Abstract

Two-dimensional gold-nanorod arrays (2D-GNA) exhibit distinct resonance peaks in the visible wavelength range that are clearly associated with long and short axis plasmon oscillations. In this paper, we demonstrate a flexible and reproducible way for controlling the plasmon resonance of such 2D-GNAs in-situ, even post-fabrication process, simply by embedding free-standing nanorod arrays into an elastomer thin film. Stretching the polymer film shows the plasmon long-axis resonance to red-shift proportionally to the applied force by as much as 20~nm by increasing the center-to-center distance between individual nanorods. Releasing the load elastically relaxes the stretched polymer film, hence allowing the recording of cyclic load curves while varying the spectral response in-situ. Notably, film stretching along the substrate plane (x-axis) results in a uniaxial distortion of the nanorod lattice. We show how to account for this anisotropic strain in both the experiment and our complementary finite element modelling simulations, which then both match very well. This novel work illustrates both the feasibility and reliability when integrating 2D-GNAs for potential flexible, plasmonic applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Advanced engineering of single-crystal gold nanoantennas

R. Méjard, A. Verdy, O. Demichel, M. Petit, L. Markey, F. Herbst, R. Chassagnon, G. Colas-des-Francs, B. Cluzel, and A. Bouhelier
Opt. Mater. Express 7(4) 1157-1168 (2017)

Hairy gold nanorods: gold nanowire growth on nanosubstrates [Invited]

Wenjuan Yang, Lim Wei Yap, Shu Gong, and Wenlong Cheng
Opt. Mater. Express 10(2) 342-357 (2020)

Comparison of two-dimensional arrays of gold disks and holes for plasmonic enhancement of Ge/Si quantum dot mid-infrared photodetectors

A. I. Yakimov, V. V. Kirienko, and A. V. Dvurechenskii
Opt. Mater. Express 8(11) 3479-3484 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
    [Crossref] [PubMed]
  2. S. Pellicori and A. Mika, “Wedge-filter spectrometer,” US Patent 4,957,371, (1990).
  3. S. Kong, D. Wijngaards, and R. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Actuators, A 92, 88–95 (2001).
    [Crossref]
  4. Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
    [Crossref]
  5. Y. Huang, X. Zhang, E. Ringe, M. Hou, L. Ma, and Z. Zhang, “Tunable lattice coupling of multipole plasmon modes and near-field enhancement in closely spaced gold nanorod arrays,” Sci. Rep. 6, 23159 (2016).
    [Crossref] [PubMed]
  6. F. Keller, M. S. Hunter, and D. L. Robinson, “Structural features of oxide coatings on aluminum,” J. Electrochem. Soc. 100, 411–419 (1953).
    [Crossref]
  7. H. Masuda and M. Satoh, “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask,” Jpn. J. Appl. Phys., Part 2  35, L126 (1996).
    [Crossref]
  8. C. A. Foss, M. J. Tierney, and C. R. Martin, “Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory,” J. Phys. Chem. 96, 9001–9007 (1992).
    [Crossref]
  9. C. A. Foss, G. L. Hornyak, J. A. Stockert, and C. R. Martin, “Template-synthesized nanoscopic gold particles: Optical spectra and the effects of particle size and shape,” J. Phys. Chem. 98, 2963–2971 (1994).
    [Crossref]
  10. G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16, 7460–7470 (2008).
    [Crossref] [PubMed]
  11. R. Kullock, S. Grafström, P. R. Evans, R. J. Pollard, and L. M. Eng, “Metallic nanorod arrays: negative refraction and optical properties explained by retarded dipolar interactions,” J. Opt. Soc. Am. B 27, 1819–1827 (2010).
    [Crossref]
  12. P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: Subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111, 12522–12527 (2007).
    [Crossref]
  13. Z. Huang, G. Meng, Q. Huang, B. Chen, C. Zhu, and Z. Zhang, “Large-area ag nanorod array substrates for sers: Aao template-assisted fabrication, functionalization, and application in detection pcbs,” J. Raman Spectrosc. 44, 240–246 (2013).
    [Crossref]
  14. A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120, 1163–1169 (2016).
    [Crossref]
  15. L. M. Eng, T. Härtling, and R. Kullock, “Wavelength-sensitive plasmonically active module for detecting light in a spectrally resolved manner,” WO 2011091793 A1, (2011).
  16. J. Ehlermann, J. Siebels, S. Fohrmann, and S. Mendach, “Surface plasmon resonance based integrable micro spectrometer,” Appl. Phys. Lett. 106, 101106 (2015).
    [Crossref]
  17. N. Vasilantonakis, G. A. Wurtz, V. A. Podolskiy, and A. V. Zayats, “Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement,” Opt. Express 23, 14329–14343 (2015).
    [Crossref] [PubMed]
  18. G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical chameleon through dynamic real-time plasmonic tuning,” ACS Nano 10, 1788–1794 (2016).
    [Crossref] [PubMed]
  19. S. Derenko, R. Kullock, Z. Wu, A. Sarangan, C. Schuster, L. M. Eng, and T. Härtling, “Local photochemical plasmon mode tuning in metal nanoparticle arrays,” Opt. Mater. Express 3, 794–805 (2013).
    [Crossref]
  20. H. Kang, C.-J. Heo, H. C. Jeon, S. Y. Lee, and S.-M. Yang, “Durable plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity sers devices,” ACS Appl. Mater. Interfaces 5, 4569–4574 (2013).
    [Crossref] [PubMed]
  21. X. Zhu, L. Shi, X. Liu, J. Zi, and Z. Wang, “A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate,” Nano Res. 3, 807–812 (2010).
    [Crossref]
  22. U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Burgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C 2, 7927–7933 (2014).
    [Crossref]
  23. M. G. Millyard, F. Min Huang, R. White, E. Spigone, J. Kivioja, and J. J. Baumberg, “Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats,” Appl. Phys. Lett. 100, 073101 (2012).
    [Crossref]
  24. S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23, 4422–4430 (2011).
    [Crossref] [PubMed]
  25. J. Li, Z. Wei, J. Xu, Z.-K. Zhou, D. Kong, J. Liu, J. Liu, X. Duan, J. Xue, J. Wang, and X. Wang, “A large-scale flexible plasmonic nanorod array with multifunction of strong photoluminescence emission and radiation enhancement,” Adv. Opt. Mater. 3, 1355–1361 (2015).
    [Crossref]
  26. K. T. Kim and S. M. Cho, “A simple method for formation of metal nanowires on flexible polymer film,” Mater. Lett. 60, 352–355 (2006).
    [Crossref]
  27. K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible polymer-embedded si wire arrays,” Adv. Mater. 21, 325–328 (2009).
    [Crossref]
  28. P. Evans, W. R. Hendren, R. Atkinson, G. A. Wurtz, W. Dickson, A. V. Zayats, and R. J. Pollard, “Growth and properties of gold and nickel nanorods in thin film alumina,” Nanotechnology 17, 5746 (2006).
    [Crossref]
  29. P. R. Evans, R. Kullock, W. R. Hendren, R. Atkinson, R. J. Pollard, and L. M. Eng, “Optical transmission properties and electric field distribution of interacting 2d silver nanorod arrays,” Adv. Funct. Mater. 18, 1075–1079 (2008).
    [Crossref]
  30. V. Fiehler, F. Patrovsky, L. Ortmann, S. Derenko, A. Hille, and L. M. Eng, “Plasmonic nanorod antenna array: Analysis in reflection and transmission,” J. Phys. Chem. C 120, 12178–12186 (2016).
    [Crossref]
  31. M. Wang, Y. Liu, and H. Yang, “A unified thermodynamic theory for the formation of anodized metal oxide structures,” Electrochim. Acta 62, 424–432 (2012).
    [Crossref]
  32. F. Patrovsky, V. Fiehler, S. Derenko, S. Barth, H. Bartzsch, K. Ortstein, P. Frach, and L. M. Eng, “High-quality anodized aluminum oxide templates for improved nanorod array fabrication,” Mater. Res. Express (to be published).
  33. M. J. Liew, S. Roy, and K. Scott, “Development of a non-toxic electrolyte for soft gold electrodeposition: an overview of work at university of newcastle upon tyne,” Green Chem. 5, 376–381 (2003).
    [Crossref]
  34. Y.-P. Zhao and J.-G. Fan, “Clusters of bundled nanorods in nanocarpet effect,” Appl. Phys. Lett. 88, 103123 (2006).
    [Crossref]
  35. R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73, 235402 (2006).
    [Crossref]
  36. Epoxy Technology, “Preliminary product information sheet (epo-tek 310m–1),” http://www.epotek.com/site/administrator/components/com_products/assets/files/Style_Uploads/310M-1.pdf .
  37. Epoxy Technology, “Understanding mechanical properties of epoxies for modeling, finite element analysis,” http://www.epotek.com/site/files/Techtips/pdfs/tip19.pdf (2012).

2016 (4)

Y. Huang, X. Zhang, E. Ringe, M. Hou, L. Ma, and Z. Zhang, “Tunable lattice coupling of multipole plasmon modes and near-field enhancement in closely spaced gold nanorod arrays,” Sci. Rep. 6, 23159 (2016).
[Crossref] [PubMed]

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical chameleon through dynamic real-time plasmonic tuning,” ACS Nano 10, 1788–1794 (2016).
[Crossref] [PubMed]

A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120, 1163–1169 (2016).
[Crossref]

V. Fiehler, F. Patrovsky, L. Ortmann, S. Derenko, A. Hille, and L. M. Eng, “Plasmonic nanorod antenna array: Analysis in reflection and transmission,” J. Phys. Chem. C 120, 12178–12186 (2016).
[Crossref]

2015 (3)

J. Ehlermann, J. Siebels, S. Fohrmann, and S. Mendach, “Surface plasmon resonance based integrable micro spectrometer,” Appl. Phys. Lett. 106, 101106 (2015).
[Crossref]

N. Vasilantonakis, G. A. Wurtz, V. A. Podolskiy, and A. V. Zayats, “Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement,” Opt. Express 23, 14329–14343 (2015).
[Crossref] [PubMed]

J. Li, Z. Wei, J. Xu, Z.-K. Zhou, D. Kong, J. Liu, J. Liu, X. Duan, J. Xue, J. Wang, and X. Wang, “A large-scale flexible plasmonic nanorod array with multifunction of strong photoluminescence emission and radiation enhancement,” Adv. Opt. Mater. 3, 1355–1361 (2015).
[Crossref]

2014 (1)

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Burgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C 2, 7927–7933 (2014).
[Crossref]

2013 (3)

S. Derenko, R. Kullock, Z. Wu, A. Sarangan, C. Schuster, L. M. Eng, and T. Härtling, “Local photochemical plasmon mode tuning in metal nanoparticle arrays,” Opt. Mater. Express 3, 794–805 (2013).
[Crossref]

H. Kang, C.-J. Heo, H. C. Jeon, S. Y. Lee, and S.-M. Yang, “Durable plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity sers devices,” ACS Appl. Mater. Interfaces 5, 4569–4574 (2013).
[Crossref] [PubMed]

Z. Huang, G. Meng, Q. Huang, B. Chen, C. Zhu, and Z. Zhang, “Large-area ag nanorod array substrates for sers: Aao template-assisted fabrication, functionalization, and application in detection pcbs,” J. Raman Spectrosc. 44, 240–246 (2013).
[Crossref]

2012 (2)

M. G. Millyard, F. Min Huang, R. White, E. Spigone, J. Kivioja, and J. J. Baumberg, “Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats,” Appl. Phys. Lett. 100, 073101 (2012).
[Crossref]

M. Wang, Y. Liu, and H. Yang, “A unified thermodynamic theory for the formation of anodized metal oxide structures,” Electrochim. Acta 62, 424–432 (2012).
[Crossref]

2011 (1)

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23, 4422–4430 (2011).
[Crossref] [PubMed]

2010 (3)

R. Kullock, S. Grafström, P. R. Evans, R. J. Pollard, and L. M. Eng, “Metallic nanorod arrays: negative refraction and optical properties explained by retarded dipolar interactions,” J. Opt. Soc. Am. B 27, 1819–1827 (2010).
[Crossref]

X. Zhu, L. Shi, X. Liu, J. Zi, and Z. Wang, “A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate,” Nano Res. 3, 807–812 (2010).
[Crossref]

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

2009 (1)

K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible polymer-embedded si wire arrays,” Adv. Mater. 21, 325–328 (2009).
[Crossref]

2008 (3)

P. R. Evans, R. Kullock, W. R. Hendren, R. Atkinson, R. J. Pollard, and L. M. Eng, “Optical transmission properties and electric field distribution of interacting 2d silver nanorod arrays,” Adv. Funct. Mater. 18, 1075–1079 (2008).
[Crossref]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[Crossref] [PubMed]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16, 7460–7470 (2008).
[Crossref] [PubMed]

2007 (1)

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: Subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111, 12522–12527 (2007).
[Crossref]

2006 (4)

Y.-P. Zhao and J.-G. Fan, “Clusters of bundled nanorods in nanocarpet effect,” Appl. Phys. Lett. 88, 103123 (2006).
[Crossref]

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73, 235402 (2006).
[Crossref]

P. Evans, W. R. Hendren, R. Atkinson, G. A. Wurtz, W. Dickson, A. V. Zayats, and R. J. Pollard, “Growth and properties of gold and nickel nanorods in thin film alumina,” Nanotechnology 17, 5746 (2006).
[Crossref]

K. T. Kim and S. M. Cho, “A simple method for formation of metal nanowires on flexible polymer film,” Mater. Lett. 60, 352–355 (2006).
[Crossref]

2003 (1)

M. J. Liew, S. Roy, and K. Scott, “Development of a non-toxic electrolyte for soft gold electrodeposition: an overview of work at university of newcastle upon tyne,” Green Chem. 5, 376–381 (2003).
[Crossref]

2001 (1)

S. Kong, D. Wijngaards, and R. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Actuators, A 92, 88–95 (2001).
[Crossref]

1996 (1)

H. Masuda and M. Satoh, “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask,” Jpn. J. Appl. Phys., Part 2  35, L126 (1996).
[Crossref]

1994 (1)

C. A. Foss, G. L. Hornyak, J. A. Stockert, and C. R. Martin, “Template-synthesized nanoscopic gold particles: Optical spectra and the effects of particle size and shape,” J. Phys. Chem. 98, 2963–2971 (1994).
[Crossref]

1992 (1)

C. A. Foss, M. J. Tierney, and C. R. Martin, “Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory,” J. Phys. Chem. 96, 9001–9007 (1992).
[Crossref]

1953 (1)

F. Keller, M. S. Hunter, and D. L. Robinson, “Structural features of oxide coatings on aluminum,” J. Electrochem. Soc. 100, 411–419 (1953).
[Crossref]

Aksu, S.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23, 4422–4430 (2011).
[Crossref] [PubMed]

Altug, H.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23, 4422–4430 (2011).
[Crossref] [PubMed]

Artar, A.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23, 4422–4430 (2011).
[Crossref] [PubMed]

Atkinson, R.

P. R. Evans, R. Kullock, W. R. Hendren, R. Atkinson, R. J. Pollard, and L. M. Eng, “Optical transmission properties and electric field distribution of interacting 2d silver nanorod arrays,” Adv. Funct. Mater. 18, 1075–1079 (2008).
[Crossref]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16, 7460–7470 (2008).
[Crossref] [PubMed]

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: Subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111, 12522–12527 (2007).
[Crossref]

P. Evans, W. R. Hendren, R. Atkinson, G. A. Wurtz, W. Dickson, A. V. Zayats, and R. J. Pollard, “Growth and properties of gold and nickel nanorods in thin film alumina,” Nanotechnology 17, 5746 (2006).
[Crossref]

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73, 235402 (2006).
[Crossref]

Atwater, H. A.

K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible polymer-embedded si wire arrays,” Adv. Mater. 21, 325–328 (2009).
[Crossref]

Barth, S.

F. Patrovsky, V. Fiehler, S. Derenko, S. Barth, H. Bartzsch, K. Ortstein, P. Frach, and L. M. Eng, “High-quality anodized aluminum oxide templates for improved nanorod array fabrication,” Mater. Res. Express (to be published).

Bartzsch, H.

F. Patrovsky, V. Fiehler, S. Derenko, S. Barth, H. Bartzsch, K. Ortstein, P. Frach, and L. M. Eng, “High-quality anodized aluminum oxide templates for improved nanorod array fabrication,” Mater. Res. Express (to be published).

Baumberg, J. J.

M. G. Millyard, F. Min Huang, R. White, E. Spigone, J. Kivioja, and J. J. Baumberg, “Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats,” Appl. Phys. Lett. 100, 073101 (2012).
[Crossref]

Brunschwig, B. S.

K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible polymer-embedded si wire arrays,” Adv. Mater. 21, 325–328 (2009).
[Crossref]

Burgi, T.

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Burgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C 2, 7927–7933 (2014).
[Crossref]

Busch, K.

A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120, 1163–1169 (2016).
[Crossref]

Caputo, R.

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Burgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C 2, 7927–7933 (2014).
[Crossref]

Cataldi, U.

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Burgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C 2, 7927–7933 (2014).
[Crossref]

Chekini, M.

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Burgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C 2, 7927–7933 (2014).
[Crossref]

Chen, B.

Z. Huang, G. Meng, Q. Huang, B. Chen, C. Zhu, and Z. Zhang, “Large-area ag nanorod array substrates for sers: Aao template-assisted fabrication, functionalization, and application in detection pcbs,” J. Raman Spectrosc. 44, 240–246 (2013).
[Crossref]

Chen, X.

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical chameleon through dynamic real-time plasmonic tuning,” ACS Nano 10, 1788–1794 (2016).
[Crossref] [PubMed]

Cho, S. M.

K. T. Kim and S. M. Cho, “A simple method for formation of metal nanowires on flexible polymer film,” Mater. Lett. 60, 352–355 (2006).
[Crossref]

Chu, S.

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical chameleon through dynamic real-time plasmonic tuning,” ACS Nano 10, 1788–1794 (2016).
[Crossref] [PubMed]

De Angelis, F.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Derenko, S.

V. Fiehler, F. Patrovsky, L. Ortmann, S. Derenko, A. Hille, and L. M. Eng, “Plasmonic nanorod antenna array: Analysis in reflection and transmission,” J. Phys. Chem. C 120, 12178–12186 (2016).
[Crossref]

S. Derenko, R. Kullock, Z. Wu, A. Sarangan, C. Schuster, L. M. Eng, and T. Härtling, “Local photochemical plasmon mode tuning in metal nanoparticle arrays,” Opt. Mater. Express 3, 794–805 (2013).
[Crossref]

F. Patrovsky, V. Fiehler, S. Derenko, S. Barth, H. Bartzsch, K. Ortstein, P. Frach, and L. M. Eng, “High-quality anodized aluminum oxide templates for improved nanorod array fabrication,” Mater. Res. Express (to be published).

Di Fabrizio, E.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Dickson, W.

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16, 7460–7470 (2008).
[Crossref] [PubMed]

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: Subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111, 12522–12527 (2007).
[Crossref]

P. Evans, W. R. Hendren, R. Atkinson, G. A. Wurtz, W. Dickson, A. V. Zayats, and R. J. Pollard, “Growth and properties of gold and nickel nanorods in thin film alumina,” Nanotechnology 17, 5746 (2006).
[Crossref]

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73, 235402 (2006).
[Crossref]

Dokmeci, M. R.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23, 4422–4430 (2011).
[Crossref] [PubMed]

Duan, X.

J. Li, Z. Wei, J. Xu, Z.-K. Zhou, D. Kong, J. Liu, J. Liu, X. Duan, J. Xue, J. Wang, and X. Wang, “A large-scale flexible plasmonic nanorod array with multifunction of strong photoluminescence emission and radiation enhancement,” Adv. Opt. Mater. 3, 1355–1361 (2015).
[Crossref]

Ehlermann, J.

J. Ehlermann, J. Siebels, S. Fohrmann, and S. Mendach, “Surface plasmon resonance based integrable micro spectrometer,” Appl. Phys. Lett. 106, 101106 (2015).
[Crossref]

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[Crossref] [PubMed]

El-Sayed, M. A.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[Crossref] [PubMed]

Eng, L. M.

V. Fiehler, F. Patrovsky, L. Ortmann, S. Derenko, A. Hille, and L. M. Eng, “Plasmonic nanorod antenna array: Analysis in reflection and transmission,” J. Phys. Chem. C 120, 12178–12186 (2016).
[Crossref]

A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120, 1163–1169 (2016).
[Crossref]

S. Derenko, R. Kullock, Z. Wu, A. Sarangan, C. Schuster, L. M. Eng, and T. Härtling, “Local photochemical plasmon mode tuning in metal nanoparticle arrays,” Opt. Mater. Express 3, 794–805 (2013).
[Crossref]

R. Kullock, S. Grafström, P. R. Evans, R. J. Pollard, and L. M. Eng, “Metallic nanorod arrays: negative refraction and optical properties explained by retarded dipolar interactions,” J. Opt. Soc. Am. B 27, 1819–1827 (2010).
[Crossref]

P. R. Evans, R. Kullock, W. R. Hendren, R. Atkinson, R. J. Pollard, and L. M. Eng, “Optical transmission properties and electric field distribution of interacting 2d silver nanorod arrays,” Adv. Funct. Mater. 18, 1075–1079 (2008).
[Crossref]

F. Patrovsky, V. Fiehler, S. Derenko, S. Barth, H. Bartzsch, K. Ortstein, P. Frach, and L. M. Eng, “High-quality anodized aluminum oxide templates for improved nanorod array fabrication,” Mater. Res. Express (to be published).

L. M. Eng, T. Härtling, and R. Kullock, “Wavelength-sensitive plasmonically active module for detecting light in a spectrally resolved manner,” WO 2011091793 A1, (2011).

Evans, P.

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16, 7460–7470 (2008).
[Crossref] [PubMed]

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73, 235402 (2006).
[Crossref]

P. Evans, W. R. Hendren, R. Atkinson, G. A. Wurtz, W. Dickson, A. V. Zayats, and R. J. Pollard, “Growth and properties of gold and nickel nanorods in thin film alumina,” Nanotechnology 17, 5746 (2006).
[Crossref]

Evans, P. R.

R. Kullock, S. Grafström, P. R. Evans, R. J. Pollard, and L. M. Eng, “Metallic nanorod arrays: negative refraction and optical properties explained by retarded dipolar interactions,” J. Opt. Soc. Am. B 27, 1819–1827 (2010).
[Crossref]

P. R. Evans, R. Kullock, W. R. Hendren, R. Atkinson, R. J. Pollard, and L. M. Eng, “Optical transmission properties and electric field distribution of interacting 2d silver nanorod arrays,” Adv. Funct. Mater. 18, 1075–1079 (2008).
[Crossref]

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: Subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111, 12522–12527 (2007).
[Crossref]

Fan, J.-G.

Y.-P. Zhao and J.-G. Fan, “Clusters of bundled nanorods in nanocarpet effect,” Appl. Phys. Lett. 88, 103123 (2006).
[Crossref]

Fiehler, V.

V. Fiehler, F. Patrovsky, L. Ortmann, S. Derenko, A. Hille, and L. M. Eng, “Plasmonic nanorod antenna array: Analysis in reflection and transmission,” J. Phys. Chem. C 120, 12178–12186 (2016).
[Crossref]

F. Patrovsky, V. Fiehler, S. Derenko, S. Barth, H. Bartzsch, K. Ortstein, P. Frach, and L. M. Eng, “High-quality anodized aluminum oxide templates for improved nanorod array fabrication,” Mater. Res. Express (to be published).

Filler, M. A.

K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible polymer-embedded si wire arrays,” Adv. Mater. 21, 325–328 (2009).
[Crossref]

Fohrmann, S.

J. Ehlermann, J. Siebels, S. Fohrmann, and S. Mendach, “Surface plasmon resonance based integrable micro spectrometer,” Appl. Phys. Lett. 106, 101106 (2015).
[Crossref]

Foss, C. A.

C. A. Foss, G. L. Hornyak, J. A. Stockert, and C. R. Martin, “Template-synthesized nanoscopic gold particles: Optical spectra and the effects of particle size and shape,” J. Phys. Chem. 98, 2963–2971 (1994).
[Crossref]

C. A. Foss, M. J. Tierney, and C. R. Martin, “Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory,” J. Phys. Chem. 96, 9001–9007 (1992).
[Crossref]

Frach, P.

F. Patrovsky, V. Fiehler, S. Derenko, S. Barth, H. Bartzsch, K. Ortstein, P. Frach, and L. M. Eng, “High-quality anodized aluminum oxide templates for improved nanorod array fabrication,” Mater. Res. Express (to be published).

Gholipour, B.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Grafström, S.

A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120, 1163–1169 (2016).
[Crossref]

R. Kullock, S. Grafström, P. R. Evans, R. J. Pollard, and L. M. Eng, “Metallic nanorod arrays: negative refraction and optical properties explained by retarded dipolar interactions,” J. Opt. Soc. Am. B 27, 1819–1827 (2010).
[Crossref]

Härtling, T.

S. Derenko, R. Kullock, Z. Wu, A. Sarangan, C. Schuster, L. M. Eng, and T. Härtling, “Local photochemical plasmon mode tuning in metal nanoparticle arrays,” Opt. Mater. Express 3, 794–805 (2013).
[Crossref]

L. M. Eng, T. Härtling, and R. Kullock, “Wavelength-sensitive plasmonically active module for detecting light in a spectrally resolved manner,” WO 2011091793 A1, (2011).

Hendren, W.

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16, 7460–7470 (2008).
[Crossref] [PubMed]

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: Subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111, 12522–12527 (2007).
[Crossref]

Hendren, W. R.

P. R. Evans, R. Kullock, W. R. Hendren, R. Atkinson, R. J. Pollard, and L. M. Eng, “Optical transmission properties and electric field distribution of interacting 2d silver nanorod arrays,” Adv. Funct. Mater. 18, 1075–1079 (2008).
[Crossref]

P. Evans, W. R. Hendren, R. Atkinson, G. A. Wurtz, W. Dickson, A. V. Zayats, and R. J. Pollard, “Growth and properties of gold and nickel nanorods in thin film alumina,” Nanotechnology 17, 5746 (2006).
[Crossref]

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73, 235402 (2006).
[Crossref]

Heo, C.-J.

H. Kang, C.-J. Heo, H. C. Jeon, S. Y. Lee, and S.-M. Yang, “Durable plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity sers devices,” ACS Appl. Mater. Interfaces 5, 4569–4574 (2013).
[Crossref] [PubMed]

Hewak, D. W.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Hille, A.

A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120, 1163–1169 (2016).
[Crossref]

V. Fiehler, F. Patrovsky, L. Ortmann, S. Derenko, A. Hille, and L. M. Eng, “Plasmonic nanorod antenna array: Analysis in reflection and transmission,” J. Phys. Chem. C 120, 12178–12186 (2016).
[Crossref]

Hornyak, G. L.

C. A. Foss, G. L. Hornyak, J. A. Stockert, and C. R. Martin, “Template-synthesized nanoscopic gold particles: Optical spectra and the effects of particle size and shape,” J. Phys. Chem. 98, 2963–2971 (1994).
[Crossref]

Hou, M.

Y. Huang, X. Zhang, E. Ringe, M. Hou, L. Ma, and Z. Zhang, “Tunable lattice coupling of multipole plasmon modes and near-field enhancement in closely spaced gold nanorod arrays,” Sci. Rep. 6, 23159 (2016).
[Crossref] [PubMed]

Huang, C. C.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Huang, M.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23, 4422–4430 (2011).
[Crossref] [PubMed]

Huang, Q.

Z. Huang, G. Meng, Q. Huang, B. Chen, C. Zhu, and Z. Zhang, “Large-area ag nanorod array substrates for sers: Aao template-assisted fabrication, functionalization, and application in detection pcbs,” J. Raman Spectrosc. 44, 240–246 (2013).
[Crossref]

Huang, X.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[Crossref] [PubMed]

Huang, Y.

Y. Huang, X. Zhang, E. Ringe, M. Hou, L. Ma, and Z. Zhang, “Tunable lattice coupling of multipole plasmon modes and near-field enhancement in closely spaced gold nanorod arrays,” Sci. Rep. 6, 23159 (2016).
[Crossref] [PubMed]

Huang, Z.

Z. Huang, G. Meng, Q. Huang, B. Chen, C. Zhu, and Z. Zhang, “Large-area ag nanorod array substrates for sers: Aao template-assisted fabrication, functionalization, and application in detection pcbs,” J. Raman Spectrosc. 44, 240–246 (2013).
[Crossref]

Hunter, M. S.

F. Keller, M. S. Hunter, and D. L. Robinson, “Structural features of oxide coatings on aluminum,” J. Electrochem. Soc. 100, 411–419 (1953).
[Crossref]

Jain, P. K.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[Crossref] [PubMed]

Jeon, H. C.

H. Kang, C.-J. Heo, H. C. Jeon, S. Y. Lee, and S.-M. Yang, “Durable plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity sers devices,” ACS Appl. Mater. Interfaces 5, 4569–4574 (2013).
[Crossref] [PubMed]

Kang, H.

H. Kang, C.-J. Heo, H. C. Jeon, S. Y. Lee, and S.-M. Yang, “Durable plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity sers devices,” ACS Appl. Mater. Interfaces 5, 4569–4574 (2013).
[Crossref] [PubMed]

Kayes, B. M.

K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible polymer-embedded si wire arrays,” Adv. Mater. 21, 325–328 (2009).
[Crossref]

Keller, F.

F. Keller, M. S. Hunter, and D. L. Robinson, “Structural features of oxide coatings on aluminum,” J. Electrochem. Soc. 100, 411–419 (1953).
[Crossref]

Kim, K. T.

K. T. Kim and S. M. Cho, “A simple method for formation of metal nanowires on flexible polymer film,” Mater. Lett. 60, 352–355 (2006).
[Crossref]

Kivioja, J.

M. G. Millyard, F. Min Huang, R. White, E. Spigone, J. Kivioja, and J. J. Baumberg, “Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats,” Appl. Phys. Lett. 100, 073101 (2012).
[Crossref]

Klein, G.

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Burgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C 2, 7927–7933 (2014).
[Crossref]

Knight, K.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Kong, D.

J. Li, Z. Wei, J. Xu, Z.-K. Zhou, D. Kong, J. Liu, J. Liu, X. Duan, J. Xue, J. Wang, and X. Wang, “A large-scale flexible plasmonic nanorod array with multifunction of strong photoluminescence emission and radiation enhancement,” Adv. Opt. Mater. 3, 1355–1361 (2015).
[Crossref]

Kong, S.

S. Kong, D. Wijngaards, and R. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Actuators, A 92, 88–95 (2001).
[Crossref]

Kullock, R.

S. Derenko, R. Kullock, Z. Wu, A. Sarangan, C. Schuster, L. M. Eng, and T. Härtling, “Local photochemical plasmon mode tuning in metal nanoparticle arrays,” Opt. Mater. Express 3, 794–805 (2013).
[Crossref]

R. Kullock, S. Grafström, P. R. Evans, R. J. Pollard, and L. M. Eng, “Metallic nanorod arrays: negative refraction and optical properties explained by retarded dipolar interactions,” J. Opt. Soc. Am. B 27, 1819–1827 (2010).
[Crossref]

P. R. Evans, R. Kullock, W. R. Hendren, R. Atkinson, R. J. Pollard, and L. M. Eng, “Optical transmission properties and electric field distribution of interacting 2d silver nanorod arrays,” Adv. Funct. Mater. 18, 1075–1079 (2008).
[Crossref]

L. M. Eng, T. Härtling, and R. Kullock, “Wavelength-sensitive plasmonically active module for detecting light in a spectrally resolved manner,” WO 2011091793 A1, (2011).

Kurylyak, Y.

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Burgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C 2, 7927–7933 (2014).
[Crossref]

Lee, S. Y.

H. Kang, C.-J. Heo, H. C. Jeon, S. Y. Lee, and S.-M. Yang, “Durable plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity sers devices,” ACS Appl. Mater. Interfaces 5, 4569–4574 (2013).
[Crossref] [PubMed]

Lewis, N. S.

K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible polymer-embedded si wire arrays,” Adv. Mater. 21, 325–328 (2009).
[Crossref]

Li, J.

J. Li, Z. Wei, J. Xu, Z.-K. Zhou, D. Kong, J. Liu, J. Liu, X. Duan, J. Xue, J. Wang, and X. Wang, “A large-scale flexible plasmonic nanorod array with multifunction of strong photoluminescence emission and radiation enhancement,” Adv. Opt. Mater. 3, 1355–1361 (2015).
[Crossref]

Liew, M. J.

M. J. Liew, S. Roy, and K. Scott, “Development of a non-toxic electrolyte for soft gold electrodeposition: an overview of work at university of newcastle upon tyne,” Green Chem. 5, 376–381 (2003).
[Crossref]

Liu, J.

J. Li, Z. Wei, J. Xu, Z.-K. Zhou, D. Kong, J. Liu, J. Liu, X. Duan, J. Xue, J. Wang, and X. Wang, “A large-scale flexible plasmonic nanorod array with multifunction of strong photoluminescence emission and radiation enhancement,” Adv. Opt. Mater. 3, 1355–1361 (2015).
[Crossref]

J. Li, Z. Wei, J. Xu, Z.-K. Zhou, D. Kong, J. Liu, J. Liu, X. Duan, J. Xue, J. Wang, and X. Wang, “A large-scale flexible plasmonic nanorod array with multifunction of strong photoluminescence emission and radiation enhancement,” Adv. Opt. Mater. 3, 1355–1361 (2015).
[Crossref]

Liu, S.

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical chameleon through dynamic real-time plasmonic tuning,” ACS Nano 10, 1788–1794 (2016).
[Crossref] [PubMed]

Liu, X.

X. Zhu, L. Shi, X. Liu, J. Zi, and Z. Wang, “A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate,” Nano Res. 3, 807–812 (2010).
[Crossref]

Liu, Y.

M. Wang, Y. Liu, and H. Yang, “A unified thermodynamic theory for the formation of anodized metal oxide structures,” Electrochim. Acta 62, 424–432 (2012).
[Crossref]

Ma, L.

Y. Huang, X. Zhang, E. Ringe, M. Hou, L. Ma, and Z. Zhang, “Tunable lattice coupling of multipole plasmon modes and near-field enhancement in closely spaced gold nanorod arrays,” Sci. Rep. 6, 23159 (2016).
[Crossref] [PubMed]

MacDonald, K. F.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Maldonado, S.

K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible polymer-embedded si wire arrays,” Adv. Mater. 21, 325–328 (2009).
[Crossref]

Martin, C. R.

C. A. Foss, G. L. Hornyak, J. A. Stockert, and C. R. Martin, “Template-synthesized nanoscopic gold particles: Optical spectra and the effects of particle size and shape,” J. Phys. Chem. 98, 2963–2971 (1994).
[Crossref]

C. A. Foss, M. J. Tierney, and C. R. Martin, “Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory,” J. Phys. Chem. 96, 9001–9007 (1992).
[Crossref]

Masuda, H.

H. Masuda and M. Satoh, “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask,” Jpn. J. Appl. Phys., Part 2  35, L126 (1996).
[Crossref]

Matyssek, C.

A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120, 1163–1169 (2016).
[Crossref]

Mendach, S.

J. Ehlermann, J. Siebels, S. Fohrmann, and S. Mendach, “Surface plasmon resonance based integrable micro spectrometer,” Appl. Phys. Lett. 106, 101106 (2015).
[Crossref]

Meng, G.

Z. Huang, G. Meng, Q. Huang, B. Chen, C. Zhu, and Z. Zhang, “Large-area ag nanorod array substrates for sers: Aao template-assisted fabrication, functionalization, and application in detection pcbs,” J. Raman Spectrosc. 44, 240–246 (2013).
[Crossref]

Mika, A.

S. Pellicori and A. Mika, “Wedge-filter spectrometer,” US Patent 4,957,371, (1990).

Millyard, M. G.

M. G. Millyard, F. Min Huang, R. White, E. Spigone, J. Kivioja, and J. J. Baumberg, “Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats,” Appl. Phys. Lett. 100, 073101 (2012).
[Crossref]

Min Huang, F.

M. G. Millyard, F. Min Huang, R. White, E. Spigone, J. Kivioja, and J. J. Baumberg, “Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats,” Appl. Phys. Lett. 100, 073101 (2012).
[Crossref]

Moeferdt, M.

A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120, 1163–1169 (2016).
[Crossref]

Niegemann, J.

A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120, 1163–1169 (2016).
[Crossref]

O’Connor, D.

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16, 7460–7470 (2008).
[Crossref] [PubMed]

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: Subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111, 12522–12527 (2007).
[Crossref]

Ortmann, L.

V. Fiehler, F. Patrovsky, L. Ortmann, S. Derenko, A. Hille, and L. M. Eng, “Plasmonic nanorod antenna array: Analysis in reflection and transmission,” J. Phys. Chem. C 120, 12178–12186 (2016).
[Crossref]

Ortstein, K.

F. Patrovsky, V. Fiehler, S. Derenko, S. Barth, H. Bartzsch, K. Ortstein, P. Frach, and L. M. Eng, “High-quality anodized aluminum oxide templates for improved nanorod array fabrication,” Mater. Res. Express (to be published).

Patrovsky, F.

V. Fiehler, F. Patrovsky, L. Ortmann, S. Derenko, A. Hille, and L. M. Eng, “Plasmonic nanorod antenna array: Analysis in reflection and transmission,” J. Phys. Chem. C 120, 12178–12186 (2016).
[Crossref]

F. Patrovsky, V. Fiehler, S. Derenko, S. Barth, H. Bartzsch, K. Ortstein, P. Frach, and L. M. Eng, “High-quality anodized aluminum oxide templates for improved nanorod array fabrication,” Mater. Res. Express (to be published).

Pellicori, S.

S. Pellicori and A. Mika, “Wedge-filter spectrometer,” US Patent 4,957,371, (1990).

Plass, K. E.

K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible polymer-embedded si wire arrays,” Adv. Mater. 21, 325–328 (2009).
[Crossref]

Podolskiy, V. A.

Pollard, R.

Pollard, R. J.

R. Kullock, S. Grafström, P. R. Evans, R. J. Pollard, and L. M. Eng, “Metallic nanorod arrays: negative refraction and optical properties explained by retarded dipolar interactions,” J. Opt. Soc. Am. B 27, 1819–1827 (2010).
[Crossref]

P. R. Evans, R. Kullock, W. R. Hendren, R. Atkinson, R. J. Pollard, and L. M. Eng, “Optical transmission properties and electric field distribution of interacting 2d silver nanorod arrays,” Adv. Funct. Mater. 18, 1075–1079 (2008).
[Crossref]

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: Subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111, 12522–12527 (2007).
[Crossref]

P. Evans, W. R. Hendren, R. Atkinson, G. A. Wurtz, W. Dickson, A. V. Zayats, and R. J. Pollard, “Growth and properties of gold and nickel nanorods in thin film alumina,” Nanotechnology 17, 5746 (2006).
[Crossref]

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73, 235402 (2006).
[Crossref]

Prohm, C.

A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120, 1163–1169 (2016).
[Crossref]

Ringe, E.

Y. Huang, X. Zhang, E. Ringe, M. Hou, L. Ma, and Z. Zhang, “Tunable lattice coupling of multipole plasmon modes and near-field enhancement in closely spaced gold nanorod arrays,” Sci. Rep. 6, 23159 (2016).
[Crossref] [PubMed]

Robinson, D. L.

F. Keller, M. S. Hunter, and D. L. Robinson, “Structural features of oxide coatings on aluminum,” J. Electrochem. Soc. 100, 411–419 (1953).
[Crossref]

Rodríguez-Oliveros, R.

A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120, 1163–1169 (2016).
[Crossref]

Roy, S.

M. J. Liew, S. Roy, and K. Scott, “Development of a non-toxic electrolyte for soft gold electrodeposition: an overview of work at university of newcastle upon tyne,” Green Chem. 5, 376–381 (2003).
[Crossref]

Sámson, Z. L.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Sarangan, A.

Satoh, M.

H. Masuda and M. Satoh, “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask,” Jpn. J. Appl. Phys., Part 2  35, L126 (1996).
[Crossref]

Schuster, C.

Scott, K.

M. J. Liew, S. Roy, and K. Scott, “Development of a non-toxic electrolyte for soft gold electrodeposition: an overview of work at university of newcastle upon tyne,” Green Chem. 5, 376–381 (2003).
[Crossref]

Selvarasah, S.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23, 4422–4430 (2011).
[Crossref] [PubMed]

Shi, L.

X. Zhu, L. Shi, X. Liu, J. Zi, and Z. Wang, “A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate,” Nano Res. 3, 807–812 (2010).
[Crossref]

Siebels, J.

J. Ehlermann, J. Siebels, S. Fohrmann, and S. Mendach, “Surface plasmon resonance based integrable micro spectrometer,” Appl. Phys. Lett. 106, 101106 (2015).
[Crossref]

Spigone, E.

M. G. Millyard, F. Min Huang, R. White, E. Spigone, J. Kivioja, and J. J. Baumberg, “Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats,” Appl. Phys. Lett. 100, 073101 (2012).
[Crossref]

Spurgeon, J. M.

K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible polymer-embedded si wire arrays,” Adv. Mater. 21, 325–328 (2009).
[Crossref]

Stockert, J. A.

C. A. Foss, G. L. Hornyak, J. A. Stockert, and C. R. Martin, “Template-synthesized nanoscopic gold particles: Optical spectra and the effects of particle size and shape,” J. Phys. Chem. 98, 2963–2971 (1994).
[Crossref]

Tierney, M. J.

C. A. Foss, M. J. Tierney, and C. R. Martin, “Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory,” J. Phys. Chem. 96, 9001–9007 (1992).
[Crossref]

Umeton, C.

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Burgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C 2, 7927–7933 (2014).
[Crossref]

Vasilantonakis, N.

Wang, G.

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical chameleon through dynamic real-time plasmonic tuning,” ACS Nano 10, 1788–1794 (2016).
[Crossref] [PubMed]

Wang, J.

J. Li, Z. Wei, J. Xu, Z.-K. Zhou, D. Kong, J. Liu, J. Liu, X. Duan, J. Xue, J. Wang, and X. Wang, “A large-scale flexible plasmonic nanorod array with multifunction of strong photoluminescence emission and radiation enhancement,” Adv. Opt. Mater. 3, 1355–1361 (2015).
[Crossref]

Wang, M.

M. Wang, Y. Liu, and H. Yang, “A unified thermodynamic theory for the formation of anodized metal oxide structures,” Electrochim. Acta 62, 424–432 (2012).
[Crossref]

Wang, X.

J. Li, Z. Wei, J. Xu, Z.-K. Zhou, D. Kong, J. Liu, J. Liu, X. Duan, J. Xue, J. Wang, and X. Wang, “A large-scale flexible plasmonic nanorod array with multifunction of strong photoluminescence emission and radiation enhancement,” Adv. Opt. Mater. 3, 1355–1361 (2015).
[Crossref]

Wang, Z.

X. Zhu, L. Shi, X. Liu, J. Zi, and Z. Wang, “A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate,” Nano Res. 3, 807–812 (2010).
[Crossref]

Wei, Z.

J. Li, Z. Wei, J. Xu, Z.-K. Zhou, D. Kong, J. Liu, J. Liu, X. Duan, J. Xue, J. Wang, and X. Wang, “A large-scale flexible plasmonic nanorod array with multifunction of strong photoluminescence emission and radiation enhancement,” Adv. Opt. Mater. 3, 1355–1361 (2015).
[Crossref]

White, R.

M. G. Millyard, F. Min Huang, R. White, E. Spigone, J. Kivioja, and J. J. Baumberg, “Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats,” Appl. Phys. Lett. 100, 073101 (2012).
[Crossref]

Wijngaards, D.

S. Kong, D. Wijngaards, and R. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Actuators, A 92, 88–95 (2001).
[Crossref]

Wolff, C.

A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120, 1163–1169 (2016).
[Crossref]

Wolffenbuttel, R.

S. Kong, D. Wijngaards, and R. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Actuators, A 92, 88–95 (2001).
[Crossref]

Wong, C.

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical chameleon through dynamic real-time plasmonic tuning,” ACS Nano 10, 1788–1794 (2016).
[Crossref] [PubMed]

Wu, Z.

Wurtz, G. A.

N. Vasilantonakis, G. A. Wurtz, V. A. Podolskiy, and A. V. Zayats, “Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement,” Opt. Express 23, 14329–14343 (2015).
[Crossref] [PubMed]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16, 7460–7470 (2008).
[Crossref] [PubMed]

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: Subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111, 12522–12527 (2007).
[Crossref]

P. Evans, W. R. Hendren, R. Atkinson, G. A. Wurtz, W. Dickson, A. V. Zayats, and R. J. Pollard, “Growth and properties of gold and nickel nanorods in thin film alumina,” Nanotechnology 17, 5746 (2006).
[Crossref]

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73, 235402 (2006).
[Crossref]

Xu, J.

J. Li, Z. Wei, J. Xu, Z.-K. Zhou, D. Kong, J. Liu, J. Liu, X. Duan, J. Xue, J. Wang, and X. Wang, “A large-scale flexible plasmonic nanorod array with multifunction of strong photoluminescence emission and radiation enhancement,” Adv. Opt. Mater. 3, 1355–1361 (2015).
[Crossref]

Xue, J.

J. Li, Z. Wei, J. Xu, Z.-K. Zhou, D. Kong, J. Liu, J. Liu, X. Duan, J. Xue, J. Wang, and X. Wang, “A large-scale flexible plasmonic nanorod array with multifunction of strong photoluminescence emission and radiation enhancement,” Adv. Opt. Mater. 3, 1355–1361 (2015).
[Crossref]

Yang, H.

M. Wang, Y. Liu, and H. Yang, “A unified thermodynamic theory for the formation of anodized metal oxide structures,” Electrochim. Acta 62, 424–432 (2012).
[Crossref]

Yang, S.-M.

H. Kang, C.-J. Heo, H. C. Jeon, S. Y. Lee, and S.-M. Yang, “Durable plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity sers devices,” ACS Appl. Mater. Interfaces 5, 4569–4574 (2013).
[Crossref] [PubMed]

Yanik, A. A.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23, 4422–4430 (2011).
[Crossref] [PubMed]

Zayats, A. V.

N. Vasilantonakis, G. A. Wurtz, V. A. Podolskiy, and A. V. Zayats, “Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement,” Opt. Express 23, 14329–14343 (2015).
[Crossref] [PubMed]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16, 7460–7470 (2008).
[Crossref] [PubMed]

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: Subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111, 12522–12527 (2007).
[Crossref]

P. Evans, W. R. Hendren, R. Atkinson, G. A. Wurtz, W. Dickson, A. V. Zayats, and R. J. Pollard, “Growth and properties of gold and nickel nanorods in thin film alumina,” Nanotechnology 17, 5746 (2006).
[Crossref]

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73, 235402 (2006).
[Crossref]

Zhang, X.

Y. Huang, X. Zhang, E. Ringe, M. Hou, L. Ma, and Z. Zhang, “Tunable lattice coupling of multipole plasmon modes and near-field enhancement in closely spaced gold nanorod arrays,” Sci. Rep. 6, 23159 (2016).
[Crossref] [PubMed]

Zhang, Z.

Y. Huang, X. Zhang, E. Ringe, M. Hou, L. Ma, and Z. Zhang, “Tunable lattice coupling of multipole plasmon modes and near-field enhancement in closely spaced gold nanorod arrays,” Sci. Rep. 6, 23159 (2016).
[Crossref] [PubMed]

Z. Huang, G. Meng, Q. Huang, B. Chen, C. Zhu, and Z. Zhang, “Large-area ag nanorod array substrates for sers: Aao template-assisted fabrication, functionalization, and application in detection pcbs,” J. Raman Spectrosc. 44, 240–246 (2013).
[Crossref]

Zhao, Y.-P.

Y.-P. Zhao and J.-G. Fan, “Clusters of bundled nanorods in nanocarpet effect,” Appl. Phys. Lett. 88, 103123 (2006).
[Crossref]

Zheludev, N. I.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

Zhou, Z.-K.

J. Li, Z. Wei, J. Xu, Z.-K. Zhou, D. Kong, J. Liu, J. Liu, X. Duan, J. Xue, J. Wang, and X. Wang, “A large-scale flexible plasmonic nanorod array with multifunction of strong photoluminescence emission and radiation enhancement,” Adv. Opt. Mater. 3, 1355–1361 (2015).
[Crossref]

Zhu, C.

Z. Huang, G. Meng, Q. Huang, B. Chen, C. Zhu, and Z. Zhang, “Large-area ag nanorod array substrates for sers: Aao template-assisted fabrication, functionalization, and application in detection pcbs,” J. Raman Spectrosc. 44, 240–246 (2013).
[Crossref]

Zhu, X.

X. Zhu, L. Shi, X. Liu, J. Zi, and Z. Wang, “A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate,” Nano Res. 3, 807–812 (2010).
[Crossref]

Zi, J.

X. Zhu, L. Shi, X. Liu, J. Zi, and Z. Wang, “A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate,” Nano Res. 3, 807–812 (2010).
[Crossref]

Acc. Chem. Res. (1)

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

H. Kang, C.-J. Heo, H. C. Jeon, S. Y. Lee, and S.-M. Yang, “Durable plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity sers devices,” ACS Appl. Mater. Interfaces 5, 4569–4574 (2013).
[Crossref] [PubMed]

ACS Nano (1)

G. Wang, X. Chen, S. Liu, C. Wong, and S. Chu, “Mechanical chameleon through dynamic real-time plasmonic tuning,” ACS Nano 10, 1788–1794 (2016).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

P. R. Evans, R. Kullock, W. R. Hendren, R. Atkinson, R. J. Pollard, and L. M. Eng, “Optical transmission properties and electric field distribution of interacting 2d silver nanorod arrays,” Adv. Funct. Mater. 18, 1075–1079 (2008).
[Crossref]

Adv. Mater. (2)

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible plasmonics on unconventional and nonplanar substrates,” Adv. Mater. 23, 4422–4430 (2011).
[Crossref] [PubMed]

K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Flexible polymer-embedded si wire arrays,” Adv. Mater. 21, 325–328 (2009).
[Crossref]

Adv. Opt. Mater. (1)

J. Li, Z. Wei, J. Xu, Z.-K. Zhou, D. Kong, J. Liu, J. Liu, X. Duan, J. Xue, J. Wang, and X. Wang, “A large-scale flexible plasmonic nanorod array with multifunction of strong photoluminescence emission and radiation enhancement,” Adv. Opt. Mater. 3, 1355–1361 (2015).
[Crossref]

Appl. Phys. Lett. (4)

M. G. Millyard, F. Min Huang, R. White, E. Spigone, J. Kivioja, and J. J. Baumberg, “Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats,” Appl. Phys. Lett. 100, 073101 (2012).
[Crossref]

Y.-P. Zhao and J.-G. Fan, “Clusters of bundled nanorods in nanocarpet effect,” Appl. Phys. Lett. 88, 103123 (2006).
[Crossref]

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010).
[Crossref]

J. Ehlermann, J. Siebels, S. Fohrmann, and S. Mendach, “Surface plasmon resonance based integrable micro spectrometer,” Appl. Phys. Lett. 106, 101106 (2015).
[Crossref]

Electrochim. Acta (1)

M. Wang, Y. Liu, and H. Yang, “A unified thermodynamic theory for the formation of anodized metal oxide structures,” Electrochim. Acta 62, 424–432 (2012).
[Crossref]

Green Chem. (1)

M. J. Liew, S. Roy, and K. Scott, “Development of a non-toxic electrolyte for soft gold electrodeposition: an overview of work at university of newcastle upon tyne,” Green Chem. 5, 376–381 (2003).
[Crossref]

J. Electrochem. Soc. (1)

F. Keller, M. S. Hunter, and D. L. Robinson, “Structural features of oxide coatings on aluminum,” J. Electrochem. Soc. 100, 411–419 (1953).
[Crossref]

J. Mater. Chem. C (1)

U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton, and T. Burgi, “Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling,” J. Mater. Chem. C 2, 7927–7933 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (2)

C. A. Foss, M. J. Tierney, and C. R. Martin, “Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory,” J. Phys. Chem. 96, 9001–9007 (1992).
[Crossref]

C. A. Foss, G. L. Hornyak, J. A. Stockert, and C. R. Martin, “Template-synthesized nanoscopic gold particles: Optical spectra and the effects of particle size and shape,” J. Phys. Chem. 98, 2963–2971 (1994).
[Crossref]

J. Phys. Chem. C (3)

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: Subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111, 12522–12527 (2007).
[Crossref]

A. Hille, M. Moeferdt, C. Wolff, C. Matyssek, R. Rodríguez-Oliveros, C. Prohm, J. Niegemann, S. Grafström, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle resonators: Numerical analysis on the basis of the hydrodynamic drude model,” J. Phys. Chem. C 120, 1163–1169 (2016).
[Crossref]

V. Fiehler, F. Patrovsky, L. Ortmann, S. Derenko, A. Hille, and L. M. Eng, “Plasmonic nanorod antenna array: Analysis in reflection and transmission,” J. Phys. Chem. C 120, 12178–12186 (2016).
[Crossref]

J. Raman Spectrosc. (1)

Z. Huang, G. Meng, Q. Huang, B. Chen, C. Zhu, and Z. Zhang, “Large-area ag nanorod array substrates for sers: Aao template-assisted fabrication, functionalization, and application in detection pcbs,” J. Raman Spectrosc. 44, 240–246 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Masuda and M. Satoh, “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask,” Jpn. J. Appl. Phys., Part 2  35, L126 (1996).
[Crossref]

Mater. Lett. (1)

K. T. Kim and S. M. Cho, “A simple method for formation of metal nanowires on flexible polymer film,” Mater. Lett. 60, 352–355 (2006).
[Crossref]

Nano Res. (1)

X. Zhu, L. Shi, X. Liu, J. Zi, and Z. Wang, “A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate,” Nano Res. 3, 807–812 (2010).
[Crossref]

Nanotechnology (1)

P. Evans, W. R. Hendren, R. Atkinson, G. A. Wurtz, W. Dickson, A. V. Zayats, and R. J. Pollard, “Growth and properties of gold and nickel nanorods in thin film alumina,” Nanotechnology 17, 5746 (2006).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Rev. B (1)

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73, 235402 (2006).
[Crossref]

Sci. Rep. (1)

Y. Huang, X. Zhang, E. Ringe, M. Hou, L. Ma, and Z. Zhang, “Tunable lattice coupling of multipole plasmon modes and near-field enhancement in closely spaced gold nanorod arrays,” Sci. Rep. 6, 23159 (2016).
[Crossref] [PubMed]

Sens. Actuators, A (1)

S. Kong, D. Wijngaards, and R. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Actuators, A 92, 88–95 (2001).
[Crossref]

Other (5)

S. Pellicori and A. Mika, “Wedge-filter spectrometer,” US Patent 4,957,371, (1990).

L. M. Eng, T. Härtling, and R. Kullock, “Wavelength-sensitive plasmonically active module for detecting light in a spectrally resolved manner,” WO 2011091793 A1, (2011).

Epoxy Technology, “Preliminary product information sheet (epo-tek 310m–1),” http://www.epotek.com/site/administrator/components/com_products/assets/files/Style_Uploads/310M-1.pdf .

Epoxy Technology, “Understanding mechanical properties of epoxies for modeling, finite element analysis,” http://www.epotek.com/site/files/Techtips/pdfs/tip19.pdf (2012).

F. Patrovsky, V. Fiehler, S. Derenko, S. Barth, H. Bartzsch, K. Ortstein, P. Frach, and L. M. Eng, “High-quality anodized aluminum oxide templates for improved nanorod array fabrication,” Mater. Res. Express (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Sketch of the cross section (a) and the top view (b) of a 2-dimensional gold nanorod array (2D-GNA) embedded in an elastic polymer. The stretching is achieved by a tensile force along the x-axis. Subsequent transmission measurements are carried out with p-polarized white light under an incident angle φ in the xz-plane. As seen in (b) the uni-axial strain introduces anisotropy to the hexagonal unit cell, depending on its orientation I or II. Additionally, the nanorods are ordered hexagonally only on a short length scale. Therefore, the two unit cells depicted in (b) can be oriented arbitrarily to each other, which influences the effective interrod distance (see discussion).
Fig. 2
Fig. 2 (a) The different steps for sample preparation: 1) anodization, 2) pore etching, 3) electrodeposition of gold, 4) mask removal, 5) polymer casting, 6) removing PET layer, 7) sample separation; (b) SEM cross section of a 2D-GNA embedded in a polymer matrix (epoxy resin) prepared by FIB. The viewing direction is 38 ° vertically tilted. The platinum was deposited prior to FIB slicing for protection purposes. Note, that different colors of the platinum result from different deposition methods (electron beam evaporation, ion beam evaporation).
Fig. 3
Fig. 3 (a),(b) Angle resolved transmission spectra of unstretched, mechanical (a) and chemical (b) separated 2D-GNA/polymer samples. The symmetry axes are depicted by white dashed lines and represent the respective tilt angles of the nanorods. (c) Four typical transmission spectra of one sample (22.6 nm rod diameter) with increasing tensile strain . Note the peak shift and the peak broadening of the long axis resonance. In (d) the long-axis resonance positions as a function of tensile strain for samples with different rod diameters (listed above each graph) are depicted. Additionally, resonance peak positions from FEM simulations are shown as blue squares. These data points are corrected for anisotropic distortion of the lattice that results from uniaxial strain (see discussion). Note that all spectra are recorded with p-polarized light.
Fig. 4
Fig. 4 (a) Unit cell of the FEM-simulation. The array is built up by PEC/PMC (perfect electric conductor/perfect magnetic conductor) boundary conditions at the surfaces normal to the x-axis and by periodic boundary conditions at the surfaces normal to the y-axis. So this unit cell will be mirrored in the x-direction and translated in the y-direction (see [30] for details). (b) Simulated transmission spectra (p-polarized) for 2D-GNAs with 22 nm rod diameter and different interrod distances a. Long and short axis resonances are the only visible peaks in the experiment and have been marked in the plot. Additional peaks visible in this plot are either simulation artifacts or have their origin in the perfect hexagonal lattice that is used in our simulation (the real array is quasi hexagonal). Note that the values for the corresponding tensile strain are calculated with equation (4).
Fig. 5
Fig. 5 Change of the full width half maximum (FWHM) of the GNAs’ plasmonic long-axis resonance peaks over tensile strain applied to the substrate, along with the resonance wavelength deviations as expected from stretching-induced anisotropy and the plasmonic broadening.
Fig. 6
Fig. 6 (a) SEM top view of 2D-GNA after electrodeposition. The Nanorods are still embedded in the AAO and can be seen as bright dots while empty pores are seen as dark dots. The quasi-hexagonal lattice can be seen here. (b) SEM cross section of nanorods in AAO on a glass substrate, showing that the nanorods are well oriented and in good shape.
Fig. 7
Fig. 7 (a) Free standing nanorods after etching of the AAO, showing some conglomeration at tips. (b) Surface of the 2D-GNA/Polymer film after full fabrication process. (c) Cross section of an early attempt of embedding nanorods in polymer showing incomplete covering of polymer in the array.
Fig. 8
Fig. 8 Simulated transmission spectra (p-polarized) for 2D-GNAs with 22 nm rod diameter and different interrod distances a with. Long and short axis resonances are the only visible peaks in the experiment and have been marked in the plot. Additional peaks visible in this plot are either simulation artifacts or have their origin in the perfect hexagonal lattice that is used in our simulation (the real array is quasi hexagonal). Note that the values for the corresponding tensile strain are only given for the first three curves due to the criteria of small tensile strain for equation (4). The curves with higher interrod distance are shown to see that there will be no additional effects besides the redshift of the long-axis resonance even for very high interrod distances. The dashed line is just a guide to the eye.
Fig. 9
Fig. 9 Plot of the average electric field inside and around a nanorod for the three resonant wavelengths. These plots are extracted from the simulation with 63 nm interrod distance.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

a ¯ = 1 a 1 + 2 a 2 3 = a 3 { 1 + + [ 3 ( 1 ν ) 2 + ( 1 + ) 2 ] 1 / 2 } ,
b ¯ = 2 b 1 + 1 b 2 3 = a 3 { 1 ν + [ 3 ( 1 + ) 2 + ( 1 ν ) 2 ] 1 / 2 } ,
a eff = a ¯ + b ¯ 2 = a 6 ( α + β + α 3 + 3 β 2 + 3 α 2 + β 2 ) ,
Δ l l = = k μ = k Δ a eff a , k = 2 1 ν
a dev = | a 1 a 2 | + | b 1 b 2 | 2 = a 4 ( 2 α 2 β α 2 + 3 β 2 + 3 α 2 + β 2 ) .
Δ λ res = m a a dev ,
a 1 = a ( 1 + )
a 2 = a 2 [ ( 1 + ) 2 + 3 ( 1 ν ) 2 ] 1 / 2 .
a ¯ = 2 a 1 + 4 a 2 6
b 1 = a 2 [ 3 ( 1 + ) 2 + ( 1 ν ) 2 ] 1 / 2
b 2 = a ( 1 ν ) .

Metrics