Abstract

Here we examine the effects of shell thickness on the photophysical properties of CdSe/CdS core/shell quantum dots (QDs) in an electric field. Photoluminescence (PL) of QDs in an applied electric field is observed to decrease markedly with increasing shell thickness, with a thick-shelled (4.9 nm shell) sample exhibiting an order of magnitude greater PL suppression than a thin-shelled sample (1.25 nm shell) with the same core.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microstructural and optical properties of CdSe/CdS/ZnS core-shell-shell quantum dots

Dea Uk Lee, Dae Hun Kim, Dong Hyuk Choi, Sang Wook Kim, Hong Seok Lee, Keon-Ho Yoo, and Tae Whan Kim
Opt. Express 24(2) A350-A357 (2016)

Photoluminescence from quasi-type-II spherical CdSe-CdS core-shell quantum dots

Lin Dong, Abhilash Sugunan, Jun Hu, Sicheng Zhou, Shanghua Li, Sergei Popov, Muhammet S. Toprak, Ari T. Friberg, and Mamoun Muhammed
Appl. Opt. 52(1) 105-109 (2013)

Efficient light-emitting diodes based on reverse type-I quantum dots

Xiao Jin, Jinke Bai, Xiaobing Gu, Chun Chang, Huaibin Shen, Qin Zhang, Feng Li, Zhongping Chen, and Qinghua Li
Opt. Mater. Express 7(12) 4395-4407 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Claussen, N. Hildebrandt, K. Susumu, M. G. Ancona, and I. L. Medintz, “Complex logic functions implemented with quantum dot bionanophotonic circuits,” ACS Appl. Mater. Interfaces 6(6), 3771–3778 (2014).
    [Crossref] [PubMed]
  2. L. D. Field, J. B. Delehanty, Y. Chen, and I. L. Medintz, “Peptides for specifically targeting nanoparticles to cellular organelles: quo vadis?” Acc. Chem. Res. 48(5), 1380–1390 (2015).
    [Crossref] [PubMed]
  3. Y. P. Ho and K. W. Leong, “Quantum dot-based theranostics,” Nanoscale 2(1), 60–68 (2010).
    [Crossref] [PubMed]
  4. S. M. Goodman, A. Siu, V. Singh, and P. Nagpal, “Long-range energy transfer in self-assembled quantum dot-DNA cascades,” Nanoscale 7(44), 18435–18440 (2015).
    [Crossref] [PubMed]
  5. C. E. Rowland, C. W. Brown, I. L. Medintz, and J. B. Delehanty, “Intracellular FRET-based probes: a review,” Methods Appl. Fluoresc. 3(4), 042006 (2015).
    [Crossref]
  6. C. E. Rowland, J. B. Delehanty, C. L. Dwyer, and I. L. Medintz, “Growing applications for bioassembled resonance energy transfer cascades,” Mater. Today (2016), doi:.
    [Crossref]
  7. K. E. Sapsford, W. R. Algar, L. Berti, K. B. Gemmill, B. J. Casey, E. Oh, M. H. Stewart, and I. L. Medintz, “Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology,” Chem. Rev. 113(3), 1904–2074 (2013).
    [Crossref] [PubMed]
  8. P. Zrazhevskiy, M. Sena, and X. Gao, “Designing multifunctional quantum dots for bioimaging, detection, and drug delivery,” Chem. Soc. Rev. 39(11), 4326–4354 (2010).
    [Crossref] [PubMed]
  9. V. I. Klimov, “Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals,” Annu. Rev. Phys. Chem. 58(1), 635–673 (2007).
    [Crossref] [PubMed]
  10. A. Bhirde, J. Xie, M. Swierczewska, and X. Chen, “Nanoparticles for cell labeling,” Nanoscale 3(1), 142–153 (2011).
    [Crossref] [PubMed]
  11. P. D. Howes, R. Chandrawati, and M. M. Stevens, “Colloidal nanoparticles as advanced biological sensors,” Science 346(6205), 1247390 (2014).
    [Crossref] [PubMed]
  12. A. M. Dennis, W. J. Rhee, D. Sotto, S. N. Dublin, and G. Bao, “Quantum dot-fluorescent protein FRET probes for sensing intracellular pH,” ACS Nano 6(4), 2917–2924 (2012).
    [Crossref] [PubMed]
  13. J. B. Delehanty, J. C. Breger, K. B. Gemmill, M. H. Stewart, and I. L. Medintz, “Controlling the actuation of therapeutic nanomaterials: enabling nanoparticle-mediated drug delivery,” Ther. Deliv. 4(11), 1411–1429 (2013).
    [Crossref] [PubMed]
  14. V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P. W. Kantoff, R. Langer, and O. C. Farokhzad, “Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer,” Nano Lett. 7(10), 3065–3070 (2007).
    [Crossref] [PubMed]
  15. C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric field modulation of semiconductor quantum dot photoluminescence: insights into the design of robust voltage-sensitive cellular imaging probes,” Nano Lett. 15(10), 6848–6854 (2015).
    [Crossref] [PubMed]
  16. C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, and A. L. Efros, “Imaging cellular membrane potential through ionization of quantum dots,” Proc. SPIE9722, (2016), doi:.
    [Crossref]
  17. A. Abbott, “Neuroscience: solving the brain,” Nature 499(7458), 272–274 (2013).
    [Crossref] [PubMed]
  18. A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
    [Crossref] [PubMed]
  19. A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The brain activity map project and the challenge of functional connectomics,” Neuron 74(6), 970–974 (2012).
    [Crossref] [PubMed]
  20. B. Sakmann and E. Neher, “Patch clamp techniques for studying ionic channels in excitable membranes,” Annu. Rev. Physiol. 46(1), 455–472 (1984).
    [Crossref] [PubMed]
  21. M. E. Spira and A. Hai, “Multi-electrode array technologies for neuroscience and cardiology,” Nat. Nanotechnol. 8(2), 83–94 (2013).
    [Crossref] [PubMed]
  22. T.-W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
    [Crossref] [PubMed]
  23. V. Tsytsarev, L. D. Liao, K. V. Kong, Y. H. Liu, R. S. Erzurumlu, M. Olivo, and N. V. Thakor, “Recent progress in voltage-sensitive dye imaging for neuroscience,” J. Nanosci. Nanotechnol. 14(7), 4733–4744 (2014).
    [Crossref] [PubMed]
  24. D. Bozyigit, O. Yarema, and V. Wood, “Origins of low quantum efficiencies in quantum dot LEDs,” Adv. Funct. Mater. 23(24), 3024–3029 (2013).
    [Crossref]
  25. D. Bozyigit, V. Wood, Y. Shirasaki, and V. Bulovic, “Study of field driven electroluminescence in colloidal quantum dot solids,” J. Appl. Phys. 111(11), 113701 (2012).
    [Crossref]
  26. K. Park, Z. Deutsch, J. J. Li, D. Oron, and S. Weiss, “Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature,” ACS Nano 6(11), 10013–10023 (2012).
    [Crossref] [PubMed]
  27. S. A. Empedocles and M. G. Bawendi, “Quantum-confined stark effect in single CdSe nanocrystallite quantum dots,” Science 278(5346), 2114–2117 (1997).
    [Crossref] [PubMed]
  28. T. D. Krauss and L. E. Brus, ““Electronic properties of single semiconductor nanocrystals: optical and electrostatic force microscopy measurements,” Mat. Sci. Eng, B-Solid 69-70, 289–294 (2000).
    [Crossref]
  29. H. Huang, A. Dorn, G. P. Nair, V. Bulović, and M. G. Bawendi, “Bias-induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors,” Nano Lett. 7(12), 3781–3786 (2007).
    [Crossref] [PubMed]
  30. C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, “Photoconductivity in CdSe quantum dot solids,” Phys. Rev. B 62(4), 2669–2680 (2000).
    [Crossref]
  31. A. P. Alivisatos, W. Gu, and C. Larabell, “Quantum dots as cellular probes,” Annu. Rev. Biomed. Eng. 7(1), 55–76 (2005).
    [Crossref] [PubMed]
  32. R. Walters, R. P. Kraig, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, P. E. Dawson, and G. Dawson, “Nanoparticle targeting to neurons in a rat hippocampal slice culture model,” ASN Neuro 4(6), 383–392 (2012).
    [Crossref] [PubMed]
  33. R. Agarwal, M. S. Domowicz, N. B. Schwartz, J. Henry, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, J. R. Deschamps, P. E. Dawson, V. Palomo, and G. Dawson, “Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain,” ACS Chem. Neurosci. 6(3), 494–504 (2015).
    [Crossref] [PubMed]
  34. K. Boeneman, J. B. Delehanty, J. B. Blanco-Canosa, K. Susumu, M. H. Stewart, E. Oh, A. L. Huston, G. Dawson, S. Ingale, R. Walters, M. Domowicz, J. R. Deschamps, W. R. Algar, S. Dimaggio, J. Manono, C. M. Spillmann, D. Thompson, T. L. Jennings, P. E. Dawson, and I. L. Medintz, “Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials,” ACS Nano 7(5), 3778–3796 (2013).
    [Crossref] [PubMed]
  35. G. Gopalakrishnan, C. Danelon, P. Izewska, M. Prummer, P. Y. Bolinger, I. Geissbühler, D. Demurtas, J. Dubochet, and H. Vogel, “Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells,” Angew. Chem. Int. Ed. Engl. 45(33), 5478–5483 (2006).
    [Crossref] [PubMed]
  36. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
    [Crossref] [PubMed]
  37. A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. 19(15), 1921–1926 (2007).
    [Crossref]
  38. I. L. Medintz and H. Mattoussi, “Quantum dot-based resonance energy transfer and its growing application in biology,” Phys. Chem. Chem. Phys. 11(1), 17–45 (2009).
    [Crossref] [PubMed]
  39. A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7(1), 47–57 (2006).
    [Crossref] [PubMed]
  40. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
    [Crossref] [PubMed]
  41. B. K. Andrásfalvy, G. L. Galiñanes, D. Huber, M. Barbic, J. J. Macklin, K. Susumu, J. B. Delehanty, A. L. Huston, J. K. Makara, and I. L. Medintz, “Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology,” Nat. Methods 11(12), 1237–1241 (2014).
    [Crossref] [PubMed]
  42. A. Shabaev, A. Rodina, and A. L. Efros, “Fine structure of the band-edge excitons and trions in CdSe/CdS core/shell nanocrystals,” Phys. Rev. B 86(20), 205311 (2012).
    [Crossref]
  43. K. H. Schmidt, G. Medeiros-Ribeiro, and P. M. Petroff, “Photoluminescence of charged InAs self-assembled quantum dots,” Phys. Rev. B 58(7), 3597–3600 (1998).
    [Crossref]
  44. B. A. Lewis and D. M. Engelman, “Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles,” J. Mol. Biol. 166(2), 211–217 (1983).
    [Crossref] [PubMed]
  45. L. Dong, A. Sugunan, J. Hu, S. Zhou, S. Li, S. Popov, M. S. Toprak, A. T. Friberg, and M. Muhammed, “Photoluminescence from quasi-type-II spherical CdSe-CdS core-shell quantum dots,” Appl. Opt. 52(1), 105–109 (2013).
    [Crossref] [PubMed]
  46. L. P. Balet, S. A. Ivanov, A. Piryatinski, M. Achermann, and V. I. Klimov, “Inverted core/shell nanocrystals continuously tunable between Type-I and Type-II localization regimes,” Nano Lett. 4(8), 1485–1488 (2004).
    [Crossref]
  47. J. D. Marshall and M. J. Schnitzer, “Optical strategies for sensing neuronal voltage using quantum dots and other semiconductor nanocrystals,” ACS Nano 7(5), 4601–4609 (2013).
    [Crossref] [PubMed]
  48. D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor,” Chem. Mater. 22(4), 1437–1444 (2010).
    [Crossref]

2015 (5)

S. M. Goodman, A. Siu, V. Singh, and P. Nagpal, “Long-range energy transfer in self-assembled quantum dot-DNA cascades,” Nanoscale 7(44), 18435–18440 (2015).
[Crossref] [PubMed]

C. E. Rowland, C. W. Brown, I. L. Medintz, and J. B. Delehanty, “Intracellular FRET-based probes: a review,” Methods Appl. Fluoresc. 3(4), 042006 (2015).
[Crossref]

L. D. Field, J. B. Delehanty, Y. Chen, and I. L. Medintz, “Peptides for specifically targeting nanoparticles to cellular organelles: quo vadis?” Acc. Chem. Res. 48(5), 1380–1390 (2015).
[Crossref] [PubMed]

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric field modulation of semiconductor quantum dot photoluminescence: insights into the design of robust voltage-sensitive cellular imaging probes,” Nano Lett. 15(10), 6848–6854 (2015).
[Crossref] [PubMed]

R. Agarwal, M. S. Domowicz, N. B. Schwartz, J. Henry, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, J. R. Deschamps, P. E. Dawson, V. Palomo, and G. Dawson, “Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain,” ACS Chem. Neurosci. 6(3), 494–504 (2015).
[Crossref] [PubMed]

2014 (4)

V. Tsytsarev, L. D. Liao, K. V. Kong, Y. H. Liu, R. S. Erzurumlu, M. Olivo, and N. V. Thakor, “Recent progress in voltage-sensitive dye imaging for neuroscience,” J. Nanosci. Nanotechnol. 14(7), 4733–4744 (2014).
[Crossref] [PubMed]

P. D. Howes, R. Chandrawati, and M. M. Stevens, “Colloidal nanoparticles as advanced biological sensors,” Science 346(6205), 1247390 (2014).
[Crossref] [PubMed]

J. C. Claussen, N. Hildebrandt, K. Susumu, M. G. Ancona, and I. L. Medintz, “Complex logic functions implemented with quantum dot bionanophotonic circuits,” ACS Appl. Mater. Interfaces 6(6), 3771–3778 (2014).
[Crossref] [PubMed]

B. K. Andrásfalvy, G. L. Galiñanes, D. Huber, M. Barbic, J. J. Macklin, K. Susumu, J. B. Delehanty, A. L. Huston, J. K. Makara, and I. L. Medintz, “Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology,” Nat. Methods 11(12), 1237–1241 (2014).
[Crossref] [PubMed]

2013 (10)

L. Dong, A. Sugunan, J. Hu, S. Zhou, S. Li, S. Popov, M. S. Toprak, A. T. Friberg, and M. Muhammed, “Photoluminescence from quasi-type-II spherical CdSe-CdS core-shell quantum dots,” Appl. Opt. 52(1), 105–109 (2013).
[Crossref] [PubMed]

J. D. Marshall and M. J. Schnitzer, “Optical strategies for sensing neuronal voltage using quantum dots and other semiconductor nanocrystals,” ACS Nano 7(5), 4601–4609 (2013).
[Crossref] [PubMed]

K. E. Sapsford, W. R. Algar, L. Berti, K. B. Gemmill, B. J. Casey, E. Oh, M. H. Stewart, and I. L. Medintz, “Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology,” Chem. Rev. 113(3), 1904–2074 (2013).
[Crossref] [PubMed]

J. B. Delehanty, J. C. Breger, K. B. Gemmill, M. H. Stewart, and I. L. Medintz, “Controlling the actuation of therapeutic nanomaterials: enabling nanoparticle-mediated drug delivery,” Ther. Deliv. 4(11), 1411–1429 (2013).
[Crossref] [PubMed]

A. Abbott, “Neuroscience: solving the brain,” Nature 499(7458), 272–274 (2013).
[Crossref] [PubMed]

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

D. Bozyigit, O. Yarema, and V. Wood, “Origins of low quantum efficiencies in quantum dot LEDs,” Adv. Funct. Mater. 23(24), 3024–3029 (2013).
[Crossref]

M. E. Spira and A. Hai, “Multi-electrode array technologies for neuroscience and cardiology,” Nat. Nanotechnol. 8(2), 83–94 (2013).
[Crossref] [PubMed]

T.-W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

K. Boeneman, J. B. Delehanty, J. B. Blanco-Canosa, K. Susumu, M. H. Stewart, E. Oh, A. L. Huston, G. Dawson, S. Ingale, R. Walters, M. Domowicz, J. R. Deschamps, W. R. Algar, S. Dimaggio, J. Manono, C. M. Spillmann, D. Thompson, T. L. Jennings, P. E. Dawson, and I. L. Medintz, “Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials,” ACS Nano 7(5), 3778–3796 (2013).
[Crossref] [PubMed]

2012 (6)

D. Bozyigit, V. Wood, Y. Shirasaki, and V. Bulovic, “Study of field driven electroluminescence in colloidal quantum dot solids,” J. Appl. Phys. 111(11), 113701 (2012).
[Crossref]

K. Park, Z. Deutsch, J. J. Li, D. Oron, and S. Weiss, “Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature,” ACS Nano 6(11), 10013–10023 (2012).
[Crossref] [PubMed]

A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The brain activity map project and the challenge of functional connectomics,” Neuron 74(6), 970–974 (2012).
[Crossref] [PubMed]

A. M. Dennis, W. J. Rhee, D. Sotto, S. N. Dublin, and G. Bao, “Quantum dot-fluorescent protein FRET probes for sensing intracellular pH,” ACS Nano 6(4), 2917–2924 (2012).
[Crossref] [PubMed]

A. Shabaev, A. Rodina, and A. L. Efros, “Fine structure of the band-edge excitons and trions in CdSe/CdS core/shell nanocrystals,” Phys. Rev. B 86(20), 205311 (2012).
[Crossref]

R. Walters, R. P. Kraig, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, P. E. Dawson, and G. Dawson, “Nanoparticle targeting to neurons in a rat hippocampal slice culture model,” ASN Neuro 4(6), 383–392 (2012).
[Crossref] [PubMed]

2011 (1)

A. Bhirde, J. Xie, M. Swierczewska, and X. Chen, “Nanoparticles for cell labeling,” Nanoscale 3(1), 142–153 (2011).
[Crossref] [PubMed]

2010 (3)

Y. P. Ho and K. W. Leong, “Quantum dot-based theranostics,” Nanoscale 2(1), 60–68 (2010).
[Crossref] [PubMed]

P. Zrazhevskiy, M. Sena, and X. Gao, “Designing multifunctional quantum dots for bioimaging, detection, and drug delivery,” Chem. Soc. Rev. 39(11), 4326–4354 (2010).
[Crossref] [PubMed]

D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor,” Chem. Mater. 22(4), 1437–1444 (2010).
[Crossref]

2009 (1)

I. L. Medintz and H. Mattoussi, “Quantum dot-based resonance energy transfer and its growing application in biology,” Phys. Chem. Chem. Phys. 11(1), 17–45 (2009).
[Crossref] [PubMed]

2008 (1)

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

2007 (4)

A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. 19(15), 1921–1926 (2007).
[Crossref]

H. Huang, A. Dorn, G. P. Nair, V. Bulović, and M. G. Bawendi, “Bias-induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors,” Nano Lett. 7(12), 3781–3786 (2007).
[Crossref] [PubMed]

V. I. Klimov, “Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals,” Annu. Rev. Phys. Chem. 58(1), 635–673 (2007).
[Crossref] [PubMed]

V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P. W. Kantoff, R. Langer, and O. C. Farokhzad, “Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer,” Nano Lett. 7(10), 3065–3070 (2007).
[Crossref] [PubMed]

2006 (2)

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7(1), 47–57 (2006).
[Crossref] [PubMed]

G. Gopalakrishnan, C. Danelon, P. Izewska, M. Prummer, P. Y. Bolinger, I. Geissbühler, D. Demurtas, J. Dubochet, and H. Vogel, “Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells,” Angew. Chem. Int. Ed. Engl. 45(33), 5478–5483 (2006).
[Crossref] [PubMed]

2005 (1)

A. P. Alivisatos, W. Gu, and C. Larabell, “Quantum dots as cellular probes,” Annu. Rev. Biomed. Eng. 7(1), 55–76 (2005).
[Crossref] [PubMed]

2004 (1)

L. P. Balet, S. A. Ivanov, A. Piryatinski, M. Achermann, and V. I. Klimov, “Inverted core/shell nanocrystals continuously tunable between Type-I and Type-II localization regimes,” Nano Lett. 4(8), 1485–1488 (2004).
[Crossref]

2003 (1)

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

2000 (2)

T. D. Krauss and L. E. Brus, ““Electronic properties of single semiconductor nanocrystals: optical and electrostatic force microscopy measurements,” Mat. Sci. Eng, B-Solid 69-70, 289–294 (2000).
[Crossref]

C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, “Photoconductivity in CdSe quantum dot solids,” Phys. Rev. B 62(4), 2669–2680 (2000).
[Crossref]

1998 (1)

K. H. Schmidt, G. Medeiros-Ribeiro, and P. M. Petroff, “Photoluminescence of charged InAs self-assembled quantum dots,” Phys. Rev. B 58(7), 3597–3600 (1998).
[Crossref]

1997 (1)

S. A. Empedocles and M. G. Bawendi, “Quantum-confined stark effect in single CdSe nanocrystallite quantum dots,” Science 278(5346), 2114–2117 (1997).
[Crossref] [PubMed]

1984 (1)

B. Sakmann and E. Neher, “Patch clamp techniques for studying ionic channels in excitable membranes,” Annu. Rev. Physiol. 46(1), 455–472 (1984).
[Crossref] [PubMed]

1983 (1)

B. A. Lewis and D. M. Engelman, “Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles,” J. Mol. Biol. 166(2), 211–217 (1983).
[Crossref] [PubMed]

Abbott, A.

A. Abbott, “Neuroscience: solving the brain,” Nature 499(7458), 272–274 (2013).
[Crossref] [PubMed]

Achermann, M.

L. P. Balet, S. A. Ivanov, A. Piryatinski, M. Achermann, and V. I. Klimov, “Inverted core/shell nanocrystals continuously tunable between Type-I and Type-II localization regimes,” Nano Lett. 4(8), 1485–1488 (2004).
[Crossref]

Agarwal, R.

R. Agarwal, M. S. Domowicz, N. B. Schwartz, J. Henry, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, J. R. Deschamps, P. E. Dawson, V. Palomo, and G. Dawson, “Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain,” ACS Chem. Neurosci. 6(3), 494–504 (2015).
[Crossref] [PubMed]

Algar, W. R.

K. Boeneman, J. B. Delehanty, J. B. Blanco-Canosa, K. Susumu, M. H. Stewart, E. Oh, A. L. Huston, G. Dawson, S. Ingale, R. Walters, M. Domowicz, J. R. Deschamps, W. R. Algar, S. Dimaggio, J. Manono, C. M. Spillmann, D. Thompson, T. L. Jennings, P. E. Dawson, and I. L. Medintz, “Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials,” ACS Nano 7(5), 3778–3796 (2013).
[Crossref] [PubMed]

K. E. Sapsford, W. R. Algar, L. Berti, K. B. Gemmill, B. J. Casey, E. Oh, M. H. Stewart, and I. L. Medintz, “Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology,” Chem. Rev. 113(3), 1904–2074 (2013).
[Crossref] [PubMed]

Alivisatos, A. P.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The brain activity map project and the challenge of functional connectomics,” Neuron 74(6), 970–974 (2012).
[Crossref] [PubMed]

A. P. Alivisatos, W. Gu, and C. Larabell, “Quantum dots as cellular probes,” Annu. Rev. Biomed. Eng. 7(1), 55–76 (2005).
[Crossref] [PubMed]

Ancona, M. G.

J. C. Claussen, N. Hildebrandt, K. Susumu, M. G. Ancona, and I. L. Medintz, “Complex logic functions implemented with quantum dot bionanophotonic circuits,” ACS Appl. Mater. Interfaces 6(6), 3771–3778 (2014).
[Crossref] [PubMed]

Andrásfalvy, B. K.

B. K. Andrásfalvy, G. L. Galiñanes, D. Huber, M. Barbic, J. J. Macklin, K. Susumu, J. B. Delehanty, A. L. Huston, J. K. Makara, and I. L. Medintz, “Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology,” Nat. Methods 11(12), 1237–1241 (2014).
[Crossref] [PubMed]

Andrews, A. M.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Bagalkot, V.

V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P. W. Kantoff, R. Langer, and O. C. Farokhzad, “Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer,” Nano Lett. 7(10), 3065–3070 (2007).
[Crossref] [PubMed]

Balet, L. P.

L. P. Balet, S. A. Ivanov, A. Piryatinski, M. Achermann, and V. I. Klimov, “Inverted core/shell nanocrystals continuously tunable between Type-I and Type-II localization regimes,” Nano Lett. 4(8), 1485–1488 (2004).
[Crossref]

Bao, G.

A. M. Dennis, W. J. Rhee, D. Sotto, S. N. Dublin, and G. Bao, “Quantum dot-fluorescent protein FRET probes for sensing intracellular pH,” ACS Nano 6(4), 2917–2924 (2012).
[Crossref] [PubMed]

Baohan, A.

T.-W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Barbic, M.

B. K. Andrásfalvy, G. L. Galiñanes, D. Huber, M. Barbic, J. J. Macklin, K. Susumu, J. B. Delehanty, A. L. Huston, J. K. Makara, and I. L. Medintz, “Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology,” Nat. Methods 11(12), 1237–1241 (2014).
[Crossref] [PubMed]

Bawendi, M. G.

H. Huang, A. Dorn, G. P. Nair, V. Bulović, and M. G. Bawendi, “Bias-induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors,” Nano Lett. 7(12), 3781–3786 (2007).
[Crossref] [PubMed]

C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, “Photoconductivity in CdSe quantum dot solids,” Phys. Rev. B 62(4), 2669–2680 (2000).
[Crossref]

S. A. Empedocles and M. G. Bawendi, “Quantum-confined stark effect in single CdSe nanocrystallite quantum dots,” Science 278(5346), 2114–2117 (1997).
[Crossref] [PubMed]

Berti, L.

K. E. Sapsford, W. R. Algar, L. Berti, K. B. Gemmill, B. J. Casey, E. Oh, M. H. Stewart, and I. L. Medintz, “Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology,” Chem. Rev. 113(3), 1904–2074 (2013).
[Crossref] [PubMed]

Bhirde, A.

A. Bhirde, J. Xie, M. Swierczewska, and X. Chen, “Nanoparticles for cell labeling,” Nanoscale 3(1), 142–153 (2011).
[Crossref] [PubMed]

Blanco-Canosa, J. B.

K. Boeneman, J. B. Delehanty, J. B. Blanco-Canosa, K. Susumu, M. H. Stewart, E. Oh, A. L. Huston, G. Dawson, S. Ingale, R. Walters, M. Domowicz, J. R. Deschamps, W. R. Algar, S. Dimaggio, J. Manono, C. M. Spillmann, D. Thompson, T. L. Jennings, P. E. Dawson, and I. L. Medintz, “Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials,” ACS Nano 7(5), 3778–3796 (2013).
[Crossref] [PubMed]

Boeneman, K.

K. Boeneman, J. B. Delehanty, J. B. Blanco-Canosa, K. Susumu, M. H. Stewart, E. Oh, A. L. Huston, G. Dawson, S. Ingale, R. Walters, M. Domowicz, J. R. Deschamps, W. R. Algar, S. Dimaggio, J. Manono, C. M. Spillmann, D. Thompson, T. L. Jennings, P. E. Dawson, and I. L. Medintz, “Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials,” ACS Nano 7(5), 3778–3796 (2013).
[Crossref] [PubMed]

Bolinger, P. Y.

G. Gopalakrishnan, C. Danelon, P. Izewska, M. Prummer, P. Y. Bolinger, I. Geissbühler, D. Demurtas, J. Dubochet, and H. Vogel, “Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells,” Angew. Chem. Int. Ed. Engl. 45(33), 5478–5483 (2006).
[Crossref] [PubMed]

Boyden, E. S.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Bozyigit, D.

D. Bozyigit, O. Yarema, and V. Wood, “Origins of low quantum efficiencies in quantum dot LEDs,” Adv. Funct. Mater. 23(24), 3024–3029 (2013).
[Crossref]

D. Bozyigit, V. Wood, Y. Shirasaki, and V. Bulovic, “Study of field driven electroluminescence in colloidal quantum dot solids,” J. Appl. Phys. 111(11), 113701 (2012).
[Crossref]

Breger, J. C.

J. B. Delehanty, J. C. Breger, K. B. Gemmill, M. H. Stewart, and I. L. Medintz, “Controlling the actuation of therapeutic nanomaterials: enabling nanoparticle-mediated drug delivery,” Ther. Deliv. 4(11), 1411–1429 (2013).
[Crossref] [PubMed]

Brown, C. W.

C. E. Rowland, C. W. Brown, I. L. Medintz, and J. B. Delehanty, “Intracellular FRET-based probes: a review,” Methods Appl. Fluoresc. 3(4), 042006 (2015).
[Crossref]

Bruchez, M. P.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

Brus, L. E.

T. D. Krauss and L. E. Brus, ““Electronic properties of single semiconductor nanocrystals: optical and electrostatic force microscopy measurements,” Mat. Sci. Eng, B-Solid 69-70, 289–294 (2000).
[Crossref]

Bulovic, V.

D. Bozyigit, V. Wood, Y. Shirasaki, and V. Bulovic, “Study of field driven electroluminescence in colloidal quantum dot solids,” J. Appl. Phys. 111(11), 113701 (2012).
[Crossref]

H. Huang, A. Dorn, G. P. Nair, V. Bulović, and M. G. Bawendi, “Bias-induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors,” Nano Lett. 7(12), 3781–3786 (2007).
[Crossref] [PubMed]

Casey, B. J.

K. E. Sapsford, W. R. Algar, L. Berti, K. B. Gemmill, B. J. Casey, E. Oh, M. H. Stewart, and I. L. Medintz, “Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology,” Chem. Rev. 113(3), 1904–2074 (2013).
[Crossref] [PubMed]

Cavaliere-Jaricot, S.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Chandrawati, R.

P. D. Howes, R. Chandrawati, and M. M. Stevens, “Colloidal nanoparticles as advanced biological sensors,” Science 346(6205), 1247390 (2014).
[Crossref] [PubMed]

Chen, D.

D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor,” Chem. Mater. 22(4), 1437–1444 (2010).
[Crossref]

Chen, T.-W.

T.-W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Chen, X.

A. Bhirde, J. Xie, M. Swierczewska, and X. Chen, “Nanoparticles for cell labeling,” Nanoscale 3(1), 142–153 (2011).
[Crossref] [PubMed]

Chen, Y.

L. D. Field, J. B. Delehanty, Y. Chen, and I. L. Medintz, “Peptides for specifically targeting nanoparticles to cellular organelles: quo vadis?” Acc. Chem. Res. 48(5), 1380–1390 (2015).
[Crossref] [PubMed]

Chun, M.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The brain activity map project and the challenge of functional connectomics,” Neuron 74(6), 970–974 (2012).
[Crossref] [PubMed]

Church, G. M.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The brain activity map project and the challenge of functional connectomics,” Neuron 74(6), 970–974 (2012).
[Crossref] [PubMed]

Clapp, A. R.

A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. 19(15), 1921–1926 (2007).
[Crossref]

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7(1), 47–57 (2006).
[Crossref] [PubMed]

Clark, S. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

Claussen, J. C.

J. C. Claussen, N. Hildebrandt, K. Susumu, M. G. Ancona, and I. L. Medintz, “Complex logic functions implemented with quantum dot bionanophotonic circuits,” ACS Appl. Mater. Interfaces 6(6), 3771–3778 (2014).
[Crossref] [PubMed]

Danelon, C.

G. Gopalakrishnan, C. Danelon, P. Izewska, M. Prummer, P. Y. Bolinger, I. Geissbühler, D. Demurtas, J. Dubochet, and H. Vogel, “Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells,” Angew. Chem. Int. Ed. Engl. 45(33), 5478–5483 (2006).
[Crossref] [PubMed]

Dawson, G.

R. Agarwal, M. S. Domowicz, N. B. Schwartz, J. Henry, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, J. R. Deschamps, P. E. Dawson, V. Palomo, and G. Dawson, “Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain,” ACS Chem. Neurosci. 6(3), 494–504 (2015).
[Crossref] [PubMed]

K. Boeneman, J. B. Delehanty, J. B. Blanco-Canosa, K. Susumu, M. H. Stewart, E. Oh, A. L. Huston, G. Dawson, S. Ingale, R. Walters, M. Domowicz, J. R. Deschamps, W. R. Algar, S. Dimaggio, J. Manono, C. M. Spillmann, D. Thompson, T. L. Jennings, P. E. Dawson, and I. L. Medintz, “Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials,” ACS Nano 7(5), 3778–3796 (2013).
[Crossref] [PubMed]

R. Walters, R. P. Kraig, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, P. E. Dawson, and G. Dawson, “Nanoparticle targeting to neurons in a rat hippocampal slice culture model,” ASN Neuro 4(6), 383–392 (2012).
[Crossref] [PubMed]

Dawson, P. E.

R. Agarwal, M. S. Domowicz, N. B. Schwartz, J. Henry, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, J. R. Deschamps, P. E. Dawson, V. Palomo, and G. Dawson, “Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain,” ACS Chem. Neurosci. 6(3), 494–504 (2015).
[Crossref] [PubMed]

K. Boeneman, J. B. Delehanty, J. B. Blanco-Canosa, K. Susumu, M. H. Stewart, E. Oh, A. L. Huston, G. Dawson, S. Ingale, R. Walters, M. Domowicz, J. R. Deschamps, W. R. Algar, S. Dimaggio, J. Manono, C. M. Spillmann, D. Thompson, T. L. Jennings, P. E. Dawson, and I. L. Medintz, “Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials,” ACS Nano 7(5), 3778–3796 (2013).
[Crossref] [PubMed]

R. Walters, R. P. Kraig, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, P. E. Dawson, and G. Dawson, “Nanoparticle targeting to neurons in a rat hippocampal slice culture model,” ASN Neuro 4(6), 383–392 (2012).
[Crossref] [PubMed]

A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. 19(15), 1921–1926 (2007).
[Crossref]

Deisseroth, K.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Delehanty, J. B.

L. D. Field, J. B. Delehanty, Y. Chen, and I. L. Medintz, “Peptides for specifically targeting nanoparticles to cellular organelles: quo vadis?” Acc. Chem. Res. 48(5), 1380–1390 (2015).
[Crossref] [PubMed]

C. E. Rowland, C. W. Brown, I. L. Medintz, and J. B. Delehanty, “Intracellular FRET-based probes: a review,” Methods Appl. Fluoresc. 3(4), 042006 (2015).
[Crossref]

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric field modulation of semiconductor quantum dot photoluminescence: insights into the design of robust voltage-sensitive cellular imaging probes,” Nano Lett. 15(10), 6848–6854 (2015).
[Crossref] [PubMed]

R. Agarwal, M. S. Domowicz, N. B. Schwartz, J. Henry, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, J. R. Deschamps, P. E. Dawson, V. Palomo, and G. Dawson, “Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain,” ACS Chem. Neurosci. 6(3), 494–504 (2015).
[Crossref] [PubMed]

B. K. Andrásfalvy, G. L. Galiñanes, D. Huber, M. Barbic, J. J. Macklin, K. Susumu, J. B. Delehanty, A. L. Huston, J. K. Makara, and I. L. Medintz, “Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology,” Nat. Methods 11(12), 1237–1241 (2014).
[Crossref] [PubMed]

K. Boeneman, J. B. Delehanty, J. B. Blanco-Canosa, K. Susumu, M. H. Stewart, E. Oh, A. L. Huston, G. Dawson, S. Ingale, R. Walters, M. Domowicz, J. R. Deschamps, W. R. Algar, S. Dimaggio, J. Manono, C. M. Spillmann, D. Thompson, T. L. Jennings, P. E. Dawson, and I. L. Medintz, “Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials,” ACS Nano 7(5), 3778–3796 (2013).
[Crossref] [PubMed]

J. B. Delehanty, J. C. Breger, K. B. Gemmill, M. H. Stewart, and I. L. Medintz, “Controlling the actuation of therapeutic nanomaterials: enabling nanoparticle-mediated drug delivery,” Ther. Deliv. 4(11), 1411–1429 (2013).
[Crossref] [PubMed]

R. Walters, R. P. Kraig, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, P. E. Dawson, and G. Dawson, “Nanoparticle targeting to neurons in a rat hippocampal slice culture model,” ASN Neuro 4(6), 383–392 (2012).
[Crossref] [PubMed]

A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. 19(15), 1921–1926 (2007).
[Crossref]

C. E. Rowland, J. B. Delehanty, C. L. Dwyer, and I. L. Medintz, “Growing applications for bioassembled resonance energy transfer cascades,” Mater. Today (2016), doi:.
[Crossref]

Demurtas, D.

G. Gopalakrishnan, C. Danelon, P. Izewska, M. Prummer, P. Y. Bolinger, I. Geissbühler, D. Demurtas, J. Dubochet, and H. Vogel, “Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells,” Angew. Chem. Int. Ed. Engl. 45(33), 5478–5483 (2006).
[Crossref] [PubMed]

Dennis, A. M.

A. M. Dennis, W. J. Rhee, D. Sotto, S. N. Dublin, and G. Bao, “Quantum dot-fluorescent protein FRET probes for sensing intracellular pH,” ACS Nano 6(4), 2917–2924 (2012).
[Crossref] [PubMed]

Deschamps, J. R.

R. Agarwal, M. S. Domowicz, N. B. Schwartz, J. Henry, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, J. R. Deschamps, P. E. Dawson, V. Palomo, and G. Dawson, “Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain,” ACS Chem. Neurosci. 6(3), 494–504 (2015).
[Crossref] [PubMed]

K. Boeneman, J. B. Delehanty, J. B. Blanco-Canosa, K. Susumu, M. H. Stewart, E. Oh, A. L. Huston, G. Dawson, S. Ingale, R. Walters, M. Domowicz, J. R. Deschamps, W. R. Algar, S. Dimaggio, J. Manono, C. M. Spillmann, D. Thompson, T. L. Jennings, P. E. Dawson, and I. L. Medintz, “Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials,” ACS Nano 7(5), 3778–3796 (2013).
[Crossref] [PubMed]

Deutsch, Z.

K. Park, Z. Deutsch, J. J. Li, D. Oron, and S. Weiss, “Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature,” ACS Nano 6(11), 10013–10023 (2012).
[Crossref] [PubMed]

Dimaggio, S.

K. Boeneman, J. B. Delehanty, J. B. Blanco-Canosa, K. Susumu, M. H. Stewart, E. Oh, A. L. Huston, G. Dawson, S. Ingale, R. Walters, M. Domowicz, J. R. Deschamps, W. R. Algar, S. Dimaggio, J. Manono, C. M. Spillmann, D. Thompson, T. L. Jennings, P. E. Dawson, and I. L. Medintz, “Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials,” ACS Nano 7(5), 3778–3796 (2013).
[Crossref] [PubMed]

Domowicz, M.

K. Boeneman, J. B. Delehanty, J. B. Blanco-Canosa, K. Susumu, M. H. Stewart, E. Oh, A. L. Huston, G. Dawson, S. Ingale, R. Walters, M. Domowicz, J. R. Deschamps, W. R. Algar, S. Dimaggio, J. Manono, C. M. Spillmann, D. Thompson, T. L. Jennings, P. E. Dawson, and I. L. Medintz, “Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials,” ACS Nano 7(5), 3778–3796 (2013).
[Crossref] [PubMed]

Domowicz, M. S.

R. Agarwal, M. S. Domowicz, N. B. Schwartz, J. Henry, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, J. R. Deschamps, P. E. Dawson, V. Palomo, and G. Dawson, “Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain,” ACS Chem. Neurosci. 6(3), 494–504 (2015).
[Crossref] [PubMed]

Dong, L.

Donoghue, J. P.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Dorn, A.

H. Huang, A. Dorn, G. P. Nair, V. Bulović, and M. G. Bawendi, “Bias-induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors,” Nano Lett. 7(12), 3781–3786 (2007).
[Crossref] [PubMed]

Dublin, S. N.

A. M. Dennis, W. J. Rhee, D. Sotto, S. N. Dublin, and G. Bao, “Quantum dot-fluorescent protein FRET probes for sensing intracellular pH,” ACS Nano 6(4), 2917–2924 (2012).
[Crossref] [PubMed]

Dubochet, J.

G. Gopalakrishnan, C. Danelon, P. Izewska, M. Prummer, P. Y. Bolinger, I. Geissbühler, D. Demurtas, J. Dubochet, and H. Vogel, “Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells,” Angew. Chem. Int. Ed. Engl. 45(33), 5478–5483 (2006).
[Crossref] [PubMed]

Dwyer, C. L.

C. E. Rowland, J. B. Delehanty, C. L. Dwyer, and I. L. Medintz, “Growing applications for bioassembled resonance energy transfer cascades,” Mater. Today (2016), doi:.
[Crossref]

Efros, A. L.

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric field modulation of semiconductor quantum dot photoluminescence: insights into the design of robust voltage-sensitive cellular imaging probes,” Nano Lett. 15(10), 6848–6854 (2015).
[Crossref] [PubMed]

A. Shabaev, A. Rodina, and A. L. Efros, “Fine structure of the band-edge excitons and trions in CdSe/CdS core/shell nanocrystals,” Phys. Rev. B 86(20), 205311 (2012).
[Crossref]

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, and A. L. Efros, “Imaging cellular membrane potential through ionization of quantum dots,” Proc. SPIE9722, (2016), doi:.
[Crossref]

Empedocles, S. A.

C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, “Photoconductivity in CdSe quantum dot solids,” Phys. Rev. B 62(4), 2669–2680 (2000).
[Crossref]

S. A. Empedocles and M. G. Bawendi, “Quantum-confined stark effect in single CdSe nanocrystallite quantum dots,” Science 278(5346), 2114–2117 (1997).
[Crossref] [PubMed]

Engelman, D. M.

B. A. Lewis and D. M. Engelman, “Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles,” J. Mol. Biol. 166(2), 211–217 (1983).
[Crossref] [PubMed]

Erickson, J. S.

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric field modulation of semiconductor quantum dot photoluminescence: insights into the design of robust voltage-sensitive cellular imaging probes,” Nano Lett. 15(10), 6848–6854 (2015).
[Crossref] [PubMed]

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, and A. L. Efros, “Imaging cellular membrane potential through ionization of quantum dots,” Proc. SPIE9722, (2016), doi:.
[Crossref]

Erzurumlu, R. S.

V. Tsytsarev, L. D. Liao, K. V. Kong, Y. H. Liu, R. S. Erzurumlu, M. Olivo, and N. V. Thakor, “Recent progress in voltage-sensitive dye imaging for neuroscience,” J. Nanosci. Nanotechnol. 14(7), 4733–4744 (2014).
[Crossref] [PubMed]

Farokhzad, O. C.

V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P. W. Kantoff, R. Langer, and O. C. Farokhzad, “Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer,” Nano Lett. 7(10), 3065–3070 (2007).
[Crossref] [PubMed]

Field, L. D.

L. D. Field, J. B. Delehanty, Y. Chen, and I. L. Medintz, “Peptides for specifically targeting nanoparticles to cellular organelles: quo vadis?” Acc. Chem. Res. 48(5), 1380–1390 (2015).
[Crossref] [PubMed]

Fisher, B. R.

A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. 19(15), 1921–1926 (2007).
[Crossref]

Fraser, S. E.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Friberg, A. T.

Galiñanes, G. L.

B. K. Andrásfalvy, G. L. Galiñanes, D. Huber, M. Barbic, J. J. Macklin, K. Susumu, J. B. Delehanty, A. L. Huston, J. K. Makara, and I. L. Medintz, “Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology,” Nat. Methods 11(12), 1237–1241 (2014).
[Crossref] [PubMed]

Gao, X.

P. Zrazhevskiy, M. Sena, and X. Gao, “Designing multifunctional quantum dots for bioimaging, detection, and drug delivery,” Chem. Soc. Rev. 39(11), 4326–4354 (2010).
[Crossref] [PubMed]

Geissbühler, I.

G. Gopalakrishnan, C. Danelon, P. Izewska, M. Prummer, P. Y. Bolinger, I. Geissbühler, D. Demurtas, J. Dubochet, and H. Vogel, “Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells,” Angew. Chem. Int. Ed. Engl. 45(33), 5478–5483 (2006).
[Crossref] [PubMed]

Gemmill, K. B.

K. E. Sapsford, W. R. Algar, L. Berti, K. B. Gemmill, B. J. Casey, E. Oh, M. H. Stewart, and I. L. Medintz, “Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology,” Chem. Rev. 113(3), 1904–2074 (2013).
[Crossref] [PubMed]

J. B. Delehanty, J. C. Breger, K. B. Gemmill, M. H. Stewart, and I. L. Medintz, “Controlling the actuation of therapeutic nanomaterials: enabling nanoparticle-mediated drug delivery,” Ther. Deliv. 4(11), 1411–1429 (2013).
[Crossref] [PubMed]

Goodman, S. M.

S. M. Goodman, A. Siu, V. Singh, and P. Nagpal, “Long-range energy transfer in self-assembled quantum dot-DNA cascades,” Nanoscale 7(44), 18435–18440 (2015).
[Crossref] [PubMed]

Gopalakrishnan, G.

G. Gopalakrishnan, C. Danelon, P. Izewska, M. Prummer, P. Y. Bolinger, I. Geissbühler, D. Demurtas, J. Dubochet, and H. Vogel, “Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells,” Angew. Chem. Int. Ed. Engl. 45(33), 5478–5483 (2006).
[Crossref] [PubMed]

Grabolle, M.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Greenspan, R. J.

A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The brain activity map project and the challenge of functional connectomics,” Neuron 74(6), 970–974 (2012).
[Crossref] [PubMed]

Gu, W.

A. P. Alivisatos, W. Gu, and C. Larabell, “Quantum dots as cellular probes,” Annu. Rev. Biomed. Eng. 7(1), 55–76 (2005).
[Crossref] [PubMed]

Hai, A.

M. E. Spira and A. Hai, “Multi-electrode array technologies for neuroscience and cardiology,” Nat. Nanotechnol. 8(2), 83–94 (2013).
[Crossref] [PubMed]

Henry, J.

R. Agarwal, M. S. Domowicz, N. B. Schwartz, J. Henry, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, J. R. Deschamps, P. E. Dawson, V. Palomo, and G. Dawson, “Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain,” ACS Chem. Neurosci. 6(3), 494–504 (2015).
[Crossref] [PubMed]

Hildebrandt, N.

J. C. Claussen, N. Hildebrandt, K. Susumu, M. G. Ancona, and I. L. Medintz, “Complex logic functions implemented with quantum dot bionanophotonic circuits,” ACS Appl. Mater. Interfaces 6(6), 3771–3778 (2014).
[Crossref] [PubMed]

Ho, Y. P.

Y. P. Ho and K. W. Leong, “Quantum dot-based theranostics,” Nanoscale 2(1), 60–68 (2010).
[Crossref] [PubMed]

Howes, P. D.

P. D. Howes, R. Chandrawati, and M. M. Stevens, “Colloidal nanoparticles as advanced biological sensors,” Science 346(6205), 1247390 (2014).
[Crossref] [PubMed]

Hu, J.

Huang, H.

H. Huang, A. Dorn, G. P. Nair, V. Bulović, and M. G. Bawendi, “Bias-induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors,” Nano Lett. 7(12), 3781–3786 (2007).
[Crossref] [PubMed]

Huber, D.

B. K. Andrásfalvy, G. L. Galiñanes, D. Huber, M. Barbic, J. J. Macklin, K. Susumu, J. B. Delehanty, A. L. Huston, J. K. Makara, and I. L. Medintz, “Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology,” Nat. Methods 11(12), 1237–1241 (2014).
[Crossref] [PubMed]

Huston, A. L.

R. Agarwal, M. S. Domowicz, N. B. Schwartz, J. Henry, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, J. R. Deschamps, P. E. Dawson, V. Palomo, and G. Dawson, “Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain,” ACS Chem. Neurosci. 6(3), 494–504 (2015).
[Crossref] [PubMed]

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric field modulation of semiconductor quantum dot photoluminescence: insights into the design of robust voltage-sensitive cellular imaging probes,” Nano Lett. 15(10), 6848–6854 (2015).
[Crossref] [PubMed]

B. K. Andrásfalvy, G. L. Galiñanes, D. Huber, M. Barbic, J. J. Macklin, K. Susumu, J. B. Delehanty, A. L. Huston, J. K. Makara, and I. L. Medintz, “Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology,” Nat. Methods 11(12), 1237–1241 (2014).
[Crossref] [PubMed]

K. Boeneman, J. B. Delehanty, J. B. Blanco-Canosa, K. Susumu, M. H. Stewart, E. Oh, A. L. Huston, G. Dawson, S. Ingale, R. Walters, M. Domowicz, J. R. Deschamps, W. R. Algar, S. Dimaggio, J. Manono, C. M. Spillmann, D. Thompson, T. L. Jennings, P. E. Dawson, and I. L. Medintz, “Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials,” ACS Nano 7(5), 3778–3796 (2013).
[Crossref] [PubMed]

R. Walters, R. P. Kraig, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, P. E. Dawson, and G. Dawson, “Nanoparticle targeting to neurons in a rat hippocampal slice culture model,” ASN Neuro 4(6), 383–392 (2012).
[Crossref] [PubMed]

Ingale, S.

K. Boeneman, J. B. Delehanty, J. B. Blanco-Canosa, K. Susumu, M. H. Stewart, E. Oh, A. L. Huston, G. Dawson, S. Ingale, R. Walters, M. Domowicz, J. R. Deschamps, W. R. Algar, S. Dimaggio, J. Manono, C. M. Spillmann, D. Thompson, T. L. Jennings, P. E. Dawson, and I. L. Medintz, “Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials,” ACS Nano 7(5), 3778–3796 (2013).
[Crossref] [PubMed]

Ivanov, S. A.

L. P. Balet, S. A. Ivanov, A. Piryatinski, M. Achermann, and V. I. Klimov, “Inverted core/shell nanocrystals continuously tunable between Type-I and Type-II localization regimes,” Nano Lett. 4(8), 1485–1488 (2004).
[Crossref]

Izewska, P.

G. Gopalakrishnan, C. Danelon, P. Izewska, M. Prummer, P. Y. Bolinger, I. Geissbühler, D. Demurtas, J. Dubochet, and H. Vogel, “Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells,” Angew. Chem. Int. Ed. Engl. 45(33), 5478–5483 (2006).
[Crossref] [PubMed]

Jayaraman, V.

T.-W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Jennings, T. L.

K. Boeneman, J. B. Delehanty, J. B. Blanco-Canosa, K. Susumu, M. H. Stewart, E. Oh, A. L. Huston, G. Dawson, S. Ingale, R. Walters, M. Domowicz, J. R. Deschamps, W. R. Algar, S. Dimaggio, J. Manono, C. M. Spillmann, D. Thompson, T. L. Jennings, P. E. Dawson, and I. L. Medintz, “Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials,” ACS Nano 7(5), 3778–3796 (2013).
[Crossref] [PubMed]

Jon, S.

V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P. W. Kantoff, R. Langer, and O. C. Farokhzad, “Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer,” Nano Lett. 7(10), 3065–3070 (2007).
[Crossref] [PubMed]

Kagan, C. R.

C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, “Photoconductivity in CdSe quantum dot solids,” Phys. Rev. B 62(4), 2669–2680 (2000).
[Crossref]

Kantoff, P. W.

V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P. W. Kantoff, R. Langer, and O. C. Farokhzad, “Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer,” Nano Lett. 7(10), 3065–3070 (2007).
[Crossref] [PubMed]

Kastner, M. A.

C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, “Photoconductivity in CdSe quantum dot solids,” Phys. Rev. B 62(4), 2669–2680 (2000).
[Crossref]

Kerr, R. A.

T.-W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Kim, D. S.

T.-W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Klimov, V. I.

V. I. Klimov, “Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals,” Annu. Rev. Phys. Chem. 58(1), 635–673 (2007).
[Crossref] [PubMed]

L. P. Balet, S. A. Ivanov, A. Piryatinski, M. Achermann, and V. I. Klimov, “Inverted core/shell nanocrystals continuously tunable between Type-I and Type-II localization regimes,” Nano Lett. 4(8), 1485–1488 (2004).
[Crossref]

Kong, K. V.

V. Tsytsarev, L. D. Liao, K. V. Kong, Y. H. Liu, R. S. Erzurumlu, M. Olivo, and N. V. Thakor, “Recent progress in voltage-sensitive dye imaging for neuroscience,” J. Nanosci. Nanotechnol. 14(7), 4733–4744 (2014).
[Crossref] [PubMed]

Kraig, R. P.

R. Walters, R. P. Kraig, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, P. E. Dawson, and G. Dawson, “Nanoparticle targeting to neurons in a rat hippocampal slice culture model,” ASN Neuro 4(6), 383–392 (2012).
[Crossref] [PubMed]

Krauss, T. D.

T. D. Krauss and L. E. Brus, ““Electronic properties of single semiconductor nanocrystals: optical and electrostatic force microscopy measurements,” Mat. Sci. Eng, B-Solid 69-70, 289–294 (2000).
[Crossref]

Kushto, G.

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric field modulation of semiconductor quantum dot photoluminescence: insights into the design of robust voltage-sensitive cellular imaging probes,” Nano Lett. 15(10), 6848–6854 (2015).
[Crossref] [PubMed]

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, and A. L. Efros, “Imaging cellular membrane potential through ionization of quantum dots,” Proc. SPIE9722, (2016), doi:.
[Crossref]

Langer, R.

V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P. W. Kantoff, R. Langer, and O. C. Farokhzad, “Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer,” Nano Lett. 7(10), 3065–3070 (2007).
[Crossref] [PubMed]

Larabell, C.

A. P. Alivisatos, W. Gu, and C. Larabell, “Quantum dots as cellular probes,” Annu. Rev. Biomed. Eng. 7(1), 55–76 (2005).
[Crossref] [PubMed]

Larson, D. R.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

Leatherdale, C. A.

C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, “Photoconductivity in CdSe quantum dot solids,” Phys. Rev. B 62(4), 2669–2680 (2000).
[Crossref]

Leong, K. W.

Y. P. Ho and K. W. Leong, “Quantum dot-based theranostics,” Nanoscale 2(1), 60–68 (2010).
[Crossref] [PubMed]

Levy-Nissenbaum, E.

V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P. W. Kantoff, R. Langer, and O. C. Farokhzad, “Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer,” Nano Lett. 7(10), 3065–3070 (2007).
[Crossref] [PubMed]

Lewis, B. A.

B. A. Lewis and D. M. Engelman, “Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles,” J. Mol. Biol. 166(2), 211–217 (1983).
[Crossref] [PubMed]

Li, J. J.

K. Park, Z. Deutsch, J. J. Li, D. Oron, and S. Weiss, “Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature,” ACS Nano 6(11), 10013–10023 (2012).
[Crossref] [PubMed]

Li, S.

Liao, L. D.

V. Tsytsarev, L. D. Liao, K. V. Kong, Y. H. Liu, R. S. Erzurumlu, M. Olivo, and N. V. Thakor, “Recent progress in voltage-sensitive dye imaging for neuroscience,” J. Nanosci. Nanotechnol. 14(7), 4733–4744 (2014).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Liu, Y. H.

V. Tsytsarev, L. D. Liao, K. V. Kong, Y. H. Liu, R. S. Erzurumlu, M. Olivo, and N. V. Thakor, “Recent progress in voltage-sensitive dye imaging for neuroscience,” J. Nanosci. Nanotechnol. 14(7), 4733–4744 (2014).
[Crossref] [PubMed]

Looger, L. L.

T.-W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Macklin, J. J.

B. K. Andrásfalvy, G. L. Galiñanes, D. Huber, M. Barbic, J. J. Macklin, K. Susumu, J. B. Delehanty, A. L. Huston, J. K. Makara, and I. L. Medintz, “Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology,” Nat. Methods 11(12), 1237–1241 (2014).
[Crossref] [PubMed]

Makara, J. K.

B. K. Andrásfalvy, G. L. Galiñanes, D. Huber, M. Barbic, J. J. Macklin, K. Susumu, J. B. Delehanty, A. L. Huston, J. K. Makara, and I. L. Medintz, “Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology,” Nat. Methods 11(12), 1237–1241 (2014).
[Crossref] [PubMed]

Mäkinen, A. J.

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric field modulation of semiconductor quantum dot photoluminescence: insights into the design of robust voltage-sensitive cellular imaging probes,” Nano Lett. 15(10), 6848–6854 (2015).
[Crossref] [PubMed]

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, and A. L. Efros, “Imaging cellular membrane potential through ionization of quantum dots,” Proc. SPIE9722, (2016), doi:.
[Crossref]

Manono, J.

K. Boeneman, J. B. Delehanty, J. B. Blanco-Canosa, K. Susumu, M. H. Stewart, E. Oh, A. L. Huston, G. Dawson, S. Ingale, R. Walters, M. Domowicz, J. R. Deschamps, W. R. Algar, S. Dimaggio, J. Manono, C. M. Spillmann, D. Thompson, T. L. Jennings, P. E. Dawson, and I. L. Medintz, “Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials,” ACS Nano 7(5), 3778–3796 (2013).
[Crossref] [PubMed]

Marshall, J. D.

J. D. Marshall and M. J. Schnitzer, “Optical strategies for sensing neuronal voltage using quantum dots and other semiconductor nanocrystals,” ACS Nano 7(5), 4601–4609 (2013).
[Crossref] [PubMed]

Masmanidis, S.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Mattoussi, H.

I. L. Medintz and H. Mattoussi, “Quantum dot-based resonance energy transfer and its growing application in biology,” Phys. Chem. Chem. Phys. 11(1), 17–45 (2009).
[Crossref] [PubMed]

A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. 19(15), 1921–1926 (2007).
[Crossref]

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7(1), 47–57 (2006).
[Crossref] [PubMed]

McEuen, P. L.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Medeiros-Ribeiro, G.

K. H. Schmidt, G. Medeiros-Ribeiro, and P. M. Petroff, “Photoluminescence of charged InAs self-assembled quantum dots,” Phys. Rev. B 58(7), 3597–3600 (1998).
[Crossref]

Medintz, I.

R. Agarwal, M. S. Domowicz, N. B. Schwartz, J. Henry, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, J. R. Deschamps, P. E. Dawson, V. Palomo, and G. Dawson, “Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain,” ACS Chem. Neurosci. 6(3), 494–504 (2015).
[Crossref] [PubMed]

R. Walters, R. P. Kraig, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, P. E. Dawson, and G. Dawson, “Nanoparticle targeting to neurons in a rat hippocampal slice culture model,” ASN Neuro 4(6), 383–392 (2012).
[Crossref] [PubMed]

Medintz, I. L.

C. E. Rowland, C. W. Brown, I. L. Medintz, and J. B. Delehanty, “Intracellular FRET-based probes: a review,” Methods Appl. Fluoresc. 3(4), 042006 (2015).
[Crossref]

L. D. Field, J. B. Delehanty, Y. Chen, and I. L. Medintz, “Peptides for specifically targeting nanoparticles to cellular organelles: quo vadis?” Acc. Chem. Res. 48(5), 1380–1390 (2015).
[Crossref] [PubMed]

J. C. Claussen, N. Hildebrandt, K. Susumu, M. G. Ancona, and I. L. Medintz, “Complex logic functions implemented with quantum dot bionanophotonic circuits,” ACS Appl. Mater. Interfaces 6(6), 3771–3778 (2014).
[Crossref] [PubMed]

B. K. Andrásfalvy, G. L. Galiñanes, D. Huber, M. Barbic, J. J. Macklin, K. Susumu, J. B. Delehanty, A. L. Huston, J. K. Makara, and I. L. Medintz, “Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology,” Nat. Methods 11(12), 1237–1241 (2014).
[Crossref] [PubMed]

K. Boeneman, J. B. Delehanty, J. B. Blanco-Canosa, K. Susumu, M. H. Stewart, E. Oh, A. L. Huston, G. Dawson, S. Ingale, R. Walters, M. Domowicz, J. R. Deschamps, W. R. Algar, S. Dimaggio, J. Manono, C. M. Spillmann, D. Thompson, T. L. Jennings, P. E. Dawson, and I. L. Medintz, “Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials,” ACS Nano 7(5), 3778–3796 (2013).
[Crossref] [PubMed]

K. E. Sapsford, W. R. Algar, L. Berti, K. B. Gemmill, B. J. Casey, E. Oh, M. H. Stewart, and I. L. Medintz, “Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology,” Chem. Rev. 113(3), 1904–2074 (2013).
[Crossref] [PubMed]

J. B. Delehanty, J. C. Breger, K. B. Gemmill, M. H. Stewart, and I. L. Medintz, “Controlling the actuation of therapeutic nanomaterials: enabling nanoparticle-mediated drug delivery,” Ther. Deliv. 4(11), 1411–1429 (2013).
[Crossref] [PubMed]

I. L. Medintz and H. Mattoussi, “Quantum dot-based resonance energy transfer and its growing application in biology,” Phys. Chem. Chem. Phys. 11(1), 17–45 (2009).
[Crossref] [PubMed]

A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. 19(15), 1921–1926 (2007).
[Crossref]

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7(1), 47–57 (2006).
[Crossref] [PubMed]

C. E. Rowland, J. B. Delehanty, C. L. Dwyer, and I. L. Medintz, “Growing applications for bioassembled resonance energy transfer cascades,” Mater. Today (2016), doi:.
[Crossref]

Melinger, J. S.

A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. 19(15), 1921–1926 (2007).
[Crossref]

Morgan, N. Y.

C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, “Photoconductivity in CdSe quantum dot solids,” Phys. Rev. B 62(4), 2669–2680 (2000).
[Crossref]

Muhammed, M.

Nagpal, P.

S. M. Goodman, A. Siu, V. Singh, and P. Nagpal, “Long-range energy transfer in self-assembled quantum dot-DNA cascades,” Nanoscale 7(44), 18435–18440 (2015).
[Crossref] [PubMed]

Nair, G. P.

H. Huang, A. Dorn, G. P. Nair, V. Bulović, and M. G. Bawendi, “Bias-induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors,” Nano Lett. 7(12), 3781–3786 (2007).
[Crossref] [PubMed]

Nann, T.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Neher, E.

B. Sakmann and E. Neher, “Patch clamp techniques for studying ionic channels in excitable membranes,” Annu. Rev. Physiol. 46(1), 455–472 (1984).
[Crossref] [PubMed]

Nitschke, R.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Nurmikko, A. V.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

O’Rourke, B.

A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. 19(15), 1921–1926 (2007).
[Crossref]

O’Shaughnessy, T. J.

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric field modulation of semiconductor quantum dot photoluminescence: insights into the design of robust voltage-sensitive cellular imaging probes,” Nano Lett. 15(10), 6848–6854 (2015).
[Crossref] [PubMed]

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, and A. L. Efros, “Imaging cellular membrane potential through ionization of quantum dots,” Proc. SPIE9722, (2016), doi:.
[Crossref]

Oh, E.

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric field modulation of semiconductor quantum dot photoluminescence: insights into the design of robust voltage-sensitive cellular imaging probes,” Nano Lett. 15(10), 6848–6854 (2015).
[Crossref] [PubMed]

K. E. Sapsford, W. R. Algar, L. Berti, K. B. Gemmill, B. J. Casey, E. Oh, M. H. Stewart, and I. L. Medintz, “Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology,” Chem. Rev. 113(3), 1904–2074 (2013).
[Crossref] [PubMed]

K. Boeneman, J. B. Delehanty, J. B. Blanco-Canosa, K. Susumu, M. H. Stewart, E. Oh, A. L. Huston, G. Dawson, S. Ingale, R. Walters, M. Domowicz, J. R. Deschamps, W. R. Algar, S. Dimaggio, J. Manono, C. M. Spillmann, D. Thompson, T. L. Jennings, P. E. Dawson, and I. L. Medintz, “Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials,” ACS Nano 7(5), 3778–3796 (2013).
[Crossref] [PubMed]

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, and A. L. Efros, “Imaging cellular membrane potential through ionization of quantum dots,” Proc. SPIE9722, (2016), doi:.
[Crossref]

Olivo, M.

V. Tsytsarev, L. D. Liao, K. V. Kong, Y. H. Liu, R. S. Erzurumlu, M. Olivo, and N. V. Thakor, “Recent progress in voltage-sensitive dye imaging for neuroscience,” J. Nanosci. Nanotechnol. 14(7), 4733–4744 (2014).
[Crossref] [PubMed]

Orger, M. B.

T.-W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Oron, D.

K. Park, Z. Deutsch, J. J. Li, D. Oron, and S. Weiss, “Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature,” ACS Nano 6(11), 10013–10023 (2012).
[Crossref] [PubMed]

Palomo, V.

R. Agarwal, M. S. Domowicz, N. B. Schwartz, J. Henry, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, J. R. Deschamps, P. E. Dawson, V. Palomo, and G. Dawson, “Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain,” ACS Chem. Neurosci. 6(3), 494–504 (2015).
[Crossref] [PubMed]

Park, H.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Park, K.

K. Park, Z. Deutsch, J. J. Li, D. Oron, and S. Weiss, “Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature,” ACS Nano 6(11), 10013–10023 (2012).
[Crossref] [PubMed]

Peng, X.

D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor,” Chem. Mater. 22(4), 1437–1444 (2010).
[Crossref]

Peterka, D. S.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Petroff, P. M.

K. H. Schmidt, G. Medeiros-Ribeiro, and P. M. Petroff, “Photoluminescence of charged InAs self-assembled quantum dots,” Phys. Rev. B 58(7), 3597–3600 (1998).
[Crossref]

Piryatinski, A.

L. P. Balet, S. A. Ivanov, A. Piryatinski, M. Achermann, and V. I. Klimov, “Inverted core/shell nanocrystals continuously tunable between Type-I and Type-II localization regimes,” Nano Lett. 4(8), 1485–1488 (2004).
[Crossref]

Pons, T.

A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. 19(15), 1921–1926 (2007).
[Crossref]

Popov, S.

Prummer, M.

G. Gopalakrishnan, C. Danelon, P. Izewska, M. Prummer, P. Y. Bolinger, I. Geissbühler, D. Demurtas, J. Dubochet, and H. Vogel, “Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells,” Angew. Chem. Int. Ed. Engl. 45(33), 5478–5483 (2006).
[Crossref] [PubMed]

Pulver, S. R.

T.-W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Qi, H.

D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor,” Chem. Mater. 22(4), 1437–1444 (2010).
[Crossref]

Reid, C.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Renninger, S. L.

T.-W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Resch-Genger, U.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Rhee, W. J.

A. M. Dennis, W. J. Rhee, D. Sotto, S. N. Dublin, and G. Bao, “Quantum dot-fluorescent protein FRET probes for sensing intracellular pH,” ACS Nano 6(4), 2917–2924 (2012).
[Crossref] [PubMed]

Rodina, A.

A. Shabaev, A. Rodina, and A. L. Efros, “Fine structure of the band-edge excitons and trions in CdSe/CdS core/shell nanocrystals,” Phys. Rev. B 86(20), 205311 (2012).
[Crossref]

Roukes, M. L.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The brain activity map project and the challenge of functional connectomics,” Neuron 74(6), 970–974 (2012).
[Crossref] [PubMed]

Rowland, C. E.

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric field modulation of semiconductor quantum dot photoluminescence: insights into the design of robust voltage-sensitive cellular imaging probes,” Nano Lett. 15(10), 6848–6854 (2015).
[Crossref] [PubMed]

C. E. Rowland, C. W. Brown, I. L. Medintz, and J. B. Delehanty, “Intracellular FRET-based probes: a review,” Methods Appl. Fluoresc. 3(4), 042006 (2015).
[Crossref]

C. E. Rowland, J. B. Delehanty, C. L. Dwyer, and I. L. Medintz, “Growing applications for bioassembled resonance energy transfer cascades,” Mater. Today (2016), doi:.
[Crossref]

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, and A. L. Efros, “Imaging cellular membrane potential through ionization of quantum dots,” Proc. SPIE9722, (2016), doi:.
[Crossref]

Rutherford, M.

D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor,” Chem. Mater. 22(4), 1437–1444 (2010).
[Crossref]

Sakmann, B.

B. Sakmann and E. Neher, “Patch clamp techniques for studying ionic channels in excitable membranes,” Annu. Rev. Physiol. 46(1), 455–472 (1984).
[Crossref] [PubMed]

Sapsford, K. E.

K. E. Sapsford, W. R. Algar, L. Berti, K. B. Gemmill, B. J. Casey, E. Oh, M. H. Stewart, and I. L. Medintz, “Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology,” Chem. Rev. 113(3), 1904–2074 (2013).
[Crossref] [PubMed]

Scherer, A.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Schmidt, K. H.

K. H. Schmidt, G. Medeiros-Ribeiro, and P. M. Petroff, “Photoluminescence of charged InAs self-assembled quantum dots,” Phys. Rev. B 58(7), 3597–3600 (1998).
[Crossref]

Schnitzer, M.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Schnitzer, M. J.

J. D. Marshall and M. J. Schnitzer, “Optical strategies for sensing neuronal voltage using quantum dots and other semiconductor nanocrystals,” ACS Nano 7(5), 4601–4609 (2013).
[Crossref] [PubMed]

Schreiter, E. R.

T.-W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Schwartz, N. B.

R. Agarwal, M. S. Domowicz, N. B. Schwartz, J. Henry, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, J. R. Deschamps, P. E. Dawson, V. Palomo, and G. Dawson, “Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain,” ACS Chem. Neurosci. 6(3), 494–504 (2015).
[Crossref] [PubMed]

Sejnowski, T. J.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Sena, M.

P. Zrazhevskiy, M. Sena, and X. Gao, “Designing multifunctional quantum dots for bioimaging, detection, and drug delivery,” Chem. Soc. Rev. 39(11), 4326–4354 (2010).
[Crossref] [PubMed]

Shabaev, A.

A. Shabaev, A. Rodina, and A. L. Efros, “Fine structure of the band-edge excitons and trions in CdSe/CdS core/shell nanocrystals,” Phys. Rev. B 86(20), 205311 (2012).
[Crossref]

Shepard, K. L.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Shirasaki, Y.

D. Bozyigit, V. Wood, Y. Shirasaki, and V. Bulovic, “Study of field driven electroluminescence in colloidal quantum dot solids,” J. Appl. Phys. 111(11), 113701 (2012).
[Crossref]

Singh, V.

S. M. Goodman, A. Siu, V. Singh, and P. Nagpal, “Long-range energy transfer in self-assembled quantum dot-DNA cascades,” Nanoscale 7(44), 18435–18440 (2015).
[Crossref] [PubMed]

Siu, A.

S. M. Goodman, A. Siu, V. Singh, and P. Nagpal, “Long-range energy transfer in self-assembled quantum dot-DNA cascades,” Nanoscale 7(44), 18435–18440 (2015).
[Crossref] [PubMed]

Sotto, D.

A. M. Dennis, W. J. Rhee, D. Sotto, S. N. Dublin, and G. Bao, “Quantum dot-fluorescent protein FRET probes for sensing intracellular pH,” ACS Nano 6(4), 2917–2924 (2012).
[Crossref] [PubMed]

Spillmann, C. M.

K. Boeneman, J. B. Delehanty, J. B. Blanco-Canosa, K. Susumu, M. H. Stewart, E. Oh, A. L. Huston, G. Dawson, S. Ingale, R. Walters, M. Domowicz, J. R. Deschamps, W. R. Algar, S. Dimaggio, J. Manono, C. M. Spillmann, D. Thompson, T. L. Jennings, P. E. Dawson, and I. L. Medintz, “Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials,” ACS Nano 7(5), 3778–3796 (2013).
[Crossref] [PubMed]

Spira, M. E.

M. E. Spira and A. Hai, “Multi-electrode array technologies for neuroscience and cardiology,” Nat. Nanotechnol. 8(2), 83–94 (2013).
[Crossref] [PubMed]

Stevens, M. M.

P. D. Howes, R. Chandrawati, and M. M. Stevens, “Colloidal nanoparticles as advanced biological sensors,” Science 346(6205), 1247390 (2014).
[Crossref] [PubMed]

Stewart, M. H.

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric field modulation of semiconductor quantum dot photoluminescence: insights into the design of robust voltage-sensitive cellular imaging probes,” Nano Lett. 15(10), 6848–6854 (2015).
[Crossref] [PubMed]

R. Agarwal, M. S. Domowicz, N. B. Schwartz, J. Henry, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, J. R. Deschamps, P. E. Dawson, V. Palomo, and G. Dawson, “Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain,” ACS Chem. Neurosci. 6(3), 494–504 (2015).
[Crossref] [PubMed]

K. Boeneman, J. B. Delehanty, J. B. Blanco-Canosa, K. Susumu, M. H. Stewart, E. Oh, A. L. Huston, G. Dawson, S. Ingale, R. Walters, M. Domowicz, J. R. Deschamps, W. R. Algar, S. Dimaggio, J. Manono, C. M. Spillmann, D. Thompson, T. L. Jennings, P. E. Dawson, and I. L. Medintz, “Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials,” ACS Nano 7(5), 3778–3796 (2013).
[Crossref] [PubMed]

J. B. Delehanty, J. C. Breger, K. B. Gemmill, M. H. Stewart, and I. L. Medintz, “Controlling the actuation of therapeutic nanomaterials: enabling nanoparticle-mediated drug delivery,” Ther. Deliv. 4(11), 1411–1429 (2013).
[Crossref] [PubMed]

K. E. Sapsford, W. R. Algar, L. Berti, K. B. Gemmill, B. J. Casey, E. Oh, M. H. Stewart, and I. L. Medintz, “Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology,” Chem. Rev. 113(3), 1904–2074 (2013).
[Crossref] [PubMed]

R. Walters, R. P. Kraig, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, P. E. Dawson, and G. Dawson, “Nanoparticle targeting to neurons in a rat hippocampal slice culture model,” ASN Neuro 4(6), 383–392 (2012).
[Crossref] [PubMed]

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, and A. L. Efros, “Imaging cellular membrane potential through ionization of quantum dots,” Proc. SPIE9722, (2016), doi:.
[Crossref]

Sugunan, A.

Sun, Y.

T.-W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Susumu, K.

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric field modulation of semiconductor quantum dot photoluminescence: insights into the design of robust voltage-sensitive cellular imaging probes,” Nano Lett. 15(10), 6848–6854 (2015).
[Crossref] [PubMed]

R. Agarwal, M. S. Domowicz, N. B. Schwartz, J. Henry, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, J. R. Deschamps, P. E. Dawson, V. Palomo, and G. Dawson, “Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain,” ACS Chem. Neurosci. 6(3), 494–504 (2015).
[Crossref] [PubMed]

B. K. Andrásfalvy, G. L. Galiñanes, D. Huber, M. Barbic, J. J. Macklin, K. Susumu, J. B. Delehanty, A. L. Huston, J. K. Makara, and I. L. Medintz, “Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology,” Nat. Methods 11(12), 1237–1241 (2014).
[Crossref] [PubMed]

J. C. Claussen, N. Hildebrandt, K. Susumu, M. G. Ancona, and I. L. Medintz, “Complex logic functions implemented with quantum dot bionanophotonic circuits,” ACS Appl. Mater. Interfaces 6(6), 3771–3778 (2014).
[Crossref] [PubMed]

K. Boeneman, J. B. Delehanty, J. B. Blanco-Canosa, K. Susumu, M. H. Stewart, E. Oh, A. L. Huston, G. Dawson, S. Ingale, R. Walters, M. Domowicz, J. R. Deschamps, W. R. Algar, S. Dimaggio, J. Manono, C. M. Spillmann, D. Thompson, T. L. Jennings, P. E. Dawson, and I. L. Medintz, “Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials,” ACS Nano 7(5), 3778–3796 (2013).
[Crossref] [PubMed]

R. Walters, R. P. Kraig, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, P. E. Dawson, and G. Dawson, “Nanoparticle targeting to neurons in a rat hippocampal slice culture model,” ASN Neuro 4(6), 383–392 (2012).
[Crossref] [PubMed]

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, and A. L. Efros, “Imaging cellular membrane potential through ionization of quantum dots,” Proc. SPIE9722, (2016), doi:.
[Crossref]

Svoboda, K.

T.-W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Swierczewska, M.

A. Bhirde, J. Xie, M. Swierczewska, and X. Chen, “Nanoparticles for cell labeling,” Nanoscale 3(1), 142–153 (2011).
[Crossref] [PubMed]

Thakor, N. V.

V. Tsytsarev, L. D. Liao, K. V. Kong, Y. H. Liu, R. S. Erzurumlu, M. Olivo, and N. V. Thakor, “Recent progress in voltage-sensitive dye imaging for neuroscience,” J. Nanosci. Nanotechnol. 14(7), 4733–4744 (2014).
[Crossref] [PubMed]

Thompson, D.

K. Boeneman, J. B. Delehanty, J. B. Blanco-Canosa, K. Susumu, M. H. Stewart, E. Oh, A. L. Huston, G. Dawson, S. Ingale, R. Walters, M. Domowicz, J. R. Deschamps, W. R. Algar, S. Dimaggio, J. Manono, C. M. Spillmann, D. Thompson, T. L. Jennings, P. E. Dawson, and I. L. Medintz, “Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials,” ACS Nano 7(5), 3778–3796 (2013).
[Crossref] [PubMed]

Tiefenbrunn, T.

A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. 19(15), 1921–1926 (2007).
[Crossref]

Toprak, M. S.

Tsao, D.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Tsytsarev, V.

V. Tsytsarev, L. D. Liao, K. V. Kong, Y. H. Liu, R. S. Erzurumlu, M. Olivo, and N. V. Thakor, “Recent progress in voltage-sensitive dye imaging for neuroscience,” J. Nanosci. Nanotechnol. 14(7), 4733–4744 (2014).
[Crossref] [PubMed]

Turrigiano, G.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Vogel, H.

G. Gopalakrishnan, C. Danelon, P. Izewska, M. Prummer, P. Y. Bolinger, I. Geissbühler, D. Demurtas, J. Dubochet, and H. Vogel, “Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells,” Angew. Chem. Int. Ed. Engl. 45(33), 5478–5483 (2006).
[Crossref] [PubMed]

Walters, R.

K. Boeneman, J. B. Delehanty, J. B. Blanco-Canosa, K. Susumu, M. H. Stewart, E. Oh, A. L. Huston, G. Dawson, S. Ingale, R. Walters, M. Domowicz, J. R. Deschamps, W. R. Algar, S. Dimaggio, J. Manono, C. M. Spillmann, D. Thompson, T. L. Jennings, P. E. Dawson, and I. L. Medintz, “Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials,” ACS Nano 7(5), 3778–3796 (2013).
[Crossref] [PubMed]

R. Walters, R. P. Kraig, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, P. E. Dawson, and G. Dawson, “Nanoparticle targeting to neurons in a rat hippocampal slice culture model,” ASN Neuro 4(6), 383–392 (2012).
[Crossref] [PubMed]

Wardill, T. J.

T.-W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Webb, W. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

Weiss, P. S.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Weiss, S.

K. Park, Z. Deutsch, J. J. Li, D. Oron, and S. Weiss, “Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature,” ACS Nano 6(11), 10013–10023 (2012).
[Crossref] [PubMed]

Williams, R. M.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

Wise, F. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

Wolak, M. A.

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric field modulation of semiconductor quantum dot photoluminescence: insights into the design of robust voltage-sensitive cellular imaging probes,” Nano Lett. 15(10), 6848–6854 (2015).
[Crossref] [PubMed]

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, and A. L. Efros, “Imaging cellular membrane potential through ionization of quantum dots,” Proc. SPIE9722, (2016), doi:.
[Crossref]

Wood, V.

D. Bozyigit, O. Yarema, and V. Wood, “Origins of low quantum efficiencies in quantum dot LEDs,” Adv. Funct. Mater. 23(24), 3024–3029 (2013).
[Crossref]

D. Bozyigit, V. Wood, Y. Shirasaki, and V. Bulovic, “Study of field driven electroluminescence in colloidal quantum dot solids,” J. Appl. Phys. 111(11), 113701 (2012).
[Crossref]

Xie, J.

A. Bhirde, J. Xie, M. Swierczewska, and X. Chen, “Nanoparticles for cell labeling,” Nanoscale 3(1), 142–153 (2011).
[Crossref] [PubMed]

Xu, C.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Yarema, O.

D. Bozyigit, O. Yarema, and V. Wood, “Origins of low quantum efficiencies in quantum dot LEDs,” Adv. Funct. Mater. 23(24), 3024–3029 (2013).
[Crossref]

Yuste, R.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The brain activity map project and the challenge of functional connectomics,” Neuron 74(6), 970–974 (2012).
[Crossref] [PubMed]

Zhang, L.

V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P. W. Kantoff, R. Langer, and O. C. Farokhzad, “Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer,” Nano Lett. 7(10), 3065–3070 (2007).
[Crossref] [PubMed]

Zhao, F.

D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor,” Chem. Mater. 22(4), 1437–1444 (2010).
[Crossref]

Zhou, S.

Zhuang, X.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Zipfel, W. R.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

Zrazhevskiy, P.

P. Zrazhevskiy, M. Sena, and X. Gao, “Designing multifunctional quantum dots for bioimaging, detection, and drug delivery,” Chem. Soc. Rev. 39(11), 4326–4354 (2010).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

L. D. Field, J. B. Delehanty, Y. Chen, and I. L. Medintz, “Peptides for specifically targeting nanoparticles to cellular organelles: quo vadis?” Acc. Chem. Res. 48(5), 1380–1390 (2015).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

J. C. Claussen, N. Hildebrandt, K. Susumu, M. G. Ancona, and I. L. Medintz, “Complex logic functions implemented with quantum dot bionanophotonic circuits,” ACS Appl. Mater. Interfaces 6(6), 3771–3778 (2014).
[Crossref] [PubMed]

ACS Chem. Neurosci. (1)

R. Agarwal, M. S. Domowicz, N. B. Schwartz, J. Henry, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, J. R. Deschamps, P. E. Dawson, V. Palomo, and G. Dawson, “Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain,” ACS Chem. Neurosci. 6(3), 494–504 (2015).
[Crossref] [PubMed]

ACS Nano (5)

K. Boeneman, J. B. Delehanty, J. B. Blanco-Canosa, K. Susumu, M. H. Stewart, E. Oh, A. L. Huston, G. Dawson, S. Ingale, R. Walters, M. Domowicz, J. R. Deschamps, W. R. Algar, S. Dimaggio, J. Manono, C. M. Spillmann, D. Thompson, T. L. Jennings, P. E. Dawson, and I. L. Medintz, “Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials,” ACS Nano 7(5), 3778–3796 (2013).
[Crossref] [PubMed]

K. Park, Z. Deutsch, J. J. Li, D. Oron, and S. Weiss, “Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature,” ACS Nano 6(11), 10013–10023 (2012).
[Crossref] [PubMed]

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

A. M. Dennis, W. J. Rhee, D. Sotto, S. N. Dublin, and G. Bao, “Quantum dot-fluorescent protein FRET probes for sensing intracellular pH,” ACS Nano 6(4), 2917–2924 (2012).
[Crossref] [PubMed]

J. D. Marshall and M. J. Schnitzer, “Optical strategies for sensing neuronal voltage using quantum dots and other semiconductor nanocrystals,” ACS Nano 7(5), 4601–4609 (2013).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

D. Bozyigit, O. Yarema, and V. Wood, “Origins of low quantum efficiencies in quantum dot LEDs,” Adv. Funct. Mater. 23(24), 3024–3029 (2013).
[Crossref]

Adv. Mater. (1)

A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi, “Two-photon excitation of quantum dot-based fluorescence resonance energy transfer and its applications,” Adv. Mater. 19(15), 1921–1926 (2007).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

G. Gopalakrishnan, C. Danelon, P. Izewska, M. Prummer, P. Y. Bolinger, I. Geissbühler, D. Demurtas, J. Dubochet, and H. Vogel, “Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells,” Angew. Chem. Int. Ed. Engl. 45(33), 5478–5483 (2006).
[Crossref] [PubMed]

Annu. Rev. Biomed. Eng. (1)

A. P. Alivisatos, W. Gu, and C. Larabell, “Quantum dots as cellular probes,” Annu. Rev. Biomed. Eng. 7(1), 55–76 (2005).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

V. I. Klimov, “Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals,” Annu. Rev. Phys. Chem. 58(1), 635–673 (2007).
[Crossref] [PubMed]

Annu. Rev. Physiol. (1)

B. Sakmann and E. Neher, “Patch clamp techniques for studying ionic channels in excitable membranes,” Annu. Rev. Physiol. 46(1), 455–472 (1984).
[Crossref] [PubMed]

Appl. Opt. (1)

ASN Neuro (1)

R. Walters, R. P. Kraig, I. Medintz, J. B. Delehanty, M. H. Stewart, K. Susumu, A. L. Huston, P. E. Dawson, and G. Dawson, “Nanoparticle targeting to neurons in a rat hippocampal slice culture model,” ASN Neuro 4(6), 383–392 (2012).
[Crossref] [PubMed]

Chem. Mater. (1)

D. Chen, F. Zhao, H. Qi, M. Rutherford, and X. Peng, “Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor,” Chem. Mater. 22(4), 1437–1444 (2010).
[Crossref]

Chem. Rev. (1)

K. E. Sapsford, W. R. Algar, L. Berti, K. B. Gemmill, B. J. Casey, E. Oh, M. H. Stewart, and I. L. Medintz, “Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology,” Chem. Rev. 113(3), 1904–2074 (2013).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

P. Zrazhevskiy, M. Sena, and X. Gao, “Designing multifunctional quantum dots for bioimaging, detection, and drug delivery,” Chem. Soc. Rev. 39(11), 4326–4354 (2010).
[Crossref] [PubMed]

ChemPhysChem (1)

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7(1), 47–57 (2006).
[Crossref] [PubMed]

J. Appl. Phys. (1)

D. Bozyigit, V. Wood, Y. Shirasaki, and V. Bulovic, “Study of field driven electroluminescence in colloidal quantum dot solids,” J. Appl. Phys. 111(11), 113701 (2012).
[Crossref]

J. Mol. Biol. (1)

B. A. Lewis and D. M. Engelman, “Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles,” J. Mol. Biol. 166(2), 211–217 (1983).
[Crossref] [PubMed]

J. Nanosci. Nanotechnol. (1)

V. Tsytsarev, L. D. Liao, K. V. Kong, Y. H. Liu, R. S. Erzurumlu, M. Olivo, and N. V. Thakor, “Recent progress in voltage-sensitive dye imaging for neuroscience,” J. Nanosci. Nanotechnol. 14(7), 4733–4744 (2014).
[Crossref] [PubMed]

Mat. Sci. Eng, B-Solid (1)

T. D. Krauss and L. E. Brus, ““Electronic properties of single semiconductor nanocrystals: optical and electrostatic force microscopy measurements,” Mat. Sci. Eng, B-Solid 69-70, 289–294 (2000).
[Crossref]

Methods Appl. Fluoresc. (1)

C. E. Rowland, C. W. Brown, I. L. Medintz, and J. B. Delehanty, “Intracellular FRET-based probes: a review,” Methods Appl. Fluoresc. 3(4), 042006 (2015).
[Crossref]

Nano Lett. (4)

V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P. W. Kantoff, R. Langer, and O. C. Farokhzad, “Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer,” Nano Lett. 7(10), 3065–3070 (2007).
[Crossref] [PubMed]

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, A. L. Efros, A. L. Huston, and J. B. Delehanty, “Electric field modulation of semiconductor quantum dot photoluminescence: insights into the design of robust voltage-sensitive cellular imaging probes,” Nano Lett. 15(10), 6848–6854 (2015).
[Crossref] [PubMed]

H. Huang, A. Dorn, G. P. Nair, V. Bulović, and M. G. Bawendi, “Bias-induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors,” Nano Lett. 7(12), 3781–3786 (2007).
[Crossref] [PubMed]

L. P. Balet, S. A. Ivanov, A. Piryatinski, M. Achermann, and V. I. Klimov, “Inverted core/shell nanocrystals continuously tunable between Type-I and Type-II localization regimes,” Nano Lett. 4(8), 1485–1488 (2004).
[Crossref]

Nanoscale (3)

Y. P. Ho and K. W. Leong, “Quantum dot-based theranostics,” Nanoscale 2(1), 60–68 (2010).
[Crossref] [PubMed]

S. M. Goodman, A. Siu, V. Singh, and P. Nagpal, “Long-range energy transfer in self-assembled quantum dot-DNA cascades,” Nanoscale 7(44), 18435–18440 (2015).
[Crossref] [PubMed]

A. Bhirde, J. Xie, M. Swierczewska, and X. Chen, “Nanoparticles for cell labeling,” Nanoscale 3(1), 142–153 (2011).
[Crossref] [PubMed]

Nat. Methods (2)

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

B. K. Andrásfalvy, G. L. Galiñanes, D. Huber, M. Barbic, J. J. Macklin, K. Susumu, J. B. Delehanty, A. L. Huston, J. K. Makara, and I. L. Medintz, “Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology,” Nat. Methods 11(12), 1237–1241 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. E. Spira and A. Hai, “Multi-electrode array technologies for neuroscience and cardiology,” Nat. Nanotechnol. 8(2), 83–94 (2013).
[Crossref] [PubMed]

Nature (2)

T.-W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

A. Abbott, “Neuroscience: solving the brain,” Nature 499(7458), 272–274 (2013).
[Crossref] [PubMed]

Neuron (1)

A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The brain activity map project and the challenge of functional connectomics,” Neuron 74(6), 970–974 (2012).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

I. L. Medintz and H. Mattoussi, “Quantum dot-based resonance energy transfer and its growing application in biology,” Phys. Chem. Chem. Phys. 11(1), 17–45 (2009).
[Crossref] [PubMed]

Phys. Rev. B (3)

C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, “Photoconductivity in CdSe quantum dot solids,” Phys. Rev. B 62(4), 2669–2680 (2000).
[Crossref]

A. Shabaev, A. Rodina, and A. L. Efros, “Fine structure of the band-edge excitons and trions in CdSe/CdS core/shell nanocrystals,” Phys. Rev. B 86(20), 205311 (2012).
[Crossref]

K. H. Schmidt, G. Medeiros-Ribeiro, and P. M. Petroff, “Photoluminescence of charged InAs self-assembled quantum dots,” Phys. Rev. B 58(7), 3597–3600 (1998).
[Crossref]

Science (3)

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[Crossref] [PubMed]

S. A. Empedocles and M. G. Bawendi, “Quantum-confined stark effect in single CdSe nanocrystallite quantum dots,” Science 278(5346), 2114–2117 (1997).
[Crossref] [PubMed]

P. D. Howes, R. Chandrawati, and M. M. Stevens, “Colloidal nanoparticles as advanced biological sensors,” Science 346(6205), 1247390 (2014).
[Crossref] [PubMed]

Ther. Deliv. (1)

J. B. Delehanty, J. C. Breger, K. B. Gemmill, M. H. Stewart, and I. L. Medintz, “Controlling the actuation of therapeutic nanomaterials: enabling nanoparticle-mediated drug delivery,” Ther. Deliv. 4(11), 1411–1429 (2013).
[Crossref] [PubMed]

Other (2)

C. E. Rowland, K. Susumu, M. H. Stewart, E. Oh, A. J. Mäkinen, T. J. O’Shaughnessy, G. Kushto, M. A. Wolak, J. S. Erickson, and A. L. Efros, “Imaging cellular membrane potential through ionization of quantum dots,” Proc. SPIE9722, (2016), doi:.
[Crossref]

C. E. Rowland, J. B. Delehanty, C. L. Dwyer, and I. L. Medintz, “Growing applications for bioassembled resonance energy transfer cascades,” Mater. Today (2016), doi:.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) A single CdSe core size was coated with CdS shells of increasing thickness. QD diameter was determined by TEM. Scale bar in each is 20 nm. (b) A layer of QDs in PMMA was sandwiched between layers of PVP, which were in turn placed between two electrodes. The QDs were photoexcited and PL was collected through the transparent ITO electrode. This capacitive device was integrated into a Sawyer-Tower circuit, which allowed for the determination of the electric field experienced by the QDs. The samples were photoexcited using a 400 nm diode laser while being subjected to an electric field by passing a periodic square potential wave through the Sawyer-Tower circuit. Photoluminescence was collected by a fiber coupled microscope objective and dispersed via a grating onto a back thinned, UV enhanced CCD gated to integrate only when the sample reached the desired potential in order to generate spectrally-resolved data. See Appendix 1.3 for device fabrication.
Fig. 2
Fig. 2 (a) Sample A, a CdSe core with a thin (1.25 nm) CdS shell, exhibits only slight suppression of PL intensity upon application of an electric field. (b) Emission from Sample D, which possesses a thick (4.9 nm) CdS shell, shows significant susceptibility to the strength of an applied electric field. (c) Emission intensity from a series of cores with increasing shell thickness demonstrates a general trend of increasing electric field-driven PL suppression with increasing shell thickness. The error on the emission intensity data reflects the deviation between the as-collected data and the Gaussian-fitted data that was used to obtain the peaks’ change in full width at half maximum.
Fig. 3
Fig. 3 (a) Generating the same average number of excitons per QD in the different samples confirms the trend shown in Fig. 2 that increasing the shell thickness increase the susceptibility to changing PL with increasing electric fields. (b) In a given sample, here D, the relative decrease in PL intensity is greater when, on average, fewer excitons are generated per QD. (c) At a given field strength, the greatest deviation in PL intensity occurs at lower numbers of excitons per QD in Sample D. In the other samples, the signal/noise ratio obscures any trend.
Fig. 4
Fig. 4 Schematic of the optoelectronic device used in these studies. The QDs were dispersed in poly(methyl methacrylate) and spin-coated between layers of poly(vinyl pyrrolidone) (PVP). This dielectric sandwich was spin-coated over a transparent ITO electrode on a glass substrate and a Ti/Au electrode was deposited on top.

Tables (2)

Tables Icon

Table 1 Physicochemical characterization of QDs used in this study

Tables Icon

Table 2 Definition of variables:

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E= 1 d [ V ref (2 C ref C PVP +1) V 0 ],

Metrics