Abstract

Stimulated Raman scattering (SRS) is an important technique for broadening the laser spectra. The Raman crystals with large dimensions and high thermal conductivity are favorable by SRS. Zinc tungstate (ZnWO4) belonging to a monoclinic system has been grown by the Czochralski method with the dimensions of Φ 35 mm × 70 mm. The thermal properties were evaluated and analyzed in several aspects, including the density, specific heat, thermal expansion coefficient, and thermal conductivity. Thermal conductivity was calculated to be 5.412 Wm−1K−1 along the c-axis, which is about two times larger than the famous BaWO4 and SrWO4. Meanwhile, the optical properties including transmission and Raman spectra and Raman shift were measured and the stimulated Raman scattering performance of ZnWO4 crystal was demonstrated. The results show that the thermal conductivity decreases with increasing temperature. Furthermore, the thermal focal lengths were theoretically estimated. Along the a direction, the light with a wavelength of 532 nm can be shifted to the light at 558.95 nm, which is in good accordance with the spontaneous Raman spectrum. All the analyses and results above show that ZnWO4 is a promising solid-state Raman laser crystal.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated Raman scattering-active crystals

Alexander A. Kaminskii, Hans J. Eichler, Ken-ichi Ueda, Nikolai V. Klassen, Boris S. Redkin, Ludmila E. Li, Julian Findeisen, Daniel Jaque, José García-Sole, Joaquín Fernández, and Rolindes Balda
Appl. Opt. 38(21) 4533-4547 (1999)

Second harmonic generation and Raman shift in Yb3+:BaGd2(MoO4)4 crystal

Siqi Zhu, Pei Xiong Zhang, Haiqiong Zhou, Zhen Li, Hao Yin, Shenhe Fu, Lijun Wei, Runsheng Huang, and Zhenqiang Chen
Opt. Mater. Express 7(7) 2505-2510 (2017)

Crystal growth and characterization of Nd3+:(LaxGd1-x)3Ga5O12 laser crystal

Xiuwei Fu, Zhitai Jia, Yanbin Li, Dongsheng Yuan, Chunming Dong, and Xutang Tao
Opt. Mater. Express 2(9) 1242-1253 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H. M. Pask, “The design and operation of solid-state Raman laser,” Quantum Electron. 27(1), 3–56 (2003).
    [Crossref]
  2. H. M. Pask and J. A. Piper, “Diode-pumped LiIO3 intracavity Raman lasers,” IEEE J. Quantum Electron. 36(8), 949–955 (2000).
    [Crossref]
  3. A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetakii, V. A. Orlovich, G. I. Ryabtsev, and A. A. Demidovich, “All solid-state diode-pumped Raman laser with self-frequency conversion,” Appl. Phys. Lett. 75(24), 3742–3744 (1999).
    [Crossref]
  4. T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative Spontaneous Raman Spectroscopy of Crystals for Raman Lasers,” Appl. Opt. 38(3), 594–598 (1999).
    [Crossref] [PubMed]
  5. J. T. Murray, W. L. Austin, R. C. Powell, and G. J. Quarles, “Nonlinear cavity-pumped intracavity solid-state Raman laser transmitters,” OSA TOPS. Adv. Solid-State Lasers. 10, 72–76 (1997).
  6. H. M. Pask and J. A. Piper, “Practical 580 nm source based on frequency doubling of an intracavity-Raman-shifted Nd:YAG laser,” Opt. Commun. 148(4-6), 285–288 (1998).
    [Crossref]
  7. P. Cerný, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
    [Crossref]
  8. S. Erdei, “Growth of oxygen deficiency-free YVO4 single crystal by top-seeded solution growth technique,” J. Cryst. Growth 134(1-2), 1–13 (1993).
    [Crossref]
  9. Y. Liu, H. Wang, G. Chen, Y. D. Zhou, B. Y. Gu, and B. Q. Hu, “Analysis of Raman spectra of ZnWO4 single crystals,” J. Appl. Phys. 64(9), 4651–4654 (1988).
    [Crossref]
  10. H. Wang, Y. Liu, Y. D. Zhou, G Chen, T. Zhou, J. H. Wang, and B. Q. Hu, “Optical characteristics of ZnWO4 single crystals,” Wuli Xuebao 38, 670–676 (1989).
  11. M. Daturi, G. Busca, M. M. Borel, A. Leclaire, and P. Piaggio, “Vibrational and XRD study of the system CdWO4-CdMoO4,” J. Phys. Chem. B 101(22), 4358–4369 (1997).
    [Crossref]
  12. S. H. Yoon, D. W. Kim, S. Y. Cho, and K. S. Hong, “Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds,” J. Eur. Ceram. Soc. 26(10-11), 2051–2054 (2006).
    [Crossref]
  13. J. Bi, L. Wu, Z. Li, Z. Ding, X. Wang, and X. Fu, “A facile microwave solvothermal process to synthesize ZnWO4 nanopartiales,” J. Alloys Compd. 480(2), 684–688 (2009).
    [Crossref]
  14. T. N. Nikolaenko, Y. A. Hizhnyi, and S. G. Nedilko, “Exited states of the luminescence centers in tungstate crystals,” J. Lumin. 128(5-6), 807–810 (2008).
    [Crossref]
  15. F. G. Yang, H. Y. Wang, Y. P. Wei, X. A. Lu, C. Y. Tu, G. Jia, Z. You, Y. Wang, Z. Zhu, and J. Li, “Optical and thermal properties of Co2+:ZnWO4 crystal,” J. Appl. Phys. 100(10), 103514 (2006).
    [Crossref]
  16. R. A. Cowley, “The lattice dynamics of an anharmonic crystal,” Adv. Phys. 12(48), 421–480 (1963).
    [Crossref]
  17. D. Xu, “Science and Technology of Crystal Growth,” Science (1997).
  18. P. Cerny, H. Jelinkova, M. Miyagi, T. T. Basiev, and P. G. Zverev, “Efficient picosecond Raman lasers on BaWO4 and KGd(WO4)2 tungstate crystals emitting in 1.15 to 1.18 um spectral region,” Proc. SPIE 4630, 108–118 (2002).
    [Crossref]
  19. W. W. Ge, H. Zhang, J. Wang, J. Liu, X. Xu, X. Hu, M. Jiang, D. G. Ran, S. Q. Sun, H. R. Xia, and R. I. Boughton, “Thermal and mechanical properties of BaWO4 crystals,” J. Appl. Phys. 98(1), 013542 (2005).
    [Crossref]
  20. J. D. Fan, H. J. Zhang, J. Y. Wang, M. H. Jiang, R. I. Boughton, D. G. Ran, S. Q. Sun, and H. R. Xia, “Growth and thermal properties of SrWO4 single crystal,” J. Appl. Phys. 100(6), 063513 (2006).
    [Crossref]
  21. X. P. Wang, J. Y. Wang, H. J. Zhang, Y. G. Yu, J. Wu, W. L. Gao, and R. I. Boughton, “Thermal properties of cubic KTa1-xNbxO3 crystals,” J. Appl. Phys. 103(3), 033513 (2008).
    [Crossref]
  22. H. Choosuwan, R. Guo, A. S. Bhalla, and U. Balachandran, “Negative thermal expansion behavior in single crystal and ceramic of Nb2O5-based compositions,” J. Appl. Phys. 91(8), 5051–5054 (2002).
    [Crossref]
  23. R. S. Krishnan, R. Srinivasan, and S. Devanarayanan, Thermal Expansion of Crystals (Pergamon Press, 1979).
  24. T. Y. Fan, “Heat Generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
    [Crossref]
  25. R. Weber, B. Neuenschwander, M. M. Donald, M. B. Toos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
    [Crossref]
  26. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, 1996).
  27. X. Meng, L. Zhu, H. Zhang, C. Wang, Y. Chow, and M. Lu, “Growth, morphology and laser performance of Nd:YVO4 crystal,” J. Cryst. Growth 200(1-2), 199–203 (1999).
    [Crossref]
  28. S. F. Wu, G. F. Wang, and J. L. Xie, “Growth of high quality and large-sized Nd3+:YVO4 single crystal,” J. Cryst. Growth 266(4), 496–499 (2004).
    [Crossref]
  29. G. Jia, C. Tu, Z. You, J. Li, Y. Wang, and B. Wu, “Czochralski technique growth of pure and rare-earth-doped SrWO4 crystal,” J. Cryst. Growth 273(1-2), 220–225 (2004).
    [Crossref]
  30. J. F. Nye, Physical Properties of Crystals (Oxford University Press, 1985).
  31. T. M. Tritt, Thermal Conductivity: Theory, Properties, and Applications (Springer Science and Business Media, 2005).

2009 (1)

J. Bi, L. Wu, Z. Li, Z. Ding, X. Wang, and X. Fu, “A facile microwave solvothermal process to synthesize ZnWO4 nanopartiales,” J. Alloys Compd. 480(2), 684–688 (2009).
[Crossref]

2008 (2)

T. N. Nikolaenko, Y. A. Hizhnyi, and S. G. Nedilko, “Exited states of the luminescence centers in tungstate crystals,” J. Lumin. 128(5-6), 807–810 (2008).
[Crossref]

X. P. Wang, J. Y. Wang, H. J. Zhang, Y. G. Yu, J. Wu, W. L. Gao, and R. I. Boughton, “Thermal properties of cubic KTa1-xNbxO3 crystals,” J. Appl. Phys. 103(3), 033513 (2008).
[Crossref]

2006 (3)

J. D. Fan, H. J. Zhang, J. Y. Wang, M. H. Jiang, R. I. Boughton, D. G. Ran, S. Q. Sun, and H. R. Xia, “Growth and thermal properties of SrWO4 single crystal,” J. Appl. Phys. 100(6), 063513 (2006).
[Crossref]

F. G. Yang, H. Y. Wang, Y. P. Wei, X. A. Lu, C. Y. Tu, G. Jia, Z. You, Y. Wang, Z. Zhu, and J. Li, “Optical and thermal properties of Co2+:ZnWO4 crystal,” J. Appl. Phys. 100(10), 103514 (2006).
[Crossref]

S. H. Yoon, D. W. Kim, S. Y. Cho, and K. S. Hong, “Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds,” J. Eur. Ceram. Soc. 26(10-11), 2051–2054 (2006).
[Crossref]

2005 (1)

W. W. Ge, H. Zhang, J. Wang, J. Liu, X. Xu, X. Hu, M. Jiang, D. G. Ran, S. Q. Sun, H. R. Xia, and R. I. Boughton, “Thermal and mechanical properties of BaWO4 crystals,” J. Appl. Phys. 98(1), 013542 (2005).
[Crossref]

2004 (3)

P. Cerný, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[Crossref]

S. F. Wu, G. F. Wang, and J. L. Xie, “Growth of high quality and large-sized Nd3+:YVO4 single crystal,” J. Cryst. Growth 266(4), 496–499 (2004).
[Crossref]

G. Jia, C. Tu, Z. You, J. Li, Y. Wang, and B. Wu, “Czochralski technique growth of pure and rare-earth-doped SrWO4 crystal,” J. Cryst. Growth 273(1-2), 220–225 (2004).
[Crossref]

2003 (1)

H. M. Pask, “The design and operation of solid-state Raman laser,” Quantum Electron. 27(1), 3–56 (2003).
[Crossref]

2002 (2)

P. Cerny, H. Jelinkova, M. Miyagi, T. T. Basiev, and P. G. Zverev, “Efficient picosecond Raman lasers on BaWO4 and KGd(WO4)2 tungstate crystals emitting in 1.15 to 1.18 um spectral region,” Proc. SPIE 4630, 108–118 (2002).
[Crossref]

H. Choosuwan, R. Guo, A. S. Bhalla, and U. Balachandran, “Negative thermal expansion behavior in single crystal and ceramic of Nb2O5-based compositions,” J. Appl. Phys. 91(8), 5051–5054 (2002).
[Crossref]

2000 (1)

H. M. Pask and J. A. Piper, “Diode-pumped LiIO3 intracavity Raman lasers,” IEEE J. Quantum Electron. 36(8), 949–955 (2000).
[Crossref]

1999 (3)

A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetakii, V. A. Orlovich, G. I. Ryabtsev, and A. A. Demidovich, “All solid-state diode-pumped Raman laser with self-frequency conversion,” Appl. Phys. Lett. 75(24), 3742–3744 (1999).
[Crossref]

T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative Spontaneous Raman Spectroscopy of Crystals for Raman Lasers,” Appl. Opt. 38(3), 594–598 (1999).
[Crossref] [PubMed]

X. Meng, L. Zhu, H. Zhang, C. Wang, Y. Chow, and M. Lu, “Growth, morphology and laser performance of Nd:YVO4 crystal,” J. Cryst. Growth 200(1-2), 199–203 (1999).
[Crossref]

1998 (2)

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Toos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[Crossref]

H. M. Pask and J. A. Piper, “Practical 580 nm source based on frequency doubling of an intracavity-Raman-shifted Nd:YAG laser,” Opt. Commun. 148(4-6), 285–288 (1998).
[Crossref]

1997 (2)

J. T. Murray, W. L. Austin, R. C. Powell, and G. J. Quarles, “Nonlinear cavity-pumped intracavity solid-state Raman laser transmitters,” OSA TOPS. Adv. Solid-State Lasers. 10, 72–76 (1997).

M. Daturi, G. Busca, M. M. Borel, A. Leclaire, and P. Piaggio, “Vibrational and XRD study of the system CdWO4-CdMoO4,” J. Phys. Chem. B 101(22), 4358–4369 (1997).
[Crossref]

1993 (2)

S. Erdei, “Growth of oxygen deficiency-free YVO4 single crystal by top-seeded solution growth technique,” J. Cryst. Growth 134(1-2), 1–13 (1993).
[Crossref]

T. Y. Fan, “Heat Generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[Crossref]

1989 (1)

H. Wang, Y. Liu, Y. D. Zhou, G Chen, T. Zhou, J. H. Wang, and B. Q. Hu, “Optical characteristics of ZnWO4 single crystals,” Wuli Xuebao 38, 670–676 (1989).

1988 (1)

Y. Liu, H. Wang, G. Chen, Y. D. Zhou, B. Y. Gu, and B. Q. Hu, “Analysis of Raman spectra of ZnWO4 single crystals,” J. Appl. Phys. 64(9), 4651–4654 (1988).
[Crossref]

1963 (1)

R. A. Cowley, “The lattice dynamics of an anharmonic crystal,” Adv. Phys. 12(48), 421–480 (1963).
[Crossref]

Austin, W. L.

J. T. Murray, W. L. Austin, R. C. Powell, and G. J. Quarles, “Nonlinear cavity-pumped intracavity solid-state Raman laser transmitters,” OSA TOPS. Adv. Solid-State Lasers. 10, 72–76 (1997).

Balachandran, U.

H. Choosuwan, R. Guo, A. S. Bhalla, and U. Balachandran, “Negative thermal expansion behavior in single crystal and ceramic of Nb2O5-based compositions,” J. Appl. Phys. 91(8), 5051–5054 (2002).
[Crossref]

Basiev, T. T.

P. Cerný, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[Crossref]

P. Cerny, H. Jelinkova, M. Miyagi, T. T. Basiev, and P. G. Zverev, “Efficient picosecond Raman lasers on BaWO4 and KGd(WO4)2 tungstate crystals emitting in 1.15 to 1.18 um spectral region,” Proc. SPIE 4630, 108–118 (2002).
[Crossref]

T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative Spontaneous Raman Spectroscopy of Crystals for Raman Lasers,” Appl. Opt. 38(3), 594–598 (1999).
[Crossref] [PubMed]

Bhalla, A. S.

H. Choosuwan, R. Guo, A. S. Bhalla, and U. Balachandran, “Negative thermal expansion behavior in single crystal and ceramic of Nb2O5-based compositions,” J. Appl. Phys. 91(8), 5051–5054 (2002).
[Crossref]

Bi, J.

J. Bi, L. Wu, Z. Li, Z. Ding, X. Wang, and X. Fu, “A facile microwave solvothermal process to synthesize ZnWO4 nanopartiales,” J. Alloys Compd. 480(2), 684–688 (2009).
[Crossref]

Borel, M. M.

M. Daturi, G. Busca, M. M. Borel, A. Leclaire, and P. Piaggio, “Vibrational and XRD study of the system CdWO4-CdMoO4,” J. Phys. Chem. B 101(22), 4358–4369 (1997).
[Crossref]

Boughton, R. I.

X. P. Wang, J. Y. Wang, H. J. Zhang, Y. G. Yu, J. Wu, W. L. Gao, and R. I. Boughton, “Thermal properties of cubic KTa1-xNbxO3 crystals,” J. Appl. Phys. 103(3), 033513 (2008).
[Crossref]

J. D. Fan, H. J. Zhang, J. Y. Wang, M. H. Jiang, R. I. Boughton, D. G. Ran, S. Q. Sun, and H. R. Xia, “Growth and thermal properties of SrWO4 single crystal,” J. Appl. Phys. 100(6), 063513 (2006).
[Crossref]

W. W. Ge, H. Zhang, J. Wang, J. Liu, X. Xu, X. Hu, M. Jiang, D. G. Ran, S. Q. Sun, H. R. Xia, and R. I. Boughton, “Thermal and mechanical properties of BaWO4 crystals,” J. Appl. Phys. 98(1), 013542 (2005).
[Crossref]

Busca, G.

M. Daturi, G. Busca, M. M. Borel, A. Leclaire, and P. Piaggio, “Vibrational and XRD study of the system CdWO4-CdMoO4,” J. Phys. Chem. B 101(22), 4358–4369 (1997).
[Crossref]

Cerny, P.

P. Cerny, H. Jelinkova, M. Miyagi, T. T. Basiev, and P. G. Zverev, “Efficient picosecond Raman lasers on BaWO4 and KGd(WO4)2 tungstate crystals emitting in 1.15 to 1.18 um spectral region,” Proc. SPIE 4630, 108–118 (2002).
[Crossref]

Cerný, P.

P. Cerný, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[Crossref]

Chen, G

H. Wang, Y. Liu, Y. D. Zhou, G Chen, T. Zhou, J. H. Wang, and B. Q. Hu, “Optical characteristics of ZnWO4 single crystals,” Wuli Xuebao 38, 670–676 (1989).

Chen, G.

Y. Liu, H. Wang, G. Chen, Y. D. Zhou, B. Y. Gu, and B. Q. Hu, “Analysis of Raman spectra of ZnWO4 single crystals,” J. Appl. Phys. 64(9), 4651–4654 (1988).
[Crossref]

Cho, S. Y.

S. H. Yoon, D. W. Kim, S. Y. Cho, and K. S. Hong, “Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds,” J. Eur. Ceram. Soc. 26(10-11), 2051–2054 (2006).
[Crossref]

Choosuwan, H.

H. Choosuwan, R. Guo, A. S. Bhalla, and U. Balachandran, “Negative thermal expansion behavior in single crystal and ceramic of Nb2O5-based compositions,” J. Appl. Phys. 91(8), 5051–5054 (2002).
[Crossref]

Chow, Y.

X. Meng, L. Zhu, H. Zhang, C. Wang, Y. Chow, and M. Lu, “Growth, morphology and laser performance of Nd:YVO4 crystal,” J. Cryst. Growth 200(1-2), 199–203 (1999).
[Crossref]

Cowley, R. A.

R. A. Cowley, “The lattice dynamics of an anharmonic crystal,” Adv. Phys. 12(48), 421–480 (1963).
[Crossref]

Daturi, M.

M. Daturi, G. Busca, M. M. Borel, A. Leclaire, and P. Piaggio, “Vibrational and XRD study of the system CdWO4-CdMoO4,” J. Phys. Chem. B 101(22), 4358–4369 (1997).
[Crossref]

Demidovich, A. A.

A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetakii, V. A. Orlovich, G. I. Ryabtsev, and A. A. Demidovich, “All solid-state diode-pumped Raman laser with self-frequency conversion,” Appl. Phys. Lett. 75(24), 3742–3744 (1999).
[Crossref]

Ding, Z.

J. Bi, L. Wu, Z. Li, Z. Ding, X. Wang, and X. Fu, “A facile microwave solvothermal process to synthesize ZnWO4 nanopartiales,” J. Alloys Compd. 480(2), 684–688 (2009).
[Crossref]

Donald, M. M.

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Toos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[Crossref]

Erdei, S.

S. Erdei, “Growth of oxygen deficiency-free YVO4 single crystal by top-seeded solution growth technique,” J. Cryst. Growth 134(1-2), 1–13 (1993).
[Crossref]

Fan, J. D.

J. D. Fan, H. J. Zhang, J. Y. Wang, M. H. Jiang, R. I. Boughton, D. G. Ran, S. Q. Sun, and H. R. Xia, “Growth and thermal properties of SrWO4 single crystal,” J. Appl. Phys. 100(6), 063513 (2006).
[Crossref]

Fan, T. Y.

T. Y. Fan, “Heat Generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[Crossref]

Fu, X.

J. Bi, L. Wu, Z. Li, Z. Ding, X. Wang, and X. Fu, “A facile microwave solvothermal process to synthesize ZnWO4 nanopartiales,” J. Alloys Compd. 480(2), 684–688 (2009).
[Crossref]

Gao, W. L.

X. P. Wang, J. Y. Wang, H. J. Zhang, Y. G. Yu, J. Wu, W. L. Gao, and R. I. Boughton, “Thermal properties of cubic KTa1-xNbxO3 crystals,” J. Appl. Phys. 103(3), 033513 (2008).
[Crossref]

Ge, W. W.

W. W. Ge, H. Zhang, J. Wang, J. Liu, X. Xu, X. Hu, M. Jiang, D. G. Ran, S. Q. Sun, H. R. Xia, and R. I. Boughton, “Thermal and mechanical properties of BaWO4 crystals,” J. Appl. Phys. 98(1), 013542 (2005).
[Crossref]

Grabtchikov, A. S.

A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetakii, V. A. Orlovich, G. I. Ryabtsev, and A. A. Demidovich, “All solid-state diode-pumped Raman laser with self-frequency conversion,” Appl. Phys. Lett. 75(24), 3742–3744 (1999).
[Crossref]

Gu, B. Y.

Y. Liu, H. Wang, G. Chen, Y. D. Zhou, B. Y. Gu, and B. Q. Hu, “Analysis of Raman spectra of ZnWO4 single crystals,” J. Appl. Phys. 64(9), 4651–4654 (1988).
[Crossref]

Guo, R.

H. Choosuwan, R. Guo, A. S. Bhalla, and U. Balachandran, “Negative thermal expansion behavior in single crystal and ceramic of Nb2O5-based compositions,” J. Appl. Phys. 91(8), 5051–5054 (2002).
[Crossref]

Hizhnyi, Y. A.

T. N. Nikolaenko, Y. A. Hizhnyi, and S. G. Nedilko, “Exited states of the luminescence centers in tungstate crystals,” J. Lumin. 128(5-6), 807–810 (2008).
[Crossref]

Hong, K. S.

S. H. Yoon, D. W. Kim, S. Y. Cho, and K. S. Hong, “Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds,” J. Eur. Ceram. Soc. 26(10-11), 2051–2054 (2006).
[Crossref]

Hu, B. Q.

H. Wang, Y. Liu, Y. D. Zhou, G Chen, T. Zhou, J. H. Wang, and B. Q. Hu, “Optical characteristics of ZnWO4 single crystals,” Wuli Xuebao 38, 670–676 (1989).

Y. Liu, H. Wang, G. Chen, Y. D. Zhou, B. Y. Gu, and B. Q. Hu, “Analysis of Raman spectra of ZnWO4 single crystals,” J. Appl. Phys. 64(9), 4651–4654 (1988).
[Crossref]

Hu, X.

W. W. Ge, H. Zhang, J. Wang, J. Liu, X. Xu, X. Hu, M. Jiang, D. G. Ran, S. Q. Sun, H. R. Xia, and R. I. Boughton, “Thermal and mechanical properties of BaWO4 crystals,” J. Appl. Phys. 98(1), 013542 (2005).
[Crossref]

Jelinkova, H.

P. Cerný, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[Crossref]

P. Cerny, H. Jelinkova, M. Miyagi, T. T. Basiev, and P. G. Zverev, “Efficient picosecond Raman lasers on BaWO4 and KGd(WO4)2 tungstate crystals emitting in 1.15 to 1.18 um spectral region,” Proc. SPIE 4630, 108–118 (2002).
[Crossref]

Jia, G.

F. G. Yang, H. Y. Wang, Y. P. Wei, X. A. Lu, C. Y. Tu, G. Jia, Z. You, Y. Wang, Z. Zhu, and J. Li, “Optical and thermal properties of Co2+:ZnWO4 crystal,” J. Appl. Phys. 100(10), 103514 (2006).
[Crossref]

G. Jia, C. Tu, Z. You, J. Li, Y. Wang, and B. Wu, “Czochralski technique growth of pure and rare-earth-doped SrWO4 crystal,” J. Cryst. Growth 273(1-2), 220–225 (2004).
[Crossref]

Jiang, M.

W. W. Ge, H. Zhang, J. Wang, J. Liu, X. Xu, X. Hu, M. Jiang, D. G. Ran, S. Q. Sun, H. R. Xia, and R. I. Boughton, “Thermal and mechanical properties of BaWO4 crystals,” J. Appl. Phys. 98(1), 013542 (2005).
[Crossref]

Jiang, M. H.

J. D. Fan, H. J. Zhang, J. Y. Wang, M. H. Jiang, R. I. Boughton, D. G. Ran, S. Q. Sun, and H. R. Xia, “Growth and thermal properties of SrWO4 single crystal,” J. Appl. Phys. 100(6), 063513 (2006).
[Crossref]

Kim, D. W.

S. H. Yoon, D. W. Kim, S. Y. Cho, and K. S. Hong, “Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds,” J. Eur. Ceram. Soc. 26(10-11), 2051–2054 (2006).
[Crossref]

Kuzmin, A. N.

A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetakii, V. A. Orlovich, G. I. Ryabtsev, and A. A. Demidovich, “All solid-state diode-pumped Raman laser with self-frequency conversion,” Appl. Phys. Lett. 75(24), 3742–3744 (1999).
[Crossref]

Leclaire, A.

M. Daturi, G. Busca, M. M. Borel, A. Leclaire, and P. Piaggio, “Vibrational and XRD study of the system CdWO4-CdMoO4,” J. Phys. Chem. B 101(22), 4358–4369 (1997).
[Crossref]

Li, J.

F. G. Yang, H. Y. Wang, Y. P. Wei, X. A. Lu, C. Y. Tu, G. Jia, Z. You, Y. Wang, Z. Zhu, and J. Li, “Optical and thermal properties of Co2+:ZnWO4 crystal,” J. Appl. Phys. 100(10), 103514 (2006).
[Crossref]

G. Jia, C. Tu, Z. You, J. Li, Y. Wang, and B. Wu, “Czochralski technique growth of pure and rare-earth-doped SrWO4 crystal,” J. Cryst. Growth 273(1-2), 220–225 (2004).
[Crossref]

Li, Z.

J. Bi, L. Wu, Z. Li, Z. Ding, X. Wang, and X. Fu, “A facile microwave solvothermal process to synthesize ZnWO4 nanopartiales,” J. Alloys Compd. 480(2), 684–688 (2009).
[Crossref]

Lisinetakii, V. A.

A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetakii, V. A. Orlovich, G. I. Ryabtsev, and A. A. Demidovich, “All solid-state diode-pumped Raman laser with self-frequency conversion,” Appl. Phys. Lett. 75(24), 3742–3744 (1999).
[Crossref]

Liu, J.

W. W. Ge, H. Zhang, J. Wang, J. Liu, X. Xu, X. Hu, M. Jiang, D. G. Ran, S. Q. Sun, H. R. Xia, and R. I. Boughton, “Thermal and mechanical properties of BaWO4 crystals,” J. Appl. Phys. 98(1), 013542 (2005).
[Crossref]

Liu, Y.

H. Wang, Y. Liu, Y. D. Zhou, G Chen, T. Zhou, J. H. Wang, and B. Q. Hu, “Optical characteristics of ZnWO4 single crystals,” Wuli Xuebao 38, 670–676 (1989).

Y. Liu, H. Wang, G. Chen, Y. D. Zhou, B. Y. Gu, and B. Q. Hu, “Analysis of Raman spectra of ZnWO4 single crystals,” J. Appl. Phys. 64(9), 4651–4654 (1988).
[Crossref]

Lu, M.

X. Meng, L. Zhu, H. Zhang, C. Wang, Y. Chow, and M. Lu, “Growth, morphology and laser performance of Nd:YVO4 crystal,” J. Cryst. Growth 200(1-2), 199–203 (1999).
[Crossref]

Lu, X. A.

F. G. Yang, H. Y. Wang, Y. P. Wei, X. A. Lu, C. Y. Tu, G. Jia, Z. You, Y. Wang, Z. Zhu, and J. Li, “Optical and thermal properties of Co2+:ZnWO4 crystal,” J. Appl. Phys. 100(10), 103514 (2006).
[Crossref]

Meng, X.

X. Meng, L. Zhu, H. Zhang, C. Wang, Y. Chow, and M. Lu, “Growth, morphology and laser performance of Nd:YVO4 crystal,” J. Cryst. Growth 200(1-2), 199–203 (1999).
[Crossref]

Miyagi, M.

P. Cerny, H. Jelinkova, M. Miyagi, T. T. Basiev, and P. G. Zverev, “Efficient picosecond Raman lasers on BaWO4 and KGd(WO4)2 tungstate crystals emitting in 1.15 to 1.18 um spectral region,” Proc. SPIE 4630, 108–118 (2002).
[Crossref]

Murray, J. T.

J. T. Murray, W. L. Austin, R. C. Powell, and G. J. Quarles, “Nonlinear cavity-pumped intracavity solid-state Raman laser transmitters,” OSA TOPS. Adv. Solid-State Lasers. 10, 72–76 (1997).

Nedilko, S. G.

T. N. Nikolaenko, Y. A. Hizhnyi, and S. G. Nedilko, “Exited states of the luminescence centers in tungstate crystals,” J. Lumin. 128(5-6), 807–810 (2008).
[Crossref]

Neuenschwander, B.

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Toos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[Crossref]

Nikolaenko, T. N.

T. N. Nikolaenko, Y. A. Hizhnyi, and S. G. Nedilko, “Exited states of the luminescence centers in tungstate crystals,” J. Lumin. 128(5-6), 807–810 (2008).
[Crossref]

Orlovich, V. A.

A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetakii, V. A. Orlovich, G. I. Ryabtsev, and A. A. Demidovich, “All solid-state diode-pumped Raman laser with self-frequency conversion,” Appl. Phys. Lett. 75(24), 3742–3744 (1999).
[Crossref]

Osiko, V. V.

Pask, H. M.

H. M. Pask, “The design and operation of solid-state Raman laser,” Quantum Electron. 27(1), 3–56 (2003).
[Crossref]

H. M. Pask and J. A. Piper, “Diode-pumped LiIO3 intracavity Raman lasers,” IEEE J. Quantum Electron. 36(8), 949–955 (2000).
[Crossref]

H. M. Pask and J. A. Piper, “Practical 580 nm source based on frequency doubling of an intracavity-Raman-shifted Nd:YAG laser,” Opt. Commun. 148(4-6), 285–288 (1998).
[Crossref]

Piaggio, P.

M. Daturi, G. Busca, M. M. Borel, A. Leclaire, and P. Piaggio, “Vibrational and XRD study of the system CdWO4-CdMoO4,” J. Phys. Chem. B 101(22), 4358–4369 (1997).
[Crossref]

Piper, J. A.

H. M. Pask and J. A. Piper, “Diode-pumped LiIO3 intracavity Raman lasers,” IEEE J. Quantum Electron. 36(8), 949–955 (2000).
[Crossref]

H. M. Pask and J. A. Piper, “Practical 580 nm source based on frequency doubling of an intracavity-Raman-shifted Nd:YAG laser,” Opt. Commun. 148(4-6), 285–288 (1998).
[Crossref]

Powell, R. C.

T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative Spontaneous Raman Spectroscopy of Crystals for Raman Lasers,” Appl. Opt. 38(3), 594–598 (1999).
[Crossref] [PubMed]

J. T. Murray, W. L. Austin, R. C. Powell, and G. J. Quarles, “Nonlinear cavity-pumped intracavity solid-state Raman laser transmitters,” OSA TOPS. Adv. Solid-State Lasers. 10, 72–76 (1997).

Quarles, G. J.

J. T. Murray, W. L. Austin, R. C. Powell, and G. J. Quarles, “Nonlinear cavity-pumped intracavity solid-state Raman laser transmitters,” OSA TOPS. Adv. Solid-State Lasers. 10, 72–76 (1997).

Ran, D. G.

J. D. Fan, H. J. Zhang, J. Y. Wang, M. H. Jiang, R. I. Boughton, D. G. Ran, S. Q. Sun, and H. R. Xia, “Growth and thermal properties of SrWO4 single crystal,” J. Appl. Phys. 100(6), 063513 (2006).
[Crossref]

W. W. Ge, H. Zhang, J. Wang, J. Liu, X. Xu, X. Hu, M. Jiang, D. G. Ran, S. Q. Sun, H. R. Xia, and R. I. Boughton, “Thermal and mechanical properties of BaWO4 crystals,” J. Appl. Phys. 98(1), 013542 (2005).
[Crossref]

Ryabtsev, G. I.

A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetakii, V. A. Orlovich, G. I. Ryabtsev, and A. A. Demidovich, “All solid-state diode-pumped Raman laser with self-frequency conversion,” Appl. Phys. Lett. 75(24), 3742–3744 (1999).
[Crossref]

Sobol, A. A.

Sun, S. Q.

J. D. Fan, H. J. Zhang, J. Y. Wang, M. H. Jiang, R. I. Boughton, D. G. Ran, S. Q. Sun, and H. R. Xia, “Growth and thermal properties of SrWO4 single crystal,” J. Appl. Phys. 100(6), 063513 (2006).
[Crossref]

W. W. Ge, H. Zhang, J. Wang, J. Liu, X. Xu, X. Hu, M. Jiang, D. G. Ran, S. Q. Sun, H. R. Xia, and R. I. Boughton, “Thermal and mechanical properties of BaWO4 crystals,” J. Appl. Phys. 98(1), 013542 (2005).
[Crossref]

Toos, M. B.

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Toos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[Crossref]

Tu, C.

G. Jia, C. Tu, Z. You, J. Li, Y. Wang, and B. Wu, “Czochralski technique growth of pure and rare-earth-doped SrWO4 crystal,” J. Cryst. Growth 273(1-2), 220–225 (2004).
[Crossref]

Tu, C. Y.

F. G. Yang, H. Y. Wang, Y. P. Wei, X. A. Lu, C. Y. Tu, G. Jia, Z. You, Y. Wang, Z. Zhu, and J. Li, “Optical and thermal properties of Co2+:ZnWO4 crystal,” J. Appl. Phys. 100(10), 103514 (2006).
[Crossref]

Wang, C.

X. Meng, L. Zhu, H. Zhang, C. Wang, Y. Chow, and M. Lu, “Growth, morphology and laser performance of Nd:YVO4 crystal,” J. Cryst. Growth 200(1-2), 199–203 (1999).
[Crossref]

Wang, G. F.

S. F. Wu, G. F. Wang, and J. L. Xie, “Growth of high quality and large-sized Nd3+:YVO4 single crystal,” J. Cryst. Growth 266(4), 496–499 (2004).
[Crossref]

Wang, H.

H. Wang, Y. Liu, Y. D. Zhou, G Chen, T. Zhou, J. H. Wang, and B. Q. Hu, “Optical characteristics of ZnWO4 single crystals,” Wuli Xuebao 38, 670–676 (1989).

Y. Liu, H. Wang, G. Chen, Y. D. Zhou, B. Y. Gu, and B. Q. Hu, “Analysis of Raman spectra of ZnWO4 single crystals,” J. Appl. Phys. 64(9), 4651–4654 (1988).
[Crossref]

Wang, H. Y.

F. G. Yang, H. Y. Wang, Y. P. Wei, X. A. Lu, C. Y. Tu, G. Jia, Z. You, Y. Wang, Z. Zhu, and J. Li, “Optical and thermal properties of Co2+:ZnWO4 crystal,” J. Appl. Phys. 100(10), 103514 (2006).
[Crossref]

Wang, J.

W. W. Ge, H. Zhang, J. Wang, J. Liu, X. Xu, X. Hu, M. Jiang, D. G. Ran, S. Q. Sun, H. R. Xia, and R. I. Boughton, “Thermal and mechanical properties of BaWO4 crystals,” J. Appl. Phys. 98(1), 013542 (2005).
[Crossref]

Wang, J. H.

H. Wang, Y. Liu, Y. D. Zhou, G Chen, T. Zhou, J. H. Wang, and B. Q. Hu, “Optical characteristics of ZnWO4 single crystals,” Wuli Xuebao 38, 670–676 (1989).

Wang, J. Y.

X. P. Wang, J. Y. Wang, H. J. Zhang, Y. G. Yu, J. Wu, W. L. Gao, and R. I. Boughton, “Thermal properties of cubic KTa1-xNbxO3 crystals,” J. Appl. Phys. 103(3), 033513 (2008).
[Crossref]

J. D. Fan, H. J. Zhang, J. Y. Wang, M. H. Jiang, R. I. Boughton, D. G. Ran, S. Q. Sun, and H. R. Xia, “Growth and thermal properties of SrWO4 single crystal,” J. Appl. Phys. 100(6), 063513 (2006).
[Crossref]

Wang, X.

J. Bi, L. Wu, Z. Li, Z. Ding, X. Wang, and X. Fu, “A facile microwave solvothermal process to synthesize ZnWO4 nanopartiales,” J. Alloys Compd. 480(2), 684–688 (2009).
[Crossref]

Wang, X. P.

X. P. Wang, J. Y. Wang, H. J. Zhang, Y. G. Yu, J. Wu, W. L. Gao, and R. I. Boughton, “Thermal properties of cubic KTa1-xNbxO3 crystals,” J. Appl. Phys. 103(3), 033513 (2008).
[Crossref]

Wang, Y.

F. G. Yang, H. Y. Wang, Y. P. Wei, X. A. Lu, C. Y. Tu, G. Jia, Z. You, Y. Wang, Z. Zhu, and J. Li, “Optical and thermal properties of Co2+:ZnWO4 crystal,” J. Appl. Phys. 100(10), 103514 (2006).
[Crossref]

G. Jia, C. Tu, Z. You, J. Li, Y. Wang, and B. Wu, “Czochralski technique growth of pure and rare-earth-doped SrWO4 crystal,” J. Cryst. Growth 273(1-2), 220–225 (2004).
[Crossref]

Weber, H. P.

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Toos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[Crossref]

Weber, R.

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Toos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[Crossref]

Wei, Y. P.

F. G. Yang, H. Y. Wang, Y. P. Wei, X. A. Lu, C. Y. Tu, G. Jia, Z. You, Y. Wang, Z. Zhu, and J. Li, “Optical and thermal properties of Co2+:ZnWO4 crystal,” J. Appl. Phys. 100(10), 103514 (2006).
[Crossref]

Wu, B.

G. Jia, C. Tu, Z. You, J. Li, Y. Wang, and B. Wu, “Czochralski technique growth of pure and rare-earth-doped SrWO4 crystal,” J. Cryst. Growth 273(1-2), 220–225 (2004).
[Crossref]

Wu, J.

X. P. Wang, J. Y. Wang, H. J. Zhang, Y. G. Yu, J. Wu, W. L. Gao, and R. I. Boughton, “Thermal properties of cubic KTa1-xNbxO3 crystals,” J. Appl. Phys. 103(3), 033513 (2008).
[Crossref]

Wu, L.

J. Bi, L. Wu, Z. Li, Z. Ding, X. Wang, and X. Fu, “A facile microwave solvothermal process to synthesize ZnWO4 nanopartiales,” J. Alloys Compd. 480(2), 684–688 (2009).
[Crossref]

Wu, S. F.

S. F. Wu, G. F. Wang, and J. L. Xie, “Growth of high quality and large-sized Nd3+:YVO4 single crystal,” J. Cryst. Growth 266(4), 496–499 (2004).
[Crossref]

Xia, H. R.

J. D. Fan, H. J. Zhang, J. Y. Wang, M. H. Jiang, R. I. Boughton, D. G. Ran, S. Q. Sun, and H. R. Xia, “Growth and thermal properties of SrWO4 single crystal,” J. Appl. Phys. 100(6), 063513 (2006).
[Crossref]

W. W. Ge, H. Zhang, J. Wang, J. Liu, X. Xu, X. Hu, M. Jiang, D. G. Ran, S. Q. Sun, H. R. Xia, and R. I. Boughton, “Thermal and mechanical properties of BaWO4 crystals,” J. Appl. Phys. 98(1), 013542 (2005).
[Crossref]

Xie, J. L.

S. F. Wu, G. F. Wang, and J. L. Xie, “Growth of high quality and large-sized Nd3+:YVO4 single crystal,” J. Cryst. Growth 266(4), 496–499 (2004).
[Crossref]

Xu, D.

D. Xu, “Science and Technology of Crystal Growth,” Science (1997).

Xu, X.

W. W. Ge, H. Zhang, J. Wang, J. Liu, X. Xu, X. Hu, M. Jiang, D. G. Ran, S. Q. Sun, H. R. Xia, and R. I. Boughton, “Thermal and mechanical properties of BaWO4 crystals,” J. Appl. Phys. 98(1), 013542 (2005).
[Crossref]

Yang, F. G.

F. G. Yang, H. Y. Wang, Y. P. Wei, X. A. Lu, C. Y. Tu, G. Jia, Z. You, Y. Wang, Z. Zhu, and J. Li, “Optical and thermal properties of Co2+:ZnWO4 crystal,” J. Appl. Phys. 100(10), 103514 (2006).
[Crossref]

Yoon, S. H.

S. H. Yoon, D. W. Kim, S. Y. Cho, and K. S. Hong, “Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds,” J. Eur. Ceram. Soc. 26(10-11), 2051–2054 (2006).
[Crossref]

You, Z.

F. G. Yang, H. Y. Wang, Y. P. Wei, X. A. Lu, C. Y. Tu, G. Jia, Z. You, Y. Wang, Z. Zhu, and J. Li, “Optical and thermal properties of Co2+:ZnWO4 crystal,” J. Appl. Phys. 100(10), 103514 (2006).
[Crossref]

G. Jia, C. Tu, Z. You, J. Li, Y. Wang, and B. Wu, “Czochralski technique growth of pure and rare-earth-doped SrWO4 crystal,” J. Cryst. Growth 273(1-2), 220–225 (2004).
[Crossref]

Yu, Y. G.

X. P. Wang, J. Y. Wang, H. J. Zhang, Y. G. Yu, J. Wu, W. L. Gao, and R. I. Boughton, “Thermal properties of cubic KTa1-xNbxO3 crystals,” J. Appl. Phys. 103(3), 033513 (2008).
[Crossref]

Zhang, H.

W. W. Ge, H. Zhang, J. Wang, J. Liu, X. Xu, X. Hu, M. Jiang, D. G. Ran, S. Q. Sun, H. R. Xia, and R. I. Boughton, “Thermal and mechanical properties of BaWO4 crystals,” J. Appl. Phys. 98(1), 013542 (2005).
[Crossref]

X. Meng, L. Zhu, H. Zhang, C. Wang, Y. Chow, and M. Lu, “Growth, morphology and laser performance of Nd:YVO4 crystal,” J. Cryst. Growth 200(1-2), 199–203 (1999).
[Crossref]

Zhang, H. J.

X. P. Wang, J. Y. Wang, H. J. Zhang, Y. G. Yu, J. Wu, W. L. Gao, and R. I. Boughton, “Thermal properties of cubic KTa1-xNbxO3 crystals,” J. Appl. Phys. 103(3), 033513 (2008).
[Crossref]

J. D. Fan, H. J. Zhang, J. Y. Wang, M. H. Jiang, R. I. Boughton, D. G. Ran, S. Q. Sun, and H. R. Xia, “Growth and thermal properties of SrWO4 single crystal,” J. Appl. Phys. 100(6), 063513 (2006).
[Crossref]

Zhou, T.

H. Wang, Y. Liu, Y. D. Zhou, G Chen, T. Zhou, J. H. Wang, and B. Q. Hu, “Optical characteristics of ZnWO4 single crystals,” Wuli Xuebao 38, 670–676 (1989).

Zhou, Y. D.

H. Wang, Y. Liu, Y. D. Zhou, G Chen, T. Zhou, J. H. Wang, and B. Q. Hu, “Optical characteristics of ZnWO4 single crystals,” Wuli Xuebao 38, 670–676 (1989).

Y. Liu, H. Wang, G. Chen, Y. D. Zhou, B. Y. Gu, and B. Q. Hu, “Analysis of Raman spectra of ZnWO4 single crystals,” J. Appl. Phys. 64(9), 4651–4654 (1988).
[Crossref]

Zhu, L.

X. Meng, L. Zhu, H. Zhang, C. Wang, Y. Chow, and M. Lu, “Growth, morphology and laser performance of Nd:YVO4 crystal,” J. Cryst. Growth 200(1-2), 199–203 (1999).
[Crossref]

Zhu, Z.

F. G. Yang, H. Y. Wang, Y. P. Wei, X. A. Lu, C. Y. Tu, G. Jia, Z. You, Y. Wang, Z. Zhu, and J. Li, “Optical and thermal properties of Co2+:ZnWO4 crystal,” J. Appl. Phys. 100(10), 103514 (2006).
[Crossref]

Zverev, P. G.

P. Cerný, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[Crossref]

P. Cerny, H. Jelinkova, M. Miyagi, T. T. Basiev, and P. G. Zverev, “Efficient picosecond Raman lasers on BaWO4 and KGd(WO4)2 tungstate crystals emitting in 1.15 to 1.18 um spectral region,” Proc. SPIE 4630, 108–118 (2002).
[Crossref]

T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative Spontaneous Raman Spectroscopy of Crystals for Raman Lasers,” Appl. Opt. 38(3), 594–598 (1999).
[Crossref] [PubMed]

Adv. Phys. (1)

R. A. Cowley, “The lattice dynamics of an anharmonic crystal,” Adv. Phys. 12(48), 421–480 (1963).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetakii, V. A. Orlovich, G. I. Ryabtsev, and A. A. Demidovich, “All solid-state diode-pumped Raman laser with self-frequency conversion,” Appl. Phys. Lett. 75(24), 3742–3744 (1999).
[Crossref]

IEEE J. Quantum Electron. (3)

H. M. Pask and J. A. Piper, “Diode-pumped LiIO3 intracavity Raman lasers,” IEEE J. Quantum Electron. 36(8), 949–955 (2000).
[Crossref]

T. Y. Fan, “Heat Generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[Crossref]

R. Weber, B. Neuenschwander, M. M. Donald, M. B. Toos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods,” IEEE J. Quantum Electron. 34(6), 1046–1053 (1998).
[Crossref]

J. Alloys Compd. (1)

J. Bi, L. Wu, Z. Li, Z. Ding, X. Wang, and X. Fu, “A facile microwave solvothermal process to synthesize ZnWO4 nanopartiales,” J. Alloys Compd. 480(2), 684–688 (2009).
[Crossref]

J. Appl. Phys. (6)

W. W. Ge, H. Zhang, J. Wang, J. Liu, X. Xu, X. Hu, M. Jiang, D. G. Ran, S. Q. Sun, H. R. Xia, and R. I. Boughton, “Thermal and mechanical properties of BaWO4 crystals,” J. Appl. Phys. 98(1), 013542 (2005).
[Crossref]

J. D. Fan, H. J. Zhang, J. Y. Wang, M. H. Jiang, R. I. Boughton, D. G. Ran, S. Q. Sun, and H. R. Xia, “Growth and thermal properties of SrWO4 single crystal,” J. Appl. Phys. 100(6), 063513 (2006).
[Crossref]

X. P. Wang, J. Y. Wang, H. J. Zhang, Y. G. Yu, J. Wu, W. L. Gao, and R. I. Boughton, “Thermal properties of cubic KTa1-xNbxO3 crystals,” J. Appl. Phys. 103(3), 033513 (2008).
[Crossref]

H. Choosuwan, R. Guo, A. S. Bhalla, and U. Balachandran, “Negative thermal expansion behavior in single crystal and ceramic of Nb2O5-based compositions,” J. Appl. Phys. 91(8), 5051–5054 (2002).
[Crossref]

Y. Liu, H. Wang, G. Chen, Y. D. Zhou, B. Y. Gu, and B. Q. Hu, “Analysis of Raman spectra of ZnWO4 single crystals,” J. Appl. Phys. 64(9), 4651–4654 (1988).
[Crossref]

F. G. Yang, H. Y. Wang, Y. P. Wei, X. A. Lu, C. Y. Tu, G. Jia, Z. You, Y. Wang, Z. Zhu, and J. Li, “Optical and thermal properties of Co2+:ZnWO4 crystal,” J. Appl. Phys. 100(10), 103514 (2006).
[Crossref]

J. Cryst. Growth (4)

X. Meng, L. Zhu, H. Zhang, C. Wang, Y. Chow, and M. Lu, “Growth, morphology and laser performance of Nd:YVO4 crystal,” J. Cryst. Growth 200(1-2), 199–203 (1999).
[Crossref]

S. F. Wu, G. F. Wang, and J. L. Xie, “Growth of high quality and large-sized Nd3+:YVO4 single crystal,” J. Cryst. Growth 266(4), 496–499 (2004).
[Crossref]

G. Jia, C. Tu, Z. You, J. Li, Y. Wang, and B. Wu, “Czochralski technique growth of pure and rare-earth-doped SrWO4 crystal,” J. Cryst. Growth 273(1-2), 220–225 (2004).
[Crossref]

S. Erdei, “Growth of oxygen deficiency-free YVO4 single crystal by top-seeded solution growth technique,” J. Cryst. Growth 134(1-2), 1–13 (1993).
[Crossref]

J. Eur. Ceram. Soc. (1)

S. H. Yoon, D. W. Kim, S. Y. Cho, and K. S. Hong, “Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds,” J. Eur. Ceram. Soc. 26(10-11), 2051–2054 (2006).
[Crossref]

J. Lumin. (1)

T. N. Nikolaenko, Y. A. Hizhnyi, and S. G. Nedilko, “Exited states of the luminescence centers in tungstate crystals,” J. Lumin. 128(5-6), 807–810 (2008).
[Crossref]

J. Phys. Chem. B (1)

M. Daturi, G. Busca, M. M. Borel, A. Leclaire, and P. Piaggio, “Vibrational and XRD study of the system CdWO4-CdMoO4,” J. Phys. Chem. B 101(22), 4358–4369 (1997).
[Crossref]

Opt. Commun. (1)

H. M. Pask and J. A. Piper, “Practical 580 nm source based on frequency doubling of an intracavity-Raman-shifted Nd:YAG laser,” Opt. Commun. 148(4-6), 285–288 (1998).
[Crossref]

OSA TOPS. Adv. Solid-State Lasers. (1)

J. T. Murray, W. L. Austin, R. C. Powell, and G. J. Quarles, “Nonlinear cavity-pumped intracavity solid-state Raman laser transmitters,” OSA TOPS. Adv. Solid-State Lasers. 10, 72–76 (1997).

Proc. SPIE (1)

P. Cerny, H. Jelinkova, M. Miyagi, T. T. Basiev, and P. G. Zverev, “Efficient picosecond Raman lasers on BaWO4 and KGd(WO4)2 tungstate crystals emitting in 1.15 to 1.18 um spectral region,” Proc. SPIE 4630, 108–118 (2002).
[Crossref]

Prog. Quantum Electron. (1)

P. Cerný, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[Crossref]

Quantum Electron. (1)

H. M. Pask, “The design and operation of solid-state Raman laser,” Quantum Electron. 27(1), 3–56 (2003).
[Crossref]

Wuli Xuebao (1)

H. Wang, Y. Liu, Y. D. Zhou, G Chen, T. Zhou, J. H. Wang, and B. Q. Hu, “Optical characteristics of ZnWO4 single crystals,” Wuli Xuebao 38, 670–676 (1989).

Other (5)

D. Xu, “Science and Technology of Crystal Growth,” Science (1997).

R. S. Krishnan, R. Srinivasan, and S. Devanarayanan, Thermal Expansion of Crystals (Pergamon Press, 1979).

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, 1996).

J. F. Nye, Physical Properties of Crystals (Oxford University Press, 1985).

T. M. Tritt, Thermal Conductivity: Theory, Properties, and Applications (Springer Science and Business Media, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The as-grown ZnWO4 Crystal;(b) X-ray powder diffraction patterns of as-grown crystal and standard data.
Fig. 2
Fig. 2 The relationship between density of ZnWO4 crystal and temperature.
Fig. 3
Fig. 3 Specific heat of ZnWO4 crystal.
Fig. 4
Fig. 4 Thermal expansion ratio and thermal expansion coefficient along a-, a*-, b-, c- and c*-axis of the ZnWO4 crystal.
Fig. 5
Fig. 5 Thermal diffusion coefficient and thermal conductivity along a-, a*-, b-, c- and c*-axis of the ZnWO4 crystal.
Fig. 6
Fig. 6 Transmission spectrum of ZnWO4 crystal.
Fig. 7
Fig. 7 Normal state Raman spectrum of ZnWO4 crystal.
Fig. 8
Fig. 8 (a) The schematic diagram of the SRS performance experiment; (b) Relationship between output light and input light 532nm.

Tables (3)

Tables Icon

Table 1 Experimental density of as-grown ZnWO4 at room temperature

Tables Icon

Table 2 Relative thermal focal lengths of some Raman crystals

Tables Icon

Table 3 Some thermal property parameters of several familiar Raman crystals at room temperature

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ρ exp = m ρ water m m '
ρ= MZ V N 0
V= a bc= a 0 b 0 c 0 ( 1+ Δ a a 0 )( 1+ Δb b 0 )( 1+ Δc c 0 )
ρ= m V = m a 0 b 0 c 0 ( 1+ Δ a 0 a 0 )( 1+ Δ b 0 b 0 )( 1+ Δ c 0 c 0 ) = ρ 0 ( 1+ Δ a 0 a 0 )( 1+ Δ b 0 b 0 )( 1+ Δ c 0 c 0 )
α= ΔL LΔT
[ α ij ]=( α 11 0 α 13 0 α 22 0 α 31 0 α 33 )
α 13 = ( α a α c * )×cos( 2×α )( α c α a * ) 2×sin( 2×α )
α=( 9.6369 0 1835.09 0 8.6338 0 1835.09 0 6.4139 )× 10 6 K 1
α=( 6.4341 0 0 0 8.6338 0 0 0 9.6168 )× 10 6 K 1
tan2γ= 2 α 11 α 33 α 31
k=ρ c P λ
f= kA Pa [ 1 2 dn dt +a C γ,ϕ n 3 + a r 0 ( n 0 1 ) L ] 1

Metrics