang, and Z. Ye, “Metal enhanced photoluminescence from Al-capped ZnMgO films: The roles of plasmonic coupling and non-radiative recombination,” Appl. Phys. Lett. 100(11), 112103 (2012).
[Crossref]

X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen, and Z. L. Wang, “Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film,” Adv. Mater. 21(27), 2767–2770 (2009).
[Crossref]

Zhang, Z.

Zhao, B.

Z. Xu, H. He, L. Sun, Y. Jin, B. Zhao, and Z. Ye, “Localized exciton emission from ZnO nanocrystalline films,” J. Appl. Phys. 107(5), 053524 (2010).
[Crossref]

Zhao, J.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Zhao, M.

Zhou, H.

M. Hauser, A. Hepting, R. Hauschild, H. Zhou, J. Fallert, H. Kalt, and C. Klingshirn, “Absolute external luminescence quantum efficiency of zinc oxide,” Appl. Phys. Lett. 92(21), 211105 (2008).
[Crossref]

Zhou, W.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (2)

J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, “Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods,” ACS Appl. Mater. Interfaces 6(20), 18301–18305 (2014).
[Crossref] [PubMed]

C. Chen, H. He, Y. Lu, K. Wu, and Z. Ye, “Surface passivation effect on the photoluminescence of ZnO nanorods,” ACS Appl. Mater. Interfaces 5(13), 6354–6359 (2013).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, “Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls,” Adv. Funct. Mater. 20(4), 561–572 (2010).
[Crossref]

Adv. Mater. (1)

X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen, and Z. L. Wang, “Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film,” Adv. Mater. 21(27), 2767–2770 (2009).
[Crossref]

Anal. Chem. (1)

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79(17), 6480–6487 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (11)

Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett. 98(3), 033103 (2011).
[Crossref]

J. P. Richters, T. Voss, L. Wischmeier, I. Rückmann, and J. Gutowski, “Influence of polymer coating on the low-temperature photoluminescence properties of ZnO nanowires,” Appl. Phys. Lett. 92(1), 011103 (2008).
[Crossref]

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface Plasmon Enhanced Band Edge Luminescence of ZnO Nanorods by Capping Au Nanoparticles,” Appl. Phys. Lett. 96(7), 071107 (2010).
[Crossref]

P. H. Cheng, D. S. Li, Z. Z. Yuan, P. L. Chen, and D. R. Yang, “Enhancement of ZnO Light Emission via Coupling with Localized Surface Plasmon of Ag Island Film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[Crossref]

M. Watanabe, M. Sakai, H. Shibata, H. Tampo, P. Fons, K. Iwata, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Nakahara, and H. Takasu, “Photoluminescence characterization of excitonic centers in ZnO epitaxial films,” Appl. Phys. Lett. 86(22), 221907 (2005).
[Crossref]

Y. Wang, H. He, Y. Zhang, L. Sun, L. Hu, K. Wu, J. Huang, and Z. Ye, “Metal enhanced photoluminescence from Al-capped ZnMgO films: The roles of plasmonic coupling and non-radiative recombination,” Appl. Phys. Lett. 100(11), 112103 (2012).
[Crossref]

W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, and J. J. Song, “Nature of room-temperature photoluminescence in ZnO,” Appl. Phys. Lett. 86(19), 191911 (2005).
[Crossref]

W. K. Hong, G. Jo, M. Choe, T. Lee, J. I. Sohn, and M. E. Welland, “Influence of surface structure on the phonon-assisted emission process in the ZnO nanowires grown on homoepitaxial films,” Appl. Phys. Lett. 94(4), 043103 (2009).
[Crossref]

Z. L. Cao and H. C. Ong, “Determination of coupling rate of light emitter to surface plasmon polaritons supported on nanohole array,” Appl. Phys. Lett. 102(24), 241109 (2013).
[Crossref]

J. Li and H. C. Ong, “Temperature dependence of surface plasmon mediated emission from metal-capped ZnO films,” Appl. Phys. Lett. 92(12), 121107 (2008).
[Crossref]

M. Hauser, A. Hepting, R. Hauschild, H. Zhou, J. Fallert, H. Kalt, and C. Klingshirn, “Absolute external luminescence quantum efficiency of zinc oxide,” Appl. Phys. Lett. 92(21), 211105 (2008).
[Crossref]

CrystEngComm (1)

B. J. Niu, L. L. Wu, W. Tang, X. T. Zhang, and Q. G. Meng, “Enhancement of near-band edge emission of Au/ZnO composite nanobelts by surface plasmon resonance,” CrystEngComm 13(11), 3678 (2011).
[Crossref]

J. Appl. Phys. (5)

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999).
[Crossref]

Z. Xu, H. He, L. Sun, Y. Jin, B. Zhao, and Z. Ye, “Localized exciton emission from ZnO nanocrystalline films,” J. Appl. Phys. 107(5), 053524 (2010).
[Crossref]

D. C. Reynolds, D. C. Look, and B. Jogai, “Fine structure on the green band in ZnO,” J. Appl. Phys. 89(11), 6189–6191 (2001).
[Crossref]

L. Wang and N. C. Giles, “Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy,” J. Appl. Phys. 94(2), 973–978 (2003).
[Crossref]

C. Bekeny, T. Voss, B. Hilker, J. Gutowski, R. Hauschild, H. Kalt, B. Postels, A. Bakin, and A. Waag, “Influence of ZnO seed crystals and annealing on the optical quality of low-temperature grown ZnO nanorods,” J. Appl. Phys. 102(4), 044908 (2007).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

A. Pescaglini and D. Iacopino, “Metal nanoparticle–semiconductor nanowire hybrid nanostructures for plasmon-enhanced optoelectronics and sensing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(45), 11785–11800 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Shibata, “Negative thermal quenching curves in photoluminescence of solids,” Jpn. J. Appl. Phys. 37(2), 550–553 (1998).
[Crossref]

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for Better Plasmonic Materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nanoscale (1)

J. Yin, C. Yue, Y. Zang, C. H. Chiu, J. Li, H. C. Kuo, Z. Wu, J. Li, Y. Fang, and C. Chen, “Effect of the surface-plasmon-exciton coupling and charge transfer process on the photoluminescence of metal-semiconductor nanostructures,” Nanoscale 5(10), 4436–4442 (2013).
[Crossref] [PubMed]

Nanotechnology (2)

J. P. Richters, T. Voss, D. S. Kim, R. Scholz, and M. Zacharias, “Enhanced surface-excitonic emission in ZnO/Al(2)O(3) core-shell nanowires,” Nanotechnology 19(30), 305202 (2008).
[Crossref] [PubMed]

J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, “Giant Enhancement of Bandgap Emission of ZnO Nanorods by Platinum Nanoparticles,” Nanotechnology 17(17), 4391–4394 (2006).
[Crossref]

Nat. Nanotechnol. (1)

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, “Electrically pumped waveguide lasing from ZnO nanowires,” Nat. Nanotechnol. 6(8), 506–510 (2011).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Chem. Chem. Phys. (1)

H. He, Y. Wang, J. Wang, and Z. Ye, “Extraction of the surface trap level from photoluminescence: a case study of ZnO nanostructures,” Phys. Chem. Chem. Phys. 13(33), 14902–14905 (2011).
[Crossref] [PubMed]

Phys. Rev. B (1)

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Physica Amsterdam (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica Amsterdam 34(1), 149–154 (1967).
[Crossref]

Physica B (1)

M. Watanabe, M. Sakai, H. Shibata, C. Satou, S. Satou, T. Shibayama, H. Tampo, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Maeda, and I. Niikura, “Negative thermal quenching of photoluminescence in ZnO,” Physica B 376–377, 711–714 (2006).
[Crossref]

Science (1)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Other (1)

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 SEM images of (a) bare ZnO, (b) Al-capped ZnO. (c), (d), (e) Zn, O, Al EDS element mapping images of Al-capped ZnO, respectively. (f) XRD patterns of bare ZnO.
Fig. 2
Fig. 2 PL spectra of ZnO with and without Al capping measured at RT.
Fig. 3
Fig. 3 (a) Temperature-dependent PL spectra of bare ZnO (b) Temperature-dependent PL spectra of Al-capped ZnO versus bare ZnO (c) PL spectra of bare and Al-capped-ZnO measured at 16K.
Fig. 4
Fig. 4 (a) Temperature-dependent NBE integrated intensity for bare ZnO and Al-capped ZnO (b) temperature dependent enhancement ratio of integrated NBE emission intensity after Al capping
Fig. 5
Fig. 5 Integrated PL intensity of NBE as a function of the reciprocal of temperature and the corresponding fitting curves of (a) bare ZnO and (b) Al-capped ZnO. The fitting value of activation energy and their error range are shown in the figure.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ι= Ι 0 /[1+ a 1 exp( E a1 /KT)+ a 2 exp( E a2 /KT)]
Ι= Ι 0 [ 1+ a 3 exp( E a3 /KT) ]/[1+ a 1 exp( E a1 /KT)+ a 2 exp( E a2 /KT)]

Metrics