Abstract

Remarkable enhancement of light emission in Ho3+/Tm3+codoped lanthanum lead zirconate titanate ceramics was investigated upon exposure to the plasma atmosphere. Photoinduced scatterers and weak localization of light played primary roles in these experimental results. Various long fading-off times were obtained and used to tune the light emission. An extreme sharp spike at 590 nm was detected, which originated from the variation and random lasing action of Ti4+ cations. These findings offer opportunities in designing new lasers, which might take advantages of rare earth elements and transitional metal activators in the same host materials.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optoenergy storage and random walks assisted broadband amplification in Er3+-doped (Pb,La)(Zr,Ti)O3 disordered ceramics

Long Xu, Hua Zhao, Caixia Xu, Siqi Zhang, Yingyin K. Zou, and Jingwen Zhang
Appl. Opt. 53(4) 764-768 (2014)

Backward optical gain originating from weak localization strengthened three-photon process in Er/Yb co-doped (Pb,La)(Zr,Ti)O3 ceramics

Caixia Xu, Jingwen Zhang, Yingyin K. Zou, and Hua Zhao
Opt. Express 24(6) 5744-5753 (2016)

Enhanced photoluminescence intensity by modifying the surface nanostructure of Nd3+-doped (Pb, La)(Zr, Ti)O3 ceramics

Long Xu, Jingwen Zhang, Hua Zhao, Haibin Sun, and Caixia Xu
Opt. Lett. 42(17) 3303-3306 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. H. Haertling and C. E. Land, “Recent improvements in the optical and electrooptic properties of PLZT ceramics,” Ferroelectrics 3(1), 269–280 (1972).
    [Crossref]
  2. H. Zhao, X. Sun, J. W. Zhang, Y. K. Zou, K. K. Li, Y. Wang, H. Jiang, P. L. Huang, and X. Chen, “Lasing action and optical amplification in Nd3+ doped electrooptic lanthanum lead zirconate titanate ceramics,” Opt. Express 19(4), 2965–2971 (2011).
    [Crossref] [PubMed]
  3. A. S. S. de Camargo, L. A. D. O. Nunes, I. A. Santos, D. Garcia, and J. A. Eiras, “Structural and spectroscopic properties of rare-earth (Nd3+, Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 95(4), 2135–2140 (2004).
    [Crossref]
  4. G. H. Haertling, “Electro-optic ceramics and devices,” in Electronic Ceramics, L. M. Levinson eds. (Marcel Dekker, New York,1987), pp. 371–492.
  5. L. Xu, J. Zhang, S. Zhang, C. Xu, K. Zou, and H. Zhao, “Electroinduced structural change-and random walks-based impact on the light emission in Er3+/Yb3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 113(22), 223101 (2013).
    [Crossref]
  6. L. Xu, H. Zhao, C. Xu, S. Zhang, Y. K. Zou, and J. Zhang, “Optoenergy storage and random walks assisted broadband amplification in Er3+-doped (Pb,La)(Zr,Ti)O3 disordered ceramics,” Appl. Opt. 53(4), 764–768 (2014).
    [Crossref] [PubMed]
  7. C. Xu, J. Zhang, Y. K. Zou, H. Zhao, and J. Zhang, “Backward optical gain originating from weak localization strengthened three-photon process in Er/Yb co-doped (Pb,La)(Zr,Ti)O3 ceramics,” Opt. Express 24(6), 5744–5753 (2016).
    [Crossref] [PubMed]
  8. J. W. Zhang, L. Xu, H. Zhao, and X. Sun, “Optoenergy storage and broadband optical in Er3+ doped PLZT,” CLEO: Science and Innovations (Optical Society of America, 2012).
  9. L. Xu, H. Zhao, C. Xu, S. Zhang, and J. Zhang, “Optical energy storage and reemission based weak localization of light and accompanying random lasing action in disordered Nd3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 116(6), 063104 (2014).
    [Crossref]
  10. S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm to Ho energy transfer in LiYF4,” J. Phys.-. Condens. Mat. 4(44), 8525–8542 (1992).
    [Crossref]
  11. J. Zhou, G. Chen, E. Wu, G. Bi, B. Wu, Y. Teng, S. Zhou, and J. Qiu, “Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped β-NaYF4 single nanorod,” Nano Lett. 13(5), 2241–2246 (2013).
    [Crossref] [PubMed]
  12. T. H. Lin, M. L. Burgener, S. C. Esener, and S. H. Lee, “Crystallization of silicon on Electro-Optic PLZT by a laser beam modulated in shape and intensity profile,” MRS Online Proceeding Library, 74 (1986).
  13. A. C. Lewandowski and S. W. S. McKeever, “Generalized description of thermally stimulated processes without the quasiequilibrium approximation,” Phys. Rev. B Condens. Matter 43(10), 8163–8178 (1991).
    [Crossref] [PubMed]
  14. Y. Wu, H. Zhao, Y. K. Zou, X. Chen, B. Di Bartolo, and J. W. Zhang, “Optoenergy storage, stimulated processes in optical amplification with electro-optic ceramic gain media of Nd3+ doped lanthanum lead zirconate titanate,” J. Appl. Phys. 110(3), 033106 (2011).
    [Crossref]
  15. R. Chen and P. L. Leung, “Dose dependence and dose-rate dependence of the optically stimulated luminescence signal,” J. Appl. Phys. 89(1), 259–263 (2001).
    [Crossref]
  16. R. M. Bailey, “Towards a general kinetic model for optically and thermally stimulated luminescence of quartz,” Radiat. Meas. 33(1), 17–45 (2001).
    [Crossref]
  17. V. Pagonis, J. Lawless, R. Chen, and C. Andersen, “Radioluminescence in Al2O3: C-analytical and numerical simulation results,” J. Phys. D Appl. Phys. 42(17), 175107 (2009).
    [Crossref]
  18. S. McKeever and E. G. Yukuhara, Optical Stimulated Luminescence: Fundamentals and Applications, (John Wiley & Sons, 2001).
  19. R. Chen and P. L. Leung, “The decay of OSL signals as stretched-exponential functions,” Radiat. Meas. 37(4-5), 519–526 (2003).
    [Crossref]
  20. H. Zhao, K. Zhang, L. Xu, F. Sun, X. Chen, K. K. Li, and J. Zhang, “Optical amplification in disordered electrooptic Tm3+ and Ho3+ codoped lanthanum-modified lead zirconate titanate ceramics and study of spectroscopy and communication between cations,” J. Appl. Phys. 115(7), 073101 (2014).
    [Crossref]
  21. N. J. Newman and N. G. Betty, Crystal Field Handbook (Cambridge University Press, 2000).
  22. N. J. Newman, “Theory of lanthanide crystal fields,” Adv. Phys. 20(84), 197–256 (1971).
    [Crossref]
  23. A. Kaminska, J. E. Dmochowski, A. Suchocki, J. G. Sole, F. Jaque, and L. Arizmendi, “Luminescence of LiNbO 3: MgO, Cr crystals under high pressure,” Phys. Rev. B 60(11), 7707–7710 (1999).
    [Crossref]

2016 (1)

2014 (3)

L. Xu, H. Zhao, C. Xu, S. Zhang, and J. Zhang, “Optical energy storage and reemission based weak localization of light and accompanying random lasing action in disordered Nd3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 116(6), 063104 (2014).
[Crossref]

H. Zhao, K. Zhang, L. Xu, F. Sun, X. Chen, K. K. Li, and J. Zhang, “Optical amplification in disordered electrooptic Tm3+ and Ho3+ codoped lanthanum-modified lead zirconate titanate ceramics and study of spectroscopy and communication between cations,” J. Appl. Phys. 115(7), 073101 (2014).
[Crossref]

L. Xu, H. Zhao, C. Xu, S. Zhang, Y. K. Zou, and J. Zhang, “Optoenergy storage and random walks assisted broadband amplification in Er3+-doped (Pb,La)(Zr,Ti)O3 disordered ceramics,” Appl. Opt. 53(4), 764–768 (2014).
[Crossref] [PubMed]

2013 (2)

J. Zhou, G. Chen, E. Wu, G. Bi, B. Wu, Y. Teng, S. Zhou, and J. Qiu, “Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped β-NaYF4 single nanorod,” Nano Lett. 13(5), 2241–2246 (2013).
[Crossref] [PubMed]

L. Xu, J. Zhang, S. Zhang, C. Xu, K. Zou, and H. Zhao, “Electroinduced structural change-and random walks-based impact on the light emission in Er3+/Yb3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 113(22), 223101 (2013).
[Crossref]

2011 (2)

H. Zhao, X. Sun, J. W. Zhang, Y. K. Zou, K. K. Li, Y. Wang, H. Jiang, P. L. Huang, and X. Chen, “Lasing action and optical amplification in Nd3+ doped electrooptic lanthanum lead zirconate titanate ceramics,” Opt. Express 19(4), 2965–2971 (2011).
[Crossref] [PubMed]

Y. Wu, H. Zhao, Y. K. Zou, X. Chen, B. Di Bartolo, and J. W. Zhang, “Optoenergy storage, stimulated processes in optical amplification with electro-optic ceramic gain media of Nd3+ doped lanthanum lead zirconate titanate,” J. Appl. Phys. 110(3), 033106 (2011).
[Crossref]

2009 (1)

V. Pagonis, J. Lawless, R. Chen, and C. Andersen, “Radioluminescence in Al2O3: C-analytical and numerical simulation results,” J. Phys. D Appl. Phys. 42(17), 175107 (2009).
[Crossref]

2004 (1)

A. S. S. de Camargo, L. A. D. O. Nunes, I. A. Santos, D. Garcia, and J. A. Eiras, “Structural and spectroscopic properties of rare-earth (Nd3+, Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 95(4), 2135–2140 (2004).
[Crossref]

2003 (1)

R. Chen and P. L. Leung, “The decay of OSL signals as stretched-exponential functions,” Radiat. Meas. 37(4-5), 519–526 (2003).
[Crossref]

2001 (2)

R. Chen and P. L. Leung, “Dose dependence and dose-rate dependence of the optically stimulated luminescence signal,” J. Appl. Phys. 89(1), 259–263 (2001).
[Crossref]

R. M. Bailey, “Towards a general kinetic model for optically and thermally stimulated luminescence of quartz,” Radiat. Meas. 33(1), 17–45 (2001).
[Crossref]

1999 (1)

A. Kaminska, J. E. Dmochowski, A. Suchocki, J. G. Sole, F. Jaque, and L. Arizmendi, “Luminescence of LiNbO 3: MgO, Cr crystals under high pressure,” Phys. Rev. B 60(11), 7707–7710 (1999).
[Crossref]

1992 (1)

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm to Ho energy transfer in LiYF4,” J. Phys.-. Condens. Mat. 4(44), 8525–8542 (1992).
[Crossref]

1991 (1)

A. C. Lewandowski and S. W. S. McKeever, “Generalized description of thermally stimulated processes without the quasiequilibrium approximation,” Phys. Rev. B Condens. Matter 43(10), 8163–8178 (1991).
[Crossref] [PubMed]

1972 (1)

G. H. Haertling and C. E. Land, “Recent improvements in the optical and electrooptic properties of PLZT ceramics,” Ferroelectrics 3(1), 269–280 (1972).
[Crossref]

1971 (1)

N. J. Newman, “Theory of lanthanide crystal fields,” Adv. Phys. 20(84), 197–256 (1971).
[Crossref]

Andersen, C.

V. Pagonis, J. Lawless, R. Chen, and C. Andersen, “Radioluminescence in Al2O3: C-analytical and numerical simulation results,” J. Phys. D Appl. Phys. 42(17), 175107 (2009).
[Crossref]

Arizmendi, L.

A. Kaminska, J. E. Dmochowski, A. Suchocki, J. G. Sole, F. Jaque, and L. Arizmendi, “Luminescence of LiNbO 3: MgO, Cr crystals under high pressure,” Phys. Rev. B 60(11), 7707–7710 (1999).
[Crossref]

Bailey, R. M.

R. M. Bailey, “Towards a general kinetic model for optically and thermally stimulated luminescence of quartz,” Radiat. Meas. 33(1), 17–45 (2001).
[Crossref]

Bi, G.

J. Zhou, G. Chen, E. Wu, G. Bi, B. Wu, Y. Teng, S. Zhou, and J. Qiu, “Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped β-NaYF4 single nanorod,” Nano Lett. 13(5), 2241–2246 (2013).
[Crossref] [PubMed]

Chen, G.

J. Zhou, G. Chen, E. Wu, G. Bi, B. Wu, Y. Teng, S. Zhou, and J. Qiu, “Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped β-NaYF4 single nanorod,” Nano Lett. 13(5), 2241–2246 (2013).
[Crossref] [PubMed]

Chen, R.

V. Pagonis, J. Lawless, R. Chen, and C. Andersen, “Radioluminescence in Al2O3: C-analytical and numerical simulation results,” J. Phys. D Appl. Phys. 42(17), 175107 (2009).
[Crossref]

R. Chen and P. L. Leung, “The decay of OSL signals as stretched-exponential functions,” Radiat. Meas. 37(4-5), 519–526 (2003).
[Crossref]

R. Chen and P. L. Leung, “Dose dependence and dose-rate dependence of the optically stimulated luminescence signal,” J. Appl. Phys. 89(1), 259–263 (2001).
[Crossref]

Chen, X.

H. Zhao, K. Zhang, L. Xu, F. Sun, X. Chen, K. K. Li, and J. Zhang, “Optical amplification in disordered electrooptic Tm3+ and Ho3+ codoped lanthanum-modified lead zirconate titanate ceramics and study of spectroscopy and communication between cations,” J. Appl. Phys. 115(7), 073101 (2014).
[Crossref]

H. Zhao, X. Sun, J. W. Zhang, Y. K. Zou, K. K. Li, Y. Wang, H. Jiang, P. L. Huang, and X. Chen, “Lasing action and optical amplification in Nd3+ doped electrooptic lanthanum lead zirconate titanate ceramics,” Opt. Express 19(4), 2965–2971 (2011).
[Crossref] [PubMed]

Y. Wu, H. Zhao, Y. K. Zou, X. Chen, B. Di Bartolo, and J. W. Zhang, “Optoenergy storage, stimulated processes in optical amplification with electro-optic ceramic gain media of Nd3+ doped lanthanum lead zirconate titanate,” J. Appl. Phys. 110(3), 033106 (2011).
[Crossref]

de Camargo, A. S. S.

A. S. S. de Camargo, L. A. D. O. Nunes, I. A. Santos, D. Garcia, and J. A. Eiras, “Structural and spectroscopic properties of rare-earth (Nd3+, Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 95(4), 2135–2140 (2004).
[Crossref]

Di Bartolo, B.

Y. Wu, H. Zhao, Y. K. Zou, X. Chen, B. Di Bartolo, and J. W. Zhang, “Optoenergy storage, stimulated processes in optical amplification with electro-optic ceramic gain media of Nd3+ doped lanthanum lead zirconate titanate,” J. Appl. Phys. 110(3), 033106 (2011).
[Crossref]

Dmochowski, J. E.

A. Kaminska, J. E. Dmochowski, A. Suchocki, J. G. Sole, F. Jaque, and L. Arizmendi, “Luminescence of LiNbO 3: MgO, Cr crystals under high pressure,” Phys. Rev. B 60(11), 7707–7710 (1999).
[Crossref]

Eiras, J. A.

A. S. S. de Camargo, L. A. D. O. Nunes, I. A. Santos, D. Garcia, and J. A. Eiras, “Structural and spectroscopic properties of rare-earth (Nd3+, Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 95(4), 2135–2140 (2004).
[Crossref]

Garcia, D.

A. S. S. de Camargo, L. A. D. O. Nunes, I. A. Santos, D. Garcia, and J. A. Eiras, “Structural and spectroscopic properties of rare-earth (Nd3+, Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 95(4), 2135–2140 (2004).
[Crossref]

Haertling, G. H.

G. H. Haertling and C. E. Land, “Recent improvements in the optical and electrooptic properties of PLZT ceramics,” Ferroelectrics 3(1), 269–280 (1972).
[Crossref]

Huang, P. L.

Jaque, F.

A. Kaminska, J. E. Dmochowski, A. Suchocki, J. G. Sole, F. Jaque, and L. Arizmendi, “Luminescence of LiNbO 3: MgO, Cr crystals under high pressure,” Phys. Rev. B 60(11), 7707–7710 (1999).
[Crossref]

Jiang, H.

Kaminska, A.

A. Kaminska, J. E. Dmochowski, A. Suchocki, J. G. Sole, F. Jaque, and L. Arizmendi, “Luminescence of LiNbO 3: MgO, Cr crystals under high pressure,” Phys. Rev. B 60(11), 7707–7710 (1999).
[Crossref]

Krupke, W. F.

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm to Ho energy transfer in LiYF4,” J. Phys.-. Condens. Mat. 4(44), 8525–8542 (1992).
[Crossref]

Kway, W. L.

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm to Ho energy transfer in LiYF4,” J. Phys.-. Condens. Mat. 4(44), 8525–8542 (1992).
[Crossref]

Land, C. E.

G. H. Haertling and C. E. Land, “Recent improvements in the optical and electrooptic properties of PLZT ceramics,” Ferroelectrics 3(1), 269–280 (1972).
[Crossref]

Lawless, J.

V. Pagonis, J. Lawless, R. Chen, and C. Andersen, “Radioluminescence in Al2O3: C-analytical and numerical simulation results,” J. Phys. D Appl. Phys. 42(17), 175107 (2009).
[Crossref]

Leung, P. L.

R. Chen and P. L. Leung, “The decay of OSL signals as stretched-exponential functions,” Radiat. Meas. 37(4-5), 519–526 (2003).
[Crossref]

R. Chen and P. L. Leung, “Dose dependence and dose-rate dependence of the optically stimulated luminescence signal,” J. Appl. Phys. 89(1), 259–263 (2001).
[Crossref]

Lewandowski, A. C.

A. C. Lewandowski and S. W. S. McKeever, “Generalized description of thermally stimulated processes without the quasiequilibrium approximation,” Phys. Rev. B Condens. Matter 43(10), 8163–8178 (1991).
[Crossref] [PubMed]

Li, K. K.

H. Zhao, K. Zhang, L. Xu, F. Sun, X. Chen, K. K. Li, and J. Zhang, “Optical amplification in disordered electrooptic Tm3+ and Ho3+ codoped lanthanum-modified lead zirconate titanate ceramics and study of spectroscopy and communication between cations,” J. Appl. Phys. 115(7), 073101 (2014).
[Crossref]

H. Zhao, X. Sun, J. W. Zhang, Y. K. Zou, K. K. Li, Y. Wang, H. Jiang, P. L. Huang, and X. Chen, “Lasing action and optical amplification in Nd3+ doped electrooptic lanthanum lead zirconate titanate ceramics,” Opt. Express 19(4), 2965–2971 (2011).
[Crossref] [PubMed]

McKeever, S. W. S.

A. C. Lewandowski and S. W. S. McKeever, “Generalized description of thermally stimulated processes without the quasiequilibrium approximation,” Phys. Rev. B Condens. Matter 43(10), 8163–8178 (1991).
[Crossref] [PubMed]

Newman, N. J.

N. J. Newman, “Theory of lanthanide crystal fields,” Adv. Phys. 20(84), 197–256 (1971).
[Crossref]

Nunes, L. A. D. O.

A. S. S. de Camargo, L. A. D. O. Nunes, I. A. Santos, D. Garcia, and J. A. Eiras, “Structural and spectroscopic properties of rare-earth (Nd3+, Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 95(4), 2135–2140 (2004).
[Crossref]

Pagonis, V.

V. Pagonis, J. Lawless, R. Chen, and C. Andersen, “Radioluminescence in Al2O3: C-analytical and numerical simulation results,” J. Phys. D Appl. Phys. 42(17), 175107 (2009).
[Crossref]

Payne, S. A.

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm to Ho energy transfer in LiYF4,” J. Phys.-. Condens. Mat. 4(44), 8525–8542 (1992).
[Crossref]

Qiu, J.

J. Zhou, G. Chen, E. Wu, G. Bi, B. Wu, Y. Teng, S. Zhou, and J. Qiu, “Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped β-NaYF4 single nanorod,” Nano Lett. 13(5), 2241–2246 (2013).
[Crossref] [PubMed]

Santos, I. A.

A. S. S. de Camargo, L. A. D. O. Nunes, I. A. Santos, D. Garcia, and J. A. Eiras, “Structural and spectroscopic properties of rare-earth (Nd3+, Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 95(4), 2135–2140 (2004).
[Crossref]

Smith, L. K.

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm to Ho energy transfer in LiYF4,” J. Phys.-. Condens. Mat. 4(44), 8525–8542 (1992).
[Crossref]

Sole, J. G.

A. Kaminska, J. E. Dmochowski, A. Suchocki, J. G. Sole, F. Jaque, and L. Arizmendi, “Luminescence of LiNbO 3: MgO, Cr crystals under high pressure,” Phys. Rev. B 60(11), 7707–7710 (1999).
[Crossref]

Suchocki, A.

A. Kaminska, J. E. Dmochowski, A. Suchocki, J. G. Sole, F. Jaque, and L. Arizmendi, “Luminescence of LiNbO 3: MgO, Cr crystals under high pressure,” Phys. Rev. B 60(11), 7707–7710 (1999).
[Crossref]

Sun, F.

H. Zhao, K. Zhang, L. Xu, F. Sun, X. Chen, K. K. Li, and J. Zhang, “Optical amplification in disordered electrooptic Tm3+ and Ho3+ codoped lanthanum-modified lead zirconate titanate ceramics and study of spectroscopy and communication between cations,” J. Appl. Phys. 115(7), 073101 (2014).
[Crossref]

Sun, X.

Tassano, J. B.

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm to Ho energy transfer in LiYF4,” J. Phys.-. Condens. Mat. 4(44), 8525–8542 (1992).
[Crossref]

Teng, Y.

J. Zhou, G. Chen, E. Wu, G. Bi, B. Wu, Y. Teng, S. Zhou, and J. Qiu, “Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped β-NaYF4 single nanorod,” Nano Lett. 13(5), 2241–2246 (2013).
[Crossref] [PubMed]

Wang, Y.

Wu, B.

J. Zhou, G. Chen, E. Wu, G. Bi, B. Wu, Y. Teng, S. Zhou, and J. Qiu, “Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped β-NaYF4 single nanorod,” Nano Lett. 13(5), 2241–2246 (2013).
[Crossref] [PubMed]

Wu, E.

J. Zhou, G. Chen, E. Wu, G. Bi, B. Wu, Y. Teng, S. Zhou, and J. Qiu, “Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped β-NaYF4 single nanorod,” Nano Lett. 13(5), 2241–2246 (2013).
[Crossref] [PubMed]

Wu, Y.

Y. Wu, H. Zhao, Y. K. Zou, X. Chen, B. Di Bartolo, and J. W. Zhang, “Optoenergy storage, stimulated processes in optical amplification with electro-optic ceramic gain media of Nd3+ doped lanthanum lead zirconate titanate,” J. Appl. Phys. 110(3), 033106 (2011).
[Crossref]

Xu, C.

C. Xu, J. Zhang, Y. K. Zou, H. Zhao, and J. Zhang, “Backward optical gain originating from weak localization strengthened three-photon process in Er/Yb co-doped (Pb,La)(Zr,Ti)O3 ceramics,” Opt. Express 24(6), 5744–5753 (2016).
[Crossref] [PubMed]

L. Xu, H. Zhao, C. Xu, S. Zhang, Y. K. Zou, and J. Zhang, “Optoenergy storage and random walks assisted broadband amplification in Er3+-doped (Pb,La)(Zr,Ti)O3 disordered ceramics,” Appl. Opt. 53(4), 764–768 (2014).
[Crossref] [PubMed]

L. Xu, H. Zhao, C. Xu, S. Zhang, and J. Zhang, “Optical energy storage and reemission based weak localization of light and accompanying random lasing action in disordered Nd3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 116(6), 063104 (2014).
[Crossref]

L. Xu, J. Zhang, S. Zhang, C. Xu, K. Zou, and H. Zhao, “Electroinduced structural change-and random walks-based impact on the light emission in Er3+/Yb3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 113(22), 223101 (2013).
[Crossref]

Xu, L.

L. Xu, H. Zhao, C. Xu, S. Zhang, Y. K. Zou, and J. Zhang, “Optoenergy storage and random walks assisted broadband amplification in Er3+-doped (Pb,La)(Zr,Ti)O3 disordered ceramics,” Appl. Opt. 53(4), 764–768 (2014).
[Crossref] [PubMed]

L. Xu, H. Zhao, C. Xu, S. Zhang, and J. Zhang, “Optical energy storage and reemission based weak localization of light and accompanying random lasing action in disordered Nd3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 116(6), 063104 (2014).
[Crossref]

H. Zhao, K. Zhang, L. Xu, F. Sun, X. Chen, K. K. Li, and J. Zhang, “Optical amplification in disordered electrooptic Tm3+ and Ho3+ codoped lanthanum-modified lead zirconate titanate ceramics and study of spectroscopy and communication between cations,” J. Appl. Phys. 115(7), 073101 (2014).
[Crossref]

L. Xu, J. Zhang, S. Zhang, C. Xu, K. Zou, and H. Zhao, “Electroinduced structural change-and random walks-based impact on the light emission in Er3+/Yb3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 113(22), 223101 (2013).
[Crossref]

Zhang, J.

C. Xu, J. Zhang, Y. K. Zou, H. Zhao, and J. Zhang, “Backward optical gain originating from weak localization strengthened three-photon process in Er/Yb co-doped (Pb,La)(Zr,Ti)O3 ceramics,” Opt. Express 24(6), 5744–5753 (2016).
[Crossref] [PubMed]

C. Xu, J. Zhang, Y. K. Zou, H. Zhao, and J. Zhang, “Backward optical gain originating from weak localization strengthened three-photon process in Er/Yb co-doped (Pb,La)(Zr,Ti)O3 ceramics,” Opt. Express 24(6), 5744–5753 (2016).
[Crossref] [PubMed]

L. Xu, H. Zhao, C. Xu, S. Zhang, Y. K. Zou, and J. Zhang, “Optoenergy storage and random walks assisted broadband amplification in Er3+-doped (Pb,La)(Zr,Ti)O3 disordered ceramics,” Appl. Opt. 53(4), 764–768 (2014).
[Crossref] [PubMed]

H. Zhao, K. Zhang, L. Xu, F. Sun, X. Chen, K. K. Li, and J. Zhang, “Optical amplification in disordered electrooptic Tm3+ and Ho3+ codoped lanthanum-modified lead zirconate titanate ceramics and study of spectroscopy and communication between cations,” J. Appl. Phys. 115(7), 073101 (2014).
[Crossref]

L. Xu, H. Zhao, C. Xu, S. Zhang, and J. Zhang, “Optical energy storage and reemission based weak localization of light and accompanying random lasing action in disordered Nd3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 116(6), 063104 (2014).
[Crossref]

L. Xu, J. Zhang, S. Zhang, C. Xu, K. Zou, and H. Zhao, “Electroinduced structural change-and random walks-based impact on the light emission in Er3+/Yb3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 113(22), 223101 (2013).
[Crossref]

Zhang, J. W.

Y. Wu, H. Zhao, Y. K. Zou, X. Chen, B. Di Bartolo, and J. W. Zhang, “Optoenergy storage, stimulated processes in optical amplification with electro-optic ceramic gain media of Nd3+ doped lanthanum lead zirconate titanate,” J. Appl. Phys. 110(3), 033106 (2011).
[Crossref]

H. Zhao, X. Sun, J. W. Zhang, Y. K. Zou, K. K. Li, Y. Wang, H. Jiang, P. L. Huang, and X. Chen, “Lasing action and optical amplification in Nd3+ doped electrooptic lanthanum lead zirconate titanate ceramics,” Opt. Express 19(4), 2965–2971 (2011).
[Crossref] [PubMed]

Zhang, K.

H. Zhao, K. Zhang, L. Xu, F. Sun, X. Chen, K. K. Li, and J. Zhang, “Optical amplification in disordered electrooptic Tm3+ and Ho3+ codoped lanthanum-modified lead zirconate titanate ceramics and study of spectroscopy and communication between cations,” J. Appl. Phys. 115(7), 073101 (2014).
[Crossref]

Zhang, S.

L. Xu, H. Zhao, C. Xu, S. Zhang, and J. Zhang, “Optical energy storage and reemission based weak localization of light and accompanying random lasing action in disordered Nd3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 116(6), 063104 (2014).
[Crossref]

L. Xu, H. Zhao, C. Xu, S. Zhang, Y. K. Zou, and J. Zhang, “Optoenergy storage and random walks assisted broadband amplification in Er3+-doped (Pb,La)(Zr,Ti)O3 disordered ceramics,” Appl. Opt. 53(4), 764–768 (2014).
[Crossref] [PubMed]

L. Xu, J. Zhang, S. Zhang, C. Xu, K. Zou, and H. Zhao, “Electroinduced structural change-and random walks-based impact on the light emission in Er3+/Yb3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 113(22), 223101 (2013).
[Crossref]

Zhao, H.

C. Xu, J. Zhang, Y. K. Zou, H. Zhao, and J. Zhang, “Backward optical gain originating from weak localization strengthened three-photon process in Er/Yb co-doped (Pb,La)(Zr,Ti)O3 ceramics,” Opt. Express 24(6), 5744–5753 (2016).
[Crossref] [PubMed]

L. Xu, H. Zhao, C. Xu, S. Zhang, Y. K. Zou, and J. Zhang, “Optoenergy storage and random walks assisted broadband amplification in Er3+-doped (Pb,La)(Zr,Ti)O3 disordered ceramics,” Appl. Opt. 53(4), 764–768 (2014).
[Crossref] [PubMed]

L. Xu, H. Zhao, C. Xu, S. Zhang, and J. Zhang, “Optical energy storage and reemission based weak localization of light and accompanying random lasing action in disordered Nd3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 116(6), 063104 (2014).
[Crossref]

H. Zhao, K. Zhang, L. Xu, F. Sun, X. Chen, K. K. Li, and J. Zhang, “Optical amplification in disordered electrooptic Tm3+ and Ho3+ codoped lanthanum-modified lead zirconate titanate ceramics and study of spectroscopy and communication between cations,” J. Appl. Phys. 115(7), 073101 (2014).
[Crossref]

L. Xu, J. Zhang, S. Zhang, C. Xu, K. Zou, and H. Zhao, “Electroinduced structural change-and random walks-based impact on the light emission in Er3+/Yb3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 113(22), 223101 (2013).
[Crossref]

Y. Wu, H. Zhao, Y. K. Zou, X. Chen, B. Di Bartolo, and J. W. Zhang, “Optoenergy storage, stimulated processes in optical amplification with electro-optic ceramic gain media of Nd3+ doped lanthanum lead zirconate titanate,” J. Appl. Phys. 110(3), 033106 (2011).
[Crossref]

H. Zhao, X. Sun, J. W. Zhang, Y. K. Zou, K. K. Li, Y. Wang, H. Jiang, P. L. Huang, and X. Chen, “Lasing action and optical amplification in Nd3+ doped electrooptic lanthanum lead zirconate titanate ceramics,” Opt. Express 19(4), 2965–2971 (2011).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, G. Chen, E. Wu, G. Bi, B. Wu, Y. Teng, S. Zhou, and J. Qiu, “Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped β-NaYF4 single nanorod,” Nano Lett. 13(5), 2241–2246 (2013).
[Crossref] [PubMed]

Zhou, S.

J. Zhou, G. Chen, E. Wu, G. Bi, B. Wu, Y. Teng, S. Zhou, and J. Qiu, “Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped β-NaYF4 single nanorod,” Nano Lett. 13(5), 2241–2246 (2013).
[Crossref] [PubMed]

Zou, K.

L. Xu, J. Zhang, S. Zhang, C. Xu, K. Zou, and H. Zhao, “Electroinduced structural change-and random walks-based impact on the light emission in Er3+/Yb3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 113(22), 223101 (2013).
[Crossref]

Zou, Y. K.

Adv. Phys. (1)

N. J. Newman, “Theory of lanthanide crystal fields,” Adv. Phys. 20(84), 197–256 (1971).
[Crossref]

Appl. Opt. (1)

Ferroelectrics (1)

G. H. Haertling and C. E. Land, “Recent improvements in the optical and electrooptic properties of PLZT ceramics,” Ferroelectrics 3(1), 269–280 (1972).
[Crossref]

J. Appl. Phys. (6)

L. Xu, J. Zhang, S. Zhang, C. Xu, K. Zou, and H. Zhao, “Electroinduced structural change-and random walks-based impact on the light emission in Er3+/Yb3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 113(22), 223101 (2013).
[Crossref]

A. S. S. de Camargo, L. A. D. O. Nunes, I. A. Santos, D. Garcia, and J. A. Eiras, “Structural and spectroscopic properties of rare-earth (Nd3+, Er3+, and Yb3+) doped transparent lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 95(4), 2135–2140 (2004).
[Crossref]

H. Zhao, K. Zhang, L. Xu, F. Sun, X. Chen, K. K. Li, and J. Zhang, “Optical amplification in disordered electrooptic Tm3+ and Ho3+ codoped lanthanum-modified lead zirconate titanate ceramics and study of spectroscopy and communication between cations,” J. Appl. Phys. 115(7), 073101 (2014).
[Crossref]

L. Xu, H. Zhao, C. Xu, S. Zhang, and J. Zhang, “Optical energy storage and reemission based weak localization of light and accompanying random lasing action in disordered Nd3+ doped (Pb, La)(Zr, Ti)O3 ceramics,” J. Appl. Phys. 116(6), 063104 (2014).
[Crossref]

Y. Wu, H. Zhao, Y. K. Zou, X. Chen, B. Di Bartolo, and J. W. Zhang, “Optoenergy storage, stimulated processes in optical amplification with electro-optic ceramic gain media of Nd3+ doped lanthanum lead zirconate titanate,” J. Appl. Phys. 110(3), 033106 (2011).
[Crossref]

R. Chen and P. L. Leung, “Dose dependence and dose-rate dependence of the optically stimulated luminescence signal,” J. Appl. Phys. 89(1), 259–263 (2001).
[Crossref]

J. Phys. D Appl. Phys. (1)

V. Pagonis, J. Lawless, R. Chen, and C. Andersen, “Radioluminescence in Al2O3: C-analytical and numerical simulation results,” J. Phys. D Appl. Phys. 42(17), 175107 (2009).
[Crossref]

J. Phys.-. Condens. Mat. (1)

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm to Ho energy transfer in LiYF4,” J. Phys.-. Condens. Mat. 4(44), 8525–8542 (1992).
[Crossref]

Nano Lett. (1)

J. Zhou, G. Chen, E. Wu, G. Bi, B. Wu, Y. Teng, S. Zhou, and J. Qiu, “Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped β-NaYF4 single nanorod,” Nano Lett. 13(5), 2241–2246 (2013).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. B (1)

A. Kaminska, J. E. Dmochowski, A. Suchocki, J. G. Sole, F. Jaque, and L. Arizmendi, “Luminescence of LiNbO 3: MgO, Cr crystals under high pressure,” Phys. Rev. B 60(11), 7707–7710 (1999).
[Crossref]

Phys. Rev. B Condens. Matter (1)

A. C. Lewandowski and S. W. S. McKeever, “Generalized description of thermally stimulated processes without the quasiequilibrium approximation,” Phys. Rev. B Condens. Matter 43(10), 8163–8178 (1991).
[Crossref] [PubMed]

Radiat. Meas. (2)

R. M. Bailey, “Towards a general kinetic model for optically and thermally stimulated luminescence of quartz,” Radiat. Meas. 33(1), 17–45 (2001).
[Crossref]

R. Chen and P. L. Leung, “The decay of OSL signals as stretched-exponential functions,” Radiat. Meas. 37(4-5), 519–526 (2003).
[Crossref]

Other (5)

J. W. Zhang, L. Xu, H. Zhao, and X. Sun, “Optoenergy storage and broadband optical in Er3+ doped PLZT,” CLEO: Science and Innovations (Optical Society of America, 2012).

T. H. Lin, M. L. Burgener, S. C. Esener, and S. H. Lee, “Crystallization of silicon on Electro-Optic PLZT by a laser beam modulated in shape and intensity profile,” MRS Online Proceeding Library, 74 (1986).

G. H. Haertling, “Electro-optic ceramics and devices,” in Electronic Ceramics, L. M. Levinson eds. (Marcel Dekker, New York,1987), pp. 371–492.

S. McKeever and E. G. Yukuhara, Optical Stimulated Luminescence: Fundamentals and Applications, (John Wiley & Sons, 2001).

N. J. Newman and N. G. Betty, Crystal Field Handbook (Cambridge University Press, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of experimental apparatus in studying lasing emission in Ho3+ and Tm3+ doped PLZT ceramics (LD is laser diode at 790 nm; L represents for lens; P represents for polarizer; F represents for filter; PC is personal computer; and HPS is high power supply); (b) Lasing emission in plasma atmosphere for different exposure time; (c) Schematic of level transition in Ho3+ and Tm3+ doped PLZT ceramics.
Fig. 2
Fig. 2 (a) Polarized lasing emission in plasma atmosphere for different exposure time; (b) Dynamic changes of polarized lasing emission under plasma atmosphere.
Fig. 3
Fig. 3 (a) X-ray diffraction intensity of 2 mol% Ho3+ and 5 mol% Tm3+ codoped PLZT ceramics; (b) The schematic diagram of A and B sites in the ABO3 perovskite unit cell; (c) A 3-dimensional micrograph of Ho3+ and Tm3+ codoped PLZT ceramics taken with an atomic force microscope.
Fig. 4
Fig. 4 (a) Optical stimulated trapping and illuminating process; (b) Simulation curves of light emission dynamics at 560 and 690 nm after exposing to the plasma atmosphere; (c) Sketch representing recurrent scattering of light in Ho3+ and Tm3+ codoped PLZT ceramics; (d) Five typical long lasting fading-off time of light emission at 550 nm, 590 nm, 633 nm, 650 nm, and 690 nm.
Fig. 5
Fig. 5 (a) Configuration of the ABO3 perovskite unit cell for RE doped PLZT: the left diagram is for zero-field (O group); the right diagrams exhibit electro-induced polarizations (C4h group); (b) Light emission spectra changes before and after the symmetry of Ho3+/Tm3+ ions in the crystal filed changed to C4h group from O group.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

dn(t) dt =[Nn(t)] A CAP n c (t)n(t) A ES ,
dh(t) dt =[Hh(t)] A CAP n v (t)h(t) A RC n c (t),
d n c (t) dt =N A ABS [Nn(t)] A CAP n c (t)h(t) A RC n c (t),
d n v (t) dt =N A ABS [Hh(t)] A CH n v (t).
A CAP = v ¯ σ e = 8kT πm π r e 2 .
A RC = v ¯ σ h = 8kT πm π r c 2 .
A ES = A CAP (2πmkT) 3 2 h 3 exp( E kT ).
I OSL dh(t) dt .
η= Δ F ED F ED = F ED F ED F ED = D 2 ( C 4h ) D 2 (O) D 2 (O) .

Metrics