Abstract

Light emission from Si quantum dots has been extensively studied but the emission wavelength is usually in the visible range, which is not compatible with the requirements of today’s optical telecommunications. Recently, the light emission in the near-infrared range from impurity-doped Si quantum dots were reported but the light emitting mechanism is still an open question. Here we systematically study the phosphorus doping induced sub-band light emission centered at 1250nm in addition to the conventionally observed 890nm emission band in Si quantum dots/SiO2 multilayers with ultra-small dot sizes. It is found that the photoluminescence behaviours of the two independent emission bands are quite different and strongly influenced by the doping concentrations. The time-resolved photoluminescence measurements demonstrate that the 1250nm band has a much shorter lifetime than the 890nm band, which indicates that it has a higher recombination rate to get an efficient emission. Additionally, the temperature dependent photoluminescence measurements are also used to determine the origin of the 1250nm emission.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature-dependent photoluminescence properties of quaternary ZnAgInS quantum dots

Ping Zhou, Xiaosong Zhang, Xiaojuan Liu, Jianping Xu, and Lan Li
Opt. Express 24(17) 19506-19516 (2016)

Phosphorus doping effect on linear and nonlinear optical properties of Si/SiO2 multilayers

Pei Zhang, Xiaowei Zhang, Shuo Xu, Peng Lu, Dameng Tan, Jun Xu, Fengqiu Wang, Liying Jiang, and Kunji Chen
Opt. Mater. Express 7(2) 304-312 (2017)

Origin of room temperature broadband light emission and carrier dynamics in Ag ion-implanted Silicon nanocrystals

Akhilesh K. Singh, Karol G. Gryczynski, and Arup Neogi
Opt. Mater. Express 2(5) 501-509 (2012)

References

  • View by:
  • |
  • |
  • |

  1. F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
    [Crossref] [PubMed]
  2. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
    [Crossref] [PubMed]
  3. Y. C. Lien, J. M. Shieh, W. H. Huang, C. H. Tu, C. Wang, C. H. Shen, B. T. Dai, C. L. Pan, C. M. Hu, and F. L. Yang, “Fast programming metal-gate Si quantum dot nonvolatile memory using green nanosecond laser spike annealing,” Appl. Phys. Lett. 100(14), 143501 (2012).
    [Crossref]
  4. J. Xu, S. H. Sun, Y. Q. Cao, P. Lu, W. Li, and K. J. Chen, “Light trapping and down-shifting effect of periodically nanopatterned Si-quantum-dot-based structures for enhanced photovoltaic properties,” Part. Part. Syst. Charact. 31(4), 459–464 (2014).
    [Crossref]
  5. G. R. Lin, Y. H. Pai, and C. T. Lin, “Microwatt MOSLED using SiOx with buried Si nanocrystals on Si nano-pillar array,” J. Lightwave Technol. 26(11), 1486–1491 (2008).
    [Crossref]
  6. J. Zhou, G. R. Chen, Y. Liu, J. Xu, T. Wang, N. Wan, Z. Y. Ma, W. Li, C. Song, and K. J. Chen, “Electroluminescent devices based on amorphous SiN/Si quantum dots/amorphous SiN sandwiched structures,” Opt. Express 17(1), 156–162 (2009).
    [Crossref] [PubMed]
  7. C. L. Wu, Y. H. Lin, and G. R. Lin, “Narrow-linewidth and wavelength-tunable red-light emission from an Si-quantum-dot embedded oxynitride distributed Bragg reflector,” IEEE J. Sel. Top. Quant. 18(6), 1643–1649 (2012).
    [Crossref]
  8. W. W. Mu, P. Zhang, J. Xu, S. H. Sun, J. Xu, W. Li, and K. J. Chen, “Direct-current and alternating-current driving Si quantum dots-based light emitting device,” IEEE J. Sel. Top. Quant. 20(4), 8200106 (2014).
  9. T. Lin, X. Liu, B. Zhou, Z. Y. Zhan, A. N. Cartwright, and M. T. Swihart, “A solution-processed UV-sensitive photodiode produced using a new silicon nanocrystal ink,” Adv. Funct. Mater. 24(38), 6016–6022 (2014).
    [Crossref]
  10. T. Yu, F. Wang, Y. Xu, L. Ma, X. Pi, and D. Yang, “Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors,” Adv. Mater. 28(24), 4912–4919 (2016).
    [Crossref] [PubMed]
  11. S. Öğüt, J. R. Chelikowsky, and S. G. Louie, “Quantum confinement and optical gaps in Si nanocrystals,” Phys. Rev. Lett. 79(9), 1770–1773 (1997).
    [Crossref]
  12. B. L. Oliva-Chatelain, T. M. Ticich, and A. R. Barron, “Doping silicon nanocrystals and quantum dots,” Nanoscale 8(4), 1733–1745 (2016).
    [Crossref] [PubMed]
  13. Z. Y. Ni, X. D. Pi, M. Ali, S. Zhou, T. Nozaki, and D. R. Yang, “Freestanding doped silicon nanocrystals synthesized by plasma,” J. Phys. D Appl. Phys. 48(31), 314006 (2015).
    [Crossref]
  14. M. Fujii, H. Sugimoto, and K. Imakita, “All-inorganic colloidal silicon nanocrystals-surface modification by boron and phosphorus co-doping,” Nanotechnology 27(26), 262001 (2016).
    [Crossref] [PubMed]
  15. M. Fujii, A. Mimura, S. Hayashi, and K. Yamamoto, “Photoluminescence from Si nanocrystals dispersed in phosphosilicate glass thin films: Improvement of photoluminescence efficiency,” Appl. Phys. Lett. 75(2), 184–186 (1999).
    [Crossref]
  16. M. Fujii, A. Mimura, S. Hayashi, K. Yamamoto, C. Urakawa, and H. Ohta, “Improvement in photoluminescence efficiency of SiO2 films containing Si nanocrystals by P doping: An electron spin resonance study,” J. Appl. Phys. 87(4), 1855–1857 (2000).
    [Crossref]
  17. M. Fukuda, M. Fujii, and S. Hayashi, “Room-temperature below bulk-Si band gap photoluminescence from P and B co-doped and compensated Si nanocrystals with narrow size distributions,” J. Lumin. 131(5), 1066–1069 (2011).
    [Crossref]
  18. B. P. Veettil, L. F. Wu, X. G. Jia, Z. Y. Lin, T. Zhang, T. Yang, C. Johnson, D. McCamey, G. Conibeer, and I. Perez-Wurfl, “Passivation effects in B doped self-assembled Si nanocrystals,” Appl. Phys. Lett. 105(22), 222108 (2014).
    [Crossref]
  19. H. C. Sun, J. Xu, Y. Liu, W. W. Mu, W. Xu, W. Li, and K. J. Chen, “Subband light emission from phosphorous-doped amorphous Si/SiO2 multilayers at room temperature,” Chin. Phys. Lett. 28(6), 067802 (2011).
    [Crossref]
  20. M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron-hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76(3), 351–353 (2000).
    [Crossref]
  21. H. Rinnert, O. Jambois, and M. Vergnat, “Photoluminescence properties of size-controlled silicon nanocrystals at low temperatures,” J. Appl. Phys. 106(2), 023501 (2009).
    [Crossref]
  22. G. R. Lin, C. J. Lin, and K. C. Yu, “Time-resolved photoluminescence and capacitance–voltage analysis of the neutral vacancy defect in silicon implanted SiO2 on silicon substrate,” J. Appl. Phys. 96(5), 3025–3027 (2004).
    [Crossref]
  23. G. R. Lin, Y. H. Pai, C. T. Lin, and C. C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based lightemitting diodes,” Appl. Phys. Lett. 96(26), 263514 (2010).
    [Crossref]
  24. C. H. Cheng, Y. C. Lien, C. L. Wu, and G. R. Lin, “Mutlicolor electroluminescent Si quantum dots embedded in SiOx thin film MOSLED with 2.4% external quantum efficiency,” Opt. Express 21(1), 391–403 (2013).
    [Crossref] [PubMed]
  25. Z. H. Cen, J. Xu, Y. S. Liu, W. Li, L. Xu, Z. Y. Ma, X. F. Huang, and K. J. Chen, “Visible light emission from single layer Si nanodots fabricated by laser irradiation method,” Appl. Phys. Lett. 89(16), 163107 (2006).
    [Crossref]
  26. Z. Y. Ni, X. D. Pi, and D. R. Yang, “Doping Si nanocrystals embedded in SiO2 with P in the framework of density functional theory,” Phys. Rev. B 89(3), 035312 (2014).
    [Crossref]
  27. M. S. Hybertsen, “Absorption and emission of light in nanoscale silicon structures,” Phys. Rev. Lett. 72(10), 1514–1517 (1994).
    [Crossref] [PubMed]
  28. M. Fujii, K. Toshikiyo, Y. Takase, Y. Yamaguchi, and S. Hayashi, “Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystals,” J. Appl. Phys. 94(3), 1990–1995 (2003).
    [Crossref]
  29. P. Lu, W. Mu, J. Xu, X. Zhang, W. Zhang, W. Li, L. Xu, and K. Chen, “Phosphorus doping in Si nanocrystals/SiO2 multilayers and light emission with wavelength compatible for optical telecommunication,” Sci. Rep. 6, 22888 (2016).
    [Crossref] [PubMed]
  30. M. Fujii, A. Mimura, S. Hayashi, Y. Yamamoto, and K. Murakami, “Hyperfine structure of the electron spin resonance of phosphorus-doped Si nanocrystals,” Phys. Rev. Lett. 89(20), 206805 (2002).
    [Crossref] [PubMed]
  31. X. D. Pi, Z. Y. Ni, D. R. Yang, and C. Delerue, “Ab initio study on the effect of structural relaxation on the electronic and optical properties of P-doped Si nanocrystals,” J. Appl. Lett. 116(19), 194304 (2014).
  32. L. Wu and G. R. Lin, “Power gain modeling of Si quantum dots embedded in a SiOx waveguide amplifier with inhomogeneous broadened spontaneous emission,” IEEE J. Sel. Top. Quant. 19(5), 3000109 (2013).
  33. C. L. Wu and G. R. Lin, “Inhomogeneous linewidth broadening and radiative lifetime dispersion of size ependent direct bandgap radiation in Si quantum dot,” AIP Adv. 2(4), 042162 (2012).
    [Crossref]
  34. K. H. Lin, S. C. Liou, W. L. Chen, C. L. Wu, G. R. Lin, and Y. M. Chang, “Tunable and stable UV-NIR photoluminescence from annealed SiOx with Si nanoparticles,” Opt. Express 21(20), 23416–23424 (2013).
    [Crossref] [PubMed]
  35. A. M. Hartel, S. Gutsch, D. Hiller, and M. Zacharias, “Fundamental temperature-dependent properties of the Si nanocrystal band gap,” Phys. Rev. B 85(16), 165306 (2012).
    [Crossref]
  36. X. X. Wang, J. G. Zhang, L. Ding, B. W. Cheng, W. K. Ge, J. Z. Yu, and Q. M. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72(19), 195313 (2005).
    [Crossref]
  37. F. Maier-Flaig, E. J. Henderson, S. Valouch, S. Klinkhammer, C. Kubel, G. A. Ozin, and U. Lemmer, “Photophysics of organically-capped silicon nanocrystals-A closer look into silicon nanocrystal luminescence using low temperature transient spectroscopy,” Chem. Phys. 405, 175–180 (2012).
    [Crossref]
  38. D. Kovalev, H. Heckler, G. Polisski, and F. Koch, “Optical properties of Si nanocrystals,” Phys. Status Solidi, B Basic Res. 215(2), 871–932 (1999).
    [Crossref]

2016 (4)

T. Yu, F. Wang, Y. Xu, L. Ma, X. Pi, and D. Yang, “Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors,” Adv. Mater. 28(24), 4912–4919 (2016).
[Crossref] [PubMed]

B. L. Oliva-Chatelain, T. M. Ticich, and A. R. Barron, “Doping silicon nanocrystals and quantum dots,” Nanoscale 8(4), 1733–1745 (2016).
[Crossref] [PubMed]

M. Fujii, H. Sugimoto, and K. Imakita, “All-inorganic colloidal silicon nanocrystals-surface modification by boron and phosphorus co-doping,” Nanotechnology 27(26), 262001 (2016).
[Crossref] [PubMed]

P. Lu, W. Mu, J. Xu, X. Zhang, W. Zhang, W. Li, L. Xu, and K. Chen, “Phosphorus doping in Si nanocrystals/SiO2 multilayers and light emission with wavelength compatible for optical telecommunication,” Sci. Rep. 6, 22888 (2016).
[Crossref] [PubMed]

2015 (1)

Z. Y. Ni, X. D. Pi, M. Ali, S. Zhou, T. Nozaki, and D. R. Yang, “Freestanding doped silicon nanocrystals synthesized by plasma,” J. Phys. D Appl. Phys. 48(31), 314006 (2015).
[Crossref]

2014 (7)

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

J. Xu, S. H. Sun, Y. Q. Cao, P. Lu, W. Li, and K. J. Chen, “Light trapping and down-shifting effect of periodically nanopatterned Si-quantum-dot-based structures for enhanced photovoltaic properties,” Part. Part. Syst. Charact. 31(4), 459–464 (2014).
[Crossref]

W. W. Mu, P. Zhang, J. Xu, S. H. Sun, J. Xu, W. Li, and K. J. Chen, “Direct-current and alternating-current driving Si quantum dots-based light emitting device,” IEEE J. Sel. Top. Quant. 20(4), 8200106 (2014).

T. Lin, X. Liu, B. Zhou, Z. Y. Zhan, A. N. Cartwright, and M. T. Swihart, “A solution-processed UV-sensitive photodiode produced using a new silicon nanocrystal ink,” Adv. Funct. Mater. 24(38), 6016–6022 (2014).
[Crossref]

Z. Y. Ni, X. D. Pi, and D. R. Yang, “Doping Si nanocrystals embedded in SiO2 with P in the framework of density functional theory,” Phys. Rev. B 89(3), 035312 (2014).
[Crossref]

X. D. Pi, Z. Y. Ni, D. R. Yang, and C. Delerue, “Ab initio study on the effect of structural relaxation on the electronic and optical properties of P-doped Si nanocrystals,” J. Appl. Lett. 116(19), 194304 (2014).

B. P. Veettil, L. F. Wu, X. G. Jia, Z. Y. Lin, T. Zhang, T. Yang, C. Johnson, D. McCamey, G. Conibeer, and I. Perez-Wurfl, “Passivation effects in B doped self-assembled Si nanocrystals,” Appl. Phys. Lett. 105(22), 222108 (2014).
[Crossref]

2013 (3)

2012 (5)

A. M. Hartel, S. Gutsch, D. Hiller, and M. Zacharias, “Fundamental temperature-dependent properties of the Si nanocrystal band gap,” Phys. Rev. B 85(16), 165306 (2012).
[Crossref]

C. L. Wu and G. R. Lin, “Inhomogeneous linewidth broadening and radiative lifetime dispersion of size ependent direct bandgap radiation in Si quantum dot,” AIP Adv. 2(4), 042162 (2012).
[Crossref]

Y. C. Lien, J. M. Shieh, W. H. Huang, C. H. Tu, C. Wang, C. H. Shen, B. T. Dai, C. L. Pan, C. M. Hu, and F. L. Yang, “Fast programming metal-gate Si quantum dot nonvolatile memory using green nanosecond laser spike annealing,” Appl. Phys. Lett. 100(14), 143501 (2012).
[Crossref]

C. L. Wu, Y. H. Lin, and G. R. Lin, “Narrow-linewidth and wavelength-tunable red-light emission from an Si-quantum-dot embedded oxynitride distributed Bragg reflector,” IEEE J. Sel. Top. Quant. 18(6), 1643–1649 (2012).
[Crossref]

F. Maier-Flaig, E. J. Henderson, S. Valouch, S. Klinkhammer, C. Kubel, G. A. Ozin, and U. Lemmer, “Photophysics of organically-capped silicon nanocrystals-A closer look into silicon nanocrystal luminescence using low temperature transient spectroscopy,” Chem. Phys. 405, 175–180 (2012).
[Crossref]

2011 (2)

M. Fukuda, M. Fujii, and S. Hayashi, “Room-temperature below bulk-Si band gap photoluminescence from P and B co-doped and compensated Si nanocrystals with narrow size distributions,” J. Lumin. 131(5), 1066–1069 (2011).
[Crossref]

H. C. Sun, J. Xu, Y. Liu, W. W. Mu, W. Xu, W. Li, and K. J. Chen, “Subband light emission from phosphorous-doped amorphous Si/SiO2 multilayers at room temperature,” Chin. Phys. Lett. 28(6), 067802 (2011).
[Crossref]

2010 (1)

G. R. Lin, Y. H. Pai, C. T. Lin, and C. C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based lightemitting diodes,” Appl. Phys. Lett. 96(26), 263514 (2010).
[Crossref]

2009 (2)

2008 (1)

2006 (1)

Z. H. Cen, J. Xu, Y. S. Liu, W. Li, L. Xu, Z. Y. Ma, X. F. Huang, and K. J. Chen, “Visible light emission from single layer Si nanodots fabricated by laser irradiation method,” Appl. Phys. Lett. 89(16), 163107 (2006).
[Crossref]

2005 (1)

X. X. Wang, J. G. Zhang, L. Ding, B. W. Cheng, W. K. Ge, J. Z. Yu, and Q. M. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72(19), 195313 (2005).
[Crossref]

2004 (1)

G. R. Lin, C. J. Lin, and K. C. Yu, “Time-resolved photoluminescence and capacitance–voltage analysis of the neutral vacancy defect in silicon implanted SiO2 on silicon substrate,” J. Appl. Phys. 96(5), 3025–3027 (2004).
[Crossref]

2003 (1)

M. Fujii, K. Toshikiyo, Y. Takase, Y. Yamaguchi, and S. Hayashi, “Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystals,” J. Appl. Phys. 94(3), 1990–1995 (2003).
[Crossref]

2002 (1)

M. Fujii, A. Mimura, S. Hayashi, Y. Yamamoto, and K. Murakami, “Hyperfine structure of the electron spin resonance of phosphorus-doped Si nanocrystals,” Phys. Rev. Lett. 89(20), 206805 (2002).
[Crossref] [PubMed]

2000 (3)

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron-hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76(3), 351–353 (2000).
[Crossref]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

M. Fujii, A. Mimura, S. Hayashi, K. Yamamoto, C. Urakawa, and H. Ohta, “Improvement in photoluminescence efficiency of SiO2 films containing Si nanocrystals by P doping: An electron spin resonance study,” J. Appl. Phys. 87(4), 1855–1857 (2000).
[Crossref]

1999 (2)

M. Fujii, A. Mimura, S. Hayashi, and K. Yamamoto, “Photoluminescence from Si nanocrystals dispersed in phosphosilicate glass thin films: Improvement of photoluminescence efficiency,” Appl. Phys. Lett. 75(2), 184–186 (1999).
[Crossref]

D. Kovalev, H. Heckler, G. Polisski, and F. Koch, “Optical properties of Si nanocrystals,” Phys. Status Solidi, B Basic Res. 215(2), 871–932 (1999).
[Crossref]

1997 (1)

S. Öğüt, J. R. Chelikowsky, and S. G. Louie, “Quantum confinement and optical gaps in Si nanocrystals,” Phys. Rev. Lett. 79(9), 1770–1773 (1997).
[Crossref]

1994 (1)

M. S. Hybertsen, “Absorption and emission of light in nanoscale silicon structures,” Phys. Rev. Lett. 72(10), 1514–1517 (1994).
[Crossref] [PubMed]

Ali, M.

Z. Y. Ni, X. D. Pi, M. Ali, S. Zhou, T. Nozaki, and D. R. Yang, “Freestanding doped silicon nanocrystals synthesized by plasma,” J. Phys. D Appl. Phys. 48(31), 314006 (2015).
[Crossref]

Atwater, H. A.

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron-hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76(3), 351–353 (2000).
[Crossref]

Barron, A. R.

B. L. Oliva-Chatelain, T. M. Ticich, and A. R. Barron, “Doping silicon nanocrystals and quantum dots,” Nanoscale 8(4), 1733–1745 (2016).
[Crossref] [PubMed]

Brongersma, M. L.

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron-hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76(3), 351–353 (2000).
[Crossref]

Cao, Y. Q.

J. Xu, S. H. Sun, Y. Q. Cao, P. Lu, W. Li, and K. J. Chen, “Light trapping and down-shifting effect of periodically nanopatterned Si-quantum-dot-based structures for enhanced photovoltaic properties,” Part. Part. Syst. Charact. 31(4), 459–464 (2014).
[Crossref]

Cartwright, A. N.

T. Lin, X. Liu, B. Zhou, Z. Y. Zhan, A. N. Cartwright, and M. T. Swihart, “A solution-processed UV-sensitive photodiode produced using a new silicon nanocrystal ink,” Adv. Funct. Mater. 24(38), 6016–6022 (2014).
[Crossref]

Cen, Z. H.

Z. H. Cen, J. Xu, Y. S. Liu, W. Li, L. Xu, Z. Y. Ma, X. F. Huang, and K. J. Chen, “Visible light emission from single layer Si nanodots fabricated by laser irradiation method,” Appl. Phys. Lett. 89(16), 163107 (2006).
[Crossref]

Chang, Y. M.

Chelikowsky, J. R.

S. Öğüt, J. R. Chelikowsky, and S. G. Louie, “Quantum confinement and optical gaps in Si nanocrystals,” Phys. Rev. Lett. 79(9), 1770–1773 (1997).
[Crossref]

Chen, C. C.

G. R. Lin, Y. H. Pai, C. T. Lin, and C. C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based lightemitting diodes,” Appl. Phys. Lett. 96(26), 263514 (2010).
[Crossref]

Chen, G. R.

Chen, K.

P. Lu, W. Mu, J. Xu, X. Zhang, W. Zhang, W. Li, L. Xu, and K. Chen, “Phosphorus doping in Si nanocrystals/SiO2 multilayers and light emission with wavelength compatible for optical telecommunication,” Sci. Rep. 6, 22888 (2016).
[Crossref] [PubMed]

Chen, K. J.

J. Xu, S. H. Sun, Y. Q. Cao, P. Lu, W. Li, and K. J. Chen, “Light trapping and down-shifting effect of periodically nanopatterned Si-quantum-dot-based structures for enhanced photovoltaic properties,” Part. Part. Syst. Charact. 31(4), 459–464 (2014).
[Crossref]

W. W. Mu, P. Zhang, J. Xu, S. H. Sun, J. Xu, W. Li, and K. J. Chen, “Direct-current and alternating-current driving Si quantum dots-based light emitting device,” IEEE J. Sel. Top. Quant. 20(4), 8200106 (2014).

H. C. Sun, J. Xu, Y. Liu, W. W. Mu, W. Xu, W. Li, and K. J. Chen, “Subband light emission from phosphorous-doped amorphous Si/SiO2 multilayers at room temperature,” Chin. Phys. Lett. 28(6), 067802 (2011).
[Crossref]

J. Zhou, G. R. Chen, Y. Liu, J. Xu, T. Wang, N. Wan, Z. Y. Ma, W. Li, C. Song, and K. J. Chen, “Electroluminescent devices based on amorphous SiN/Si quantum dots/amorphous SiN sandwiched structures,” Opt. Express 17(1), 156–162 (2009).
[Crossref] [PubMed]

Z. H. Cen, J. Xu, Y. S. Liu, W. Li, L. Xu, Z. Y. Ma, X. F. Huang, and K. J. Chen, “Visible light emission from single layer Si nanodots fabricated by laser irradiation method,” Appl. Phys. Lett. 89(16), 163107 (2006).
[Crossref]

Chen, W. L.

Cheng, B. W.

X. X. Wang, J. G. Zhang, L. Ding, B. W. Cheng, W. K. Ge, J. Z. Yu, and Q. M. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72(19), 195313 (2005).
[Crossref]

Cheng, C. H.

Conibeer, G.

B. P. Veettil, L. F. Wu, X. G. Jia, Z. Y. Lin, T. Zhang, T. Yang, C. Johnson, D. McCamey, G. Conibeer, and I. Perez-Wurfl, “Passivation effects in B doped self-assembled Si nanocrystals,” Appl. Phys. Lett. 105(22), 222108 (2014).
[Crossref]

Dai, B. T.

Y. C. Lien, J. M. Shieh, W. H. Huang, C. H. Tu, C. Wang, C. H. Shen, B. T. Dai, C. L. Pan, C. M. Hu, and F. L. Yang, “Fast programming metal-gate Si quantum dot nonvolatile memory using green nanosecond laser spike annealing,” Appl. Phys. Lett. 100(14), 143501 (2012).
[Crossref]

Dal Negro, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

Delerue, C.

X. D. Pi, Z. Y. Ni, D. R. Yang, and C. Delerue, “Ab initio study on the effect of structural relaxation on the electronic and optical properties of P-doped Si nanocrystals,” J. Appl. Lett. 116(19), 194304 (2014).

Ding, L.

X. X. Wang, J. G. Zhang, L. Ding, B. W. Cheng, W. K. Ge, J. Z. Yu, and Q. M. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72(19), 195313 (2005).
[Crossref]

Franzò, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

Fujii, M.

M. Fujii, H. Sugimoto, and K. Imakita, “All-inorganic colloidal silicon nanocrystals-surface modification by boron and phosphorus co-doping,” Nanotechnology 27(26), 262001 (2016).
[Crossref] [PubMed]

M. Fukuda, M. Fujii, and S. Hayashi, “Room-temperature below bulk-Si band gap photoluminescence from P and B co-doped and compensated Si nanocrystals with narrow size distributions,” J. Lumin. 131(5), 1066–1069 (2011).
[Crossref]

M. Fujii, K. Toshikiyo, Y. Takase, Y. Yamaguchi, and S. Hayashi, “Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystals,” J. Appl. Phys. 94(3), 1990–1995 (2003).
[Crossref]

M. Fujii, A. Mimura, S. Hayashi, Y. Yamamoto, and K. Murakami, “Hyperfine structure of the electron spin resonance of phosphorus-doped Si nanocrystals,” Phys. Rev. Lett. 89(20), 206805 (2002).
[Crossref] [PubMed]

M. Fujii, A. Mimura, S. Hayashi, K. Yamamoto, C. Urakawa, and H. Ohta, “Improvement in photoluminescence efficiency of SiO2 films containing Si nanocrystals by P doping: An electron spin resonance study,” J. Appl. Phys. 87(4), 1855–1857 (2000).
[Crossref]

M. Fujii, A. Mimura, S. Hayashi, and K. Yamamoto, “Photoluminescence from Si nanocrystals dispersed in phosphosilicate glass thin films: Improvement of photoluminescence efficiency,” Appl. Phys. Lett. 75(2), 184–186 (1999).
[Crossref]

Fukuda, M.

M. Fukuda, M. Fujii, and S. Hayashi, “Room-temperature below bulk-Si band gap photoluminescence from P and B co-doped and compensated Si nanocrystals with narrow size distributions,” J. Lumin. 131(5), 1066–1069 (2011).
[Crossref]

Galli, M.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

Ge, W. K.

X. X. Wang, J. G. Zhang, L. Ding, B. W. Cheng, W. K. Ge, J. Z. Yu, and Q. M. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72(19), 195313 (2005).
[Crossref]

Gregorkiewicz, T.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

Gutsch, S.

A. M. Hartel, S. Gutsch, D. Hiller, and M. Zacharias, “Fundamental temperature-dependent properties of the Si nanocrystal band gap,” Phys. Rev. B 85(16), 165306 (2012).
[Crossref]

Hartel, A. M.

A. M. Hartel, S. Gutsch, D. Hiller, and M. Zacharias, “Fundamental temperature-dependent properties of the Si nanocrystal band gap,” Phys. Rev. B 85(16), 165306 (2012).
[Crossref]

Hayashi, S.

M. Fukuda, M. Fujii, and S. Hayashi, “Room-temperature below bulk-Si band gap photoluminescence from P and B co-doped and compensated Si nanocrystals with narrow size distributions,” J. Lumin. 131(5), 1066–1069 (2011).
[Crossref]

M. Fujii, K. Toshikiyo, Y. Takase, Y. Yamaguchi, and S. Hayashi, “Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystals,” J. Appl. Phys. 94(3), 1990–1995 (2003).
[Crossref]

M. Fujii, A. Mimura, S. Hayashi, Y. Yamamoto, and K. Murakami, “Hyperfine structure of the electron spin resonance of phosphorus-doped Si nanocrystals,” Phys. Rev. Lett. 89(20), 206805 (2002).
[Crossref] [PubMed]

M. Fujii, A. Mimura, S. Hayashi, K. Yamamoto, C. Urakawa, and H. Ohta, “Improvement in photoluminescence efficiency of SiO2 films containing Si nanocrystals by P doping: An electron spin resonance study,” J. Appl. Phys. 87(4), 1855–1857 (2000).
[Crossref]

M. Fujii, A. Mimura, S. Hayashi, and K. Yamamoto, “Photoluminescence from Si nanocrystals dispersed in phosphosilicate glass thin films: Improvement of photoluminescence efficiency,” Appl. Phys. Lett. 75(2), 184–186 (1999).
[Crossref]

Heckler, H.

D. Kovalev, H. Heckler, G. Polisski, and F. Koch, “Optical properties of Si nanocrystals,” Phys. Status Solidi, B Basic Res. 215(2), 871–932 (1999).
[Crossref]

Henderson, E. J.

F. Maier-Flaig, E. J. Henderson, S. Valouch, S. Klinkhammer, C. Kubel, G. A. Ozin, and U. Lemmer, “Photophysics of organically-capped silicon nanocrystals-A closer look into silicon nanocrystal luminescence using low temperature transient spectroscopy,” Chem. Phys. 405, 175–180 (2012).
[Crossref]

Hiller, D.

A. M. Hartel, S. Gutsch, D. Hiller, and M. Zacharias, “Fundamental temperature-dependent properties of the Si nanocrystal band gap,” Phys. Rev. B 85(16), 165306 (2012).
[Crossref]

Hu, C. M.

Y. C. Lien, J. M. Shieh, W. H. Huang, C. H. Tu, C. Wang, C. H. Shen, B. T. Dai, C. L. Pan, C. M. Hu, and F. L. Yang, “Fast programming metal-gate Si quantum dot nonvolatile memory using green nanosecond laser spike annealing,” Appl. Phys. Lett. 100(14), 143501 (2012).
[Crossref]

Huang, W. H.

Y. C. Lien, J. M. Shieh, W. H. Huang, C. H. Tu, C. Wang, C. H. Shen, B. T. Dai, C. L. Pan, C. M. Hu, and F. L. Yang, “Fast programming metal-gate Si quantum dot nonvolatile memory using green nanosecond laser spike annealing,” Appl. Phys. Lett. 100(14), 143501 (2012).
[Crossref]

Huang, X. F.

Z. H. Cen, J. Xu, Y. S. Liu, W. Li, L. Xu, Z. Y. Ma, X. F. Huang, and K. J. Chen, “Visible light emission from single layer Si nanodots fabricated by laser irradiation method,” Appl. Phys. Lett. 89(16), 163107 (2006).
[Crossref]

Hybertsen, M. S.

M. S. Hybertsen, “Absorption and emission of light in nanoscale silicon structures,” Phys. Rev. Lett. 72(10), 1514–1517 (1994).
[Crossref] [PubMed]

Imakita, K.

M. Fujii, H. Sugimoto, and K. Imakita, “All-inorganic colloidal silicon nanocrystals-surface modification by boron and phosphorus co-doping,” Nanotechnology 27(26), 262001 (2016).
[Crossref] [PubMed]

Jambois, O.

H. Rinnert, O. Jambois, and M. Vergnat, “Photoluminescence properties of size-controlled silicon nanocrystals at low temperatures,” J. Appl. Phys. 106(2), 023501 (2009).
[Crossref]

Jia, X. G.

B. P. Veettil, L. F. Wu, X. G. Jia, Z. Y. Lin, T. Zhang, T. Yang, C. Johnson, D. McCamey, G. Conibeer, and I. Perez-Wurfl, “Passivation effects in B doped self-assembled Si nanocrystals,” Appl. Phys. Lett. 105(22), 222108 (2014).
[Crossref]

Johnson, C.

B. P. Veettil, L. F. Wu, X. G. Jia, Z. Y. Lin, T. Zhang, T. Yang, C. Johnson, D. McCamey, G. Conibeer, and I. Perez-Wurfl, “Passivation effects in B doped self-assembled Si nanocrystals,” Appl. Phys. Lett. 105(22), 222108 (2014).
[Crossref]

Kik, P. G.

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron-hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76(3), 351–353 (2000).
[Crossref]

Klinkhammer, S.

F. Maier-Flaig, E. J. Henderson, S. Valouch, S. Klinkhammer, C. Kubel, G. A. Ozin, and U. Lemmer, “Photophysics of organically-capped silicon nanocrystals-A closer look into silicon nanocrystal luminescence using low temperature transient spectroscopy,” Chem. Phys. 405, 175–180 (2012).
[Crossref]

Koch, F.

D. Kovalev, H. Heckler, G. Polisski, and F. Koch, “Optical properties of Si nanocrystals,” Phys. Status Solidi, B Basic Res. 215(2), 871–932 (1999).
[Crossref]

Kovalev, D.

D. Kovalev, H. Heckler, G. Polisski, and F. Koch, “Optical properties of Si nanocrystals,” Phys. Status Solidi, B Basic Res. 215(2), 871–932 (1999).
[Crossref]

Krauss, T. F.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

Kubel, C.

F. Maier-Flaig, E. J. Henderson, S. Valouch, S. Klinkhammer, C. Kubel, G. A. Ozin, and U. Lemmer, “Photophysics of organically-capped silicon nanocrystals-A closer look into silicon nanocrystal luminescence using low temperature transient spectroscopy,” Chem. Phys. 405, 175–180 (2012).
[Crossref]

Lemmer, U.

F. Maier-Flaig, E. J. Henderson, S. Valouch, S. Klinkhammer, C. Kubel, G. A. Ozin, and U. Lemmer, “Photophysics of organically-capped silicon nanocrystals-A closer look into silicon nanocrystal luminescence using low temperature transient spectroscopy,” Chem. Phys. 405, 175–180 (2012).
[Crossref]

Li, W.

P. Lu, W. Mu, J. Xu, X. Zhang, W. Zhang, W. Li, L. Xu, and K. Chen, “Phosphorus doping in Si nanocrystals/SiO2 multilayers and light emission with wavelength compatible for optical telecommunication,” Sci. Rep. 6, 22888 (2016).
[Crossref] [PubMed]

J. Xu, S. H. Sun, Y. Q. Cao, P. Lu, W. Li, and K. J. Chen, “Light trapping and down-shifting effect of periodically nanopatterned Si-quantum-dot-based structures for enhanced photovoltaic properties,” Part. Part. Syst. Charact. 31(4), 459–464 (2014).
[Crossref]

W. W. Mu, P. Zhang, J. Xu, S. H. Sun, J. Xu, W. Li, and K. J. Chen, “Direct-current and alternating-current driving Si quantum dots-based light emitting device,” IEEE J. Sel. Top. Quant. 20(4), 8200106 (2014).

H. C. Sun, J. Xu, Y. Liu, W. W. Mu, W. Xu, W. Li, and K. J. Chen, “Subband light emission from phosphorous-doped amorphous Si/SiO2 multilayers at room temperature,” Chin. Phys. Lett. 28(6), 067802 (2011).
[Crossref]

J. Zhou, G. R. Chen, Y. Liu, J. Xu, T. Wang, N. Wan, Z. Y. Ma, W. Li, C. Song, and K. J. Chen, “Electroluminescent devices based on amorphous SiN/Si quantum dots/amorphous SiN sandwiched structures,” Opt. Express 17(1), 156–162 (2009).
[Crossref] [PubMed]

Z. H. Cen, J. Xu, Y. S. Liu, W. Li, L. Xu, Z. Y. Ma, X. F. Huang, and K. J. Chen, “Visible light emission from single layer Si nanodots fabricated by laser irradiation method,” Appl. Phys. Lett. 89(16), 163107 (2006).
[Crossref]

Lien, Y. C.

C. H. Cheng, Y. C. Lien, C. L. Wu, and G. R. Lin, “Mutlicolor electroluminescent Si quantum dots embedded in SiOx thin film MOSLED with 2.4% external quantum efficiency,” Opt. Express 21(1), 391–403 (2013).
[Crossref] [PubMed]

Y. C. Lien, J. M. Shieh, W. H. Huang, C. H. Tu, C. Wang, C. H. Shen, B. T. Dai, C. L. Pan, C. M. Hu, and F. L. Yang, “Fast programming metal-gate Si quantum dot nonvolatile memory using green nanosecond laser spike annealing,” Appl. Phys. Lett. 100(14), 143501 (2012).
[Crossref]

Lin, C. J.

G. R. Lin, C. J. Lin, and K. C. Yu, “Time-resolved photoluminescence and capacitance–voltage analysis of the neutral vacancy defect in silicon implanted SiO2 on silicon substrate,” J. Appl. Phys. 96(5), 3025–3027 (2004).
[Crossref]

Lin, C. T.

G. R. Lin, Y. H. Pai, C. T. Lin, and C. C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based lightemitting diodes,” Appl. Phys. Lett. 96(26), 263514 (2010).
[Crossref]

G. R. Lin, Y. H. Pai, and C. T. Lin, “Microwatt MOSLED using SiOx with buried Si nanocrystals on Si nano-pillar array,” J. Lightwave Technol. 26(11), 1486–1491 (2008).
[Crossref]

Lin, G. R.

C. H. Cheng, Y. C. Lien, C. L. Wu, and G. R. Lin, “Mutlicolor electroluminescent Si quantum dots embedded in SiOx thin film MOSLED with 2.4% external quantum efficiency,” Opt. Express 21(1), 391–403 (2013).
[Crossref] [PubMed]

K. H. Lin, S. C. Liou, W. L. Chen, C. L. Wu, G. R. Lin, and Y. M. Chang, “Tunable and stable UV-NIR photoluminescence from annealed SiOx with Si nanoparticles,” Opt. Express 21(20), 23416–23424 (2013).
[Crossref] [PubMed]

L. Wu and G. R. Lin, “Power gain modeling of Si quantum dots embedded in a SiOx waveguide amplifier with inhomogeneous broadened spontaneous emission,” IEEE J. Sel. Top. Quant. 19(5), 3000109 (2013).

C. L. Wu and G. R. Lin, “Inhomogeneous linewidth broadening and radiative lifetime dispersion of size ependent direct bandgap radiation in Si quantum dot,” AIP Adv. 2(4), 042162 (2012).
[Crossref]

C. L. Wu, Y. H. Lin, and G. R. Lin, “Narrow-linewidth and wavelength-tunable red-light emission from an Si-quantum-dot embedded oxynitride distributed Bragg reflector,” IEEE J. Sel. Top. Quant. 18(6), 1643–1649 (2012).
[Crossref]

G. R. Lin, Y. H. Pai, C. T. Lin, and C. C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based lightemitting diodes,” Appl. Phys. Lett. 96(26), 263514 (2010).
[Crossref]

G. R. Lin, Y. H. Pai, and C. T. Lin, “Microwatt MOSLED using SiOx with buried Si nanocrystals on Si nano-pillar array,” J. Lightwave Technol. 26(11), 1486–1491 (2008).
[Crossref]

G. R. Lin, C. J. Lin, and K. C. Yu, “Time-resolved photoluminescence and capacitance–voltage analysis of the neutral vacancy defect in silicon implanted SiO2 on silicon substrate,” J. Appl. Phys. 96(5), 3025–3027 (2004).
[Crossref]

Lin, K. H.

Lin, T.

T. Lin, X. Liu, B. Zhou, Z. Y. Zhan, A. N. Cartwright, and M. T. Swihart, “A solution-processed UV-sensitive photodiode produced using a new silicon nanocrystal ink,” Adv. Funct. Mater. 24(38), 6016–6022 (2014).
[Crossref]

Lin, Y. H.

C. L. Wu, Y. H. Lin, and G. R. Lin, “Narrow-linewidth and wavelength-tunable red-light emission from an Si-quantum-dot embedded oxynitride distributed Bragg reflector,” IEEE J. Sel. Top. Quant. 18(6), 1643–1649 (2012).
[Crossref]

Lin, Z. Y.

B. P. Veettil, L. F. Wu, X. G. Jia, Z. Y. Lin, T. Zhang, T. Yang, C. Johnson, D. McCamey, G. Conibeer, and I. Perez-Wurfl, “Passivation effects in B doped self-assembled Si nanocrystals,” Appl. Phys. Lett. 105(22), 222108 (2014).
[Crossref]

Liou, S. C.

Liu, X.

T. Lin, X. Liu, B. Zhou, Z. Y. Zhan, A. N. Cartwright, and M. T. Swihart, “A solution-processed UV-sensitive photodiode produced using a new silicon nanocrystal ink,” Adv. Funct. Mater. 24(38), 6016–6022 (2014).
[Crossref]

Liu, Y.

H. C. Sun, J. Xu, Y. Liu, W. W. Mu, W. Xu, W. Li, and K. J. Chen, “Subband light emission from phosphorous-doped amorphous Si/SiO2 multilayers at room temperature,” Chin. Phys. Lett. 28(6), 067802 (2011).
[Crossref]

J. Zhou, G. R. Chen, Y. Liu, J. Xu, T. Wang, N. Wan, Z. Y. Ma, W. Li, C. Song, and K. J. Chen, “Electroluminescent devices based on amorphous SiN/Si quantum dots/amorphous SiN sandwiched structures,” Opt. Express 17(1), 156–162 (2009).
[Crossref] [PubMed]

Liu, Y. S.

Z. H. Cen, J. Xu, Y. S. Liu, W. Li, L. Xu, Z. Y. Ma, X. F. Huang, and K. J. Chen, “Visible light emission from single layer Si nanodots fabricated by laser irradiation method,” Appl. Phys. Lett. 89(16), 163107 (2006).
[Crossref]

Louie, S. G.

S. Öğüt, J. R. Chelikowsky, and S. G. Louie, “Quantum confinement and optical gaps in Si nanocrystals,” Phys. Rev. Lett. 79(9), 1770–1773 (1997).
[Crossref]

Lu, P.

P. Lu, W. Mu, J. Xu, X. Zhang, W. Zhang, W. Li, L. Xu, and K. Chen, “Phosphorus doping in Si nanocrystals/SiO2 multilayers and light emission with wavelength compatible for optical telecommunication,” Sci. Rep. 6, 22888 (2016).
[Crossref] [PubMed]

J. Xu, S. H. Sun, Y. Q. Cao, P. Lu, W. Li, and K. J. Chen, “Light trapping and down-shifting effect of periodically nanopatterned Si-quantum-dot-based structures for enhanced photovoltaic properties,” Part. Part. Syst. Charact. 31(4), 459–464 (2014).
[Crossref]

Ma, L.

T. Yu, F. Wang, Y. Xu, L. Ma, X. Pi, and D. Yang, “Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors,” Adv. Mater. 28(24), 4912–4919 (2016).
[Crossref] [PubMed]

Ma, Z. Y.

J. Zhou, G. R. Chen, Y. Liu, J. Xu, T. Wang, N. Wan, Z. Y. Ma, W. Li, C. Song, and K. J. Chen, “Electroluminescent devices based on amorphous SiN/Si quantum dots/amorphous SiN sandwiched structures,” Opt. Express 17(1), 156–162 (2009).
[Crossref] [PubMed]

Z. H. Cen, J. Xu, Y. S. Liu, W. Li, L. Xu, Z. Y. Ma, X. F. Huang, and K. J. Chen, “Visible light emission from single layer Si nanodots fabricated by laser irradiation method,” Appl. Phys. Lett. 89(16), 163107 (2006).
[Crossref]

Maier-Flaig, F.

F. Maier-Flaig, E. J. Henderson, S. Valouch, S. Klinkhammer, C. Kubel, G. A. Ozin, and U. Lemmer, “Photophysics of organically-capped silicon nanocrystals-A closer look into silicon nanocrystal luminescence using low temperature transient spectroscopy,” Chem. Phys. 405, 175–180 (2012).
[Crossref]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

McCamey, D.

B. P. Veettil, L. F. Wu, X. G. Jia, Z. Y. Lin, T. Zhang, T. Yang, C. Johnson, D. McCamey, G. Conibeer, and I. Perez-Wurfl, “Passivation effects in B doped self-assembled Si nanocrystals,” Appl. Phys. Lett. 105(22), 222108 (2014).
[Crossref]

Mimura, A.

M. Fujii, A. Mimura, S. Hayashi, Y. Yamamoto, and K. Murakami, “Hyperfine structure of the electron spin resonance of phosphorus-doped Si nanocrystals,” Phys. Rev. Lett. 89(20), 206805 (2002).
[Crossref] [PubMed]

M. Fujii, A. Mimura, S. Hayashi, K. Yamamoto, C. Urakawa, and H. Ohta, “Improvement in photoluminescence efficiency of SiO2 films containing Si nanocrystals by P doping: An electron spin resonance study,” J. Appl. Phys. 87(4), 1855–1857 (2000).
[Crossref]

M. Fujii, A. Mimura, S. Hayashi, and K. Yamamoto, “Photoluminescence from Si nanocrystals dispersed in phosphosilicate glass thin films: Improvement of photoluminescence efficiency,” Appl. Phys. Lett. 75(2), 184–186 (1999).
[Crossref]

Min, K. S.

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron-hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76(3), 351–353 (2000).
[Crossref]

Mu, W.

P. Lu, W. Mu, J. Xu, X. Zhang, W. Zhang, W. Li, L. Xu, and K. Chen, “Phosphorus doping in Si nanocrystals/SiO2 multilayers and light emission with wavelength compatible for optical telecommunication,” Sci. Rep. 6, 22888 (2016).
[Crossref] [PubMed]

Mu, W. W.

W. W. Mu, P. Zhang, J. Xu, S. H. Sun, J. Xu, W. Li, and K. J. Chen, “Direct-current and alternating-current driving Si quantum dots-based light emitting device,” IEEE J. Sel. Top. Quant. 20(4), 8200106 (2014).

H. C. Sun, J. Xu, Y. Liu, W. W. Mu, W. Xu, W. Li, and K. J. Chen, “Subband light emission from phosphorous-doped amorphous Si/SiO2 multilayers at room temperature,” Chin. Phys. Lett. 28(6), 067802 (2011).
[Crossref]

Murakami, K.

M. Fujii, A. Mimura, S. Hayashi, Y. Yamamoto, and K. Murakami, “Hyperfine structure of the electron spin resonance of phosphorus-doped Si nanocrystals,” Phys. Rev. Lett. 89(20), 206805 (2002).
[Crossref] [PubMed]

Ni, Z. Y.

Z. Y. Ni, X. D. Pi, M. Ali, S. Zhou, T. Nozaki, and D. R. Yang, “Freestanding doped silicon nanocrystals synthesized by plasma,” J. Phys. D Appl. Phys. 48(31), 314006 (2015).
[Crossref]

Z. Y. Ni, X. D. Pi, and D. R. Yang, “Doping Si nanocrystals embedded in SiO2 with P in the framework of density functional theory,” Phys. Rev. B 89(3), 035312 (2014).
[Crossref]

X. D. Pi, Z. Y. Ni, D. R. Yang, and C. Delerue, “Ab initio study on the effect of structural relaxation on the electronic and optical properties of P-doped Si nanocrystals,” J. Appl. Lett. 116(19), 194304 (2014).

Nozaki, T.

Z. Y. Ni, X. D. Pi, M. Ali, S. Zhou, T. Nozaki, and D. R. Yang, “Freestanding doped silicon nanocrystals synthesized by plasma,” J. Phys. D Appl. Phys. 48(31), 314006 (2015).
[Crossref]

Ögüt, S.

S. Öğüt, J. R. Chelikowsky, and S. G. Louie, “Quantum confinement and optical gaps in Si nanocrystals,” Phys. Rev. Lett. 79(9), 1770–1773 (1997).
[Crossref]

Ohta, H.

M. Fujii, A. Mimura, S. Hayashi, K. Yamamoto, C. Urakawa, and H. Ohta, “Improvement in photoluminescence efficiency of SiO2 films containing Si nanocrystals by P doping: An electron spin resonance study,” J. Appl. Phys. 87(4), 1855–1857 (2000).
[Crossref]

Oliva-Chatelain, B. L.

B. L. Oliva-Chatelain, T. M. Ticich, and A. R. Barron, “Doping silicon nanocrystals and quantum dots,” Nanoscale 8(4), 1733–1745 (2016).
[Crossref] [PubMed]

Ozin, G. A.

F. Maier-Flaig, E. J. Henderson, S. Valouch, S. Klinkhammer, C. Kubel, G. A. Ozin, and U. Lemmer, “Photophysics of organically-capped silicon nanocrystals-A closer look into silicon nanocrystal luminescence using low temperature transient spectroscopy,” Chem. Phys. 405, 175–180 (2012).
[Crossref]

Pai, Y. H.

G. R. Lin, Y. H. Pai, C. T. Lin, and C. C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based lightemitting diodes,” Appl. Phys. Lett. 96(26), 263514 (2010).
[Crossref]

G. R. Lin, Y. H. Pai, and C. T. Lin, “Microwatt MOSLED using SiOx with buried Si nanocrystals on Si nano-pillar array,” J. Lightwave Technol. 26(11), 1486–1491 (2008).
[Crossref]

Pan, C. L.

Y. C. Lien, J. M. Shieh, W. H. Huang, C. H. Tu, C. Wang, C. H. Shen, B. T. Dai, C. L. Pan, C. M. Hu, and F. L. Yang, “Fast programming metal-gate Si quantum dot nonvolatile memory using green nanosecond laser spike annealing,” Appl. Phys. Lett. 100(14), 143501 (2012).
[Crossref]

Pavesi, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

Perez-Wurfl, I.

B. P. Veettil, L. F. Wu, X. G. Jia, Z. Y. Lin, T. Zhang, T. Yang, C. Johnson, D. McCamey, G. Conibeer, and I. Perez-Wurfl, “Passivation effects in B doped self-assembled Si nanocrystals,” Appl. Phys. Lett. 105(22), 222108 (2014).
[Crossref]

Pi, X.

T. Yu, F. Wang, Y. Xu, L. Ma, X. Pi, and D. Yang, “Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors,” Adv. Mater. 28(24), 4912–4919 (2016).
[Crossref] [PubMed]

Pi, X. D.

Z. Y. Ni, X. D. Pi, M. Ali, S. Zhou, T. Nozaki, and D. R. Yang, “Freestanding doped silicon nanocrystals synthesized by plasma,” J. Phys. D Appl. Phys. 48(31), 314006 (2015).
[Crossref]

Z. Y. Ni, X. D. Pi, and D. R. Yang, “Doping Si nanocrystals embedded in SiO2 with P in the framework of density functional theory,” Phys. Rev. B 89(3), 035312 (2014).
[Crossref]

X. D. Pi, Z. Y. Ni, D. R. Yang, and C. Delerue, “Ab initio study on the effect of structural relaxation on the electronic and optical properties of P-doped Si nanocrystals,” J. Appl. Lett. 116(19), 194304 (2014).

Polisski, G.

D. Kovalev, H. Heckler, G. Polisski, and F. Koch, “Optical properties of Si nanocrystals,” Phys. Status Solidi, B Basic Res. 215(2), 871–932 (1999).
[Crossref]

Polman, A.

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron-hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76(3), 351–353 (2000).
[Crossref]

Priolo, F.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

Rinnert, H.

H. Rinnert, O. Jambois, and M. Vergnat, “Photoluminescence properties of size-controlled silicon nanocrystals at low temperatures,” J. Appl. Phys. 106(2), 023501 (2009).
[Crossref]

Shen, C. H.

Y. C. Lien, J. M. Shieh, W. H. Huang, C. H. Tu, C. Wang, C. H. Shen, B. T. Dai, C. L. Pan, C. M. Hu, and F. L. Yang, “Fast programming metal-gate Si quantum dot nonvolatile memory using green nanosecond laser spike annealing,” Appl. Phys. Lett. 100(14), 143501 (2012).
[Crossref]

Shieh, J. M.

Y. C. Lien, J. M. Shieh, W. H. Huang, C. H. Tu, C. Wang, C. H. Shen, B. T. Dai, C. L. Pan, C. M. Hu, and F. L. Yang, “Fast programming metal-gate Si quantum dot nonvolatile memory using green nanosecond laser spike annealing,” Appl. Phys. Lett. 100(14), 143501 (2012).
[Crossref]

Song, C.

Sugimoto, H.

M. Fujii, H. Sugimoto, and K. Imakita, “All-inorganic colloidal silicon nanocrystals-surface modification by boron and phosphorus co-doping,” Nanotechnology 27(26), 262001 (2016).
[Crossref] [PubMed]

Sun, H. C.

H. C. Sun, J. Xu, Y. Liu, W. W. Mu, W. Xu, W. Li, and K. J. Chen, “Subband light emission from phosphorous-doped amorphous Si/SiO2 multilayers at room temperature,” Chin. Phys. Lett. 28(6), 067802 (2011).
[Crossref]

Sun, S. H.

J. Xu, S. H. Sun, Y. Q. Cao, P. Lu, W. Li, and K. J. Chen, “Light trapping and down-shifting effect of periodically nanopatterned Si-quantum-dot-based structures for enhanced photovoltaic properties,” Part. Part. Syst. Charact. 31(4), 459–464 (2014).
[Crossref]

W. W. Mu, P. Zhang, J. Xu, S. H. Sun, J. Xu, W. Li, and K. J. Chen, “Direct-current and alternating-current driving Si quantum dots-based light emitting device,” IEEE J. Sel. Top. Quant. 20(4), 8200106 (2014).

Swihart, M. T.

T. Lin, X. Liu, B. Zhou, Z. Y. Zhan, A. N. Cartwright, and M. T. Swihart, “A solution-processed UV-sensitive photodiode produced using a new silicon nanocrystal ink,” Adv. Funct. Mater. 24(38), 6016–6022 (2014).
[Crossref]

Takase, Y.

M. Fujii, K. Toshikiyo, Y. Takase, Y. Yamaguchi, and S. Hayashi, “Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystals,” J. Appl. Phys. 94(3), 1990–1995 (2003).
[Crossref]

Ticich, T. M.

B. L. Oliva-Chatelain, T. M. Ticich, and A. R. Barron, “Doping silicon nanocrystals and quantum dots,” Nanoscale 8(4), 1733–1745 (2016).
[Crossref] [PubMed]

Toshikiyo, K.

M. Fujii, K. Toshikiyo, Y. Takase, Y. Yamaguchi, and S. Hayashi, “Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystals,” J. Appl. Phys. 94(3), 1990–1995 (2003).
[Crossref]

Tu, C. H.

Y. C. Lien, J. M. Shieh, W. H. Huang, C. H. Tu, C. Wang, C. H. Shen, B. T. Dai, C. L. Pan, C. M. Hu, and F. L. Yang, “Fast programming metal-gate Si quantum dot nonvolatile memory using green nanosecond laser spike annealing,” Appl. Phys. Lett. 100(14), 143501 (2012).
[Crossref]

Urakawa, C.

M. Fujii, A. Mimura, S. Hayashi, K. Yamamoto, C. Urakawa, and H. Ohta, “Improvement in photoluminescence efficiency of SiO2 films containing Si nanocrystals by P doping: An electron spin resonance study,” J. Appl. Phys. 87(4), 1855–1857 (2000).
[Crossref]

Valouch, S.

F. Maier-Flaig, E. J. Henderson, S. Valouch, S. Klinkhammer, C. Kubel, G. A. Ozin, and U. Lemmer, “Photophysics of organically-capped silicon nanocrystals-A closer look into silicon nanocrystal luminescence using low temperature transient spectroscopy,” Chem. Phys. 405, 175–180 (2012).
[Crossref]

Veettil, B. P.

B. P. Veettil, L. F. Wu, X. G. Jia, Z. Y. Lin, T. Zhang, T. Yang, C. Johnson, D. McCamey, G. Conibeer, and I. Perez-Wurfl, “Passivation effects in B doped self-assembled Si nanocrystals,” Appl. Phys. Lett. 105(22), 222108 (2014).
[Crossref]

Vergnat, M.

H. Rinnert, O. Jambois, and M. Vergnat, “Photoluminescence properties of size-controlled silicon nanocrystals at low temperatures,” J. Appl. Phys. 106(2), 023501 (2009).
[Crossref]

Wan, N.

Wang, C.

Y. C. Lien, J. M. Shieh, W. H. Huang, C. H. Tu, C. Wang, C. H. Shen, B. T. Dai, C. L. Pan, C. M. Hu, and F. L. Yang, “Fast programming metal-gate Si quantum dot nonvolatile memory using green nanosecond laser spike annealing,” Appl. Phys. Lett. 100(14), 143501 (2012).
[Crossref]

Wang, F.

T. Yu, F. Wang, Y. Xu, L. Ma, X. Pi, and D. Yang, “Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors,” Adv. Mater. 28(24), 4912–4919 (2016).
[Crossref] [PubMed]

Wang, Q. M.

X. X. Wang, J. G. Zhang, L. Ding, B. W. Cheng, W. K. Ge, J. Z. Yu, and Q. M. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72(19), 195313 (2005).
[Crossref]

Wang, T.

Wang, X. X.

X. X. Wang, J. G. Zhang, L. Ding, B. W. Cheng, W. K. Ge, J. Z. Yu, and Q. M. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72(19), 195313 (2005).
[Crossref]

Wu, C. L.

K. H. Lin, S. C. Liou, W. L. Chen, C. L. Wu, G. R. Lin, and Y. M. Chang, “Tunable and stable UV-NIR photoluminescence from annealed SiOx with Si nanoparticles,” Opt. Express 21(20), 23416–23424 (2013).
[Crossref] [PubMed]

C. H. Cheng, Y. C. Lien, C. L. Wu, and G. R. Lin, “Mutlicolor electroluminescent Si quantum dots embedded in SiOx thin film MOSLED with 2.4% external quantum efficiency,” Opt. Express 21(1), 391–403 (2013).
[Crossref] [PubMed]

C. L. Wu, Y. H. Lin, and G. R. Lin, “Narrow-linewidth and wavelength-tunable red-light emission from an Si-quantum-dot embedded oxynitride distributed Bragg reflector,” IEEE J. Sel. Top. Quant. 18(6), 1643–1649 (2012).
[Crossref]

C. L. Wu and G. R. Lin, “Inhomogeneous linewidth broadening and radiative lifetime dispersion of size ependent direct bandgap radiation in Si quantum dot,” AIP Adv. 2(4), 042162 (2012).
[Crossref]

Wu, L.

L. Wu and G. R. Lin, “Power gain modeling of Si quantum dots embedded in a SiOx waveguide amplifier with inhomogeneous broadened spontaneous emission,” IEEE J. Sel. Top. Quant. 19(5), 3000109 (2013).

Wu, L. F.

B. P. Veettil, L. F. Wu, X. G. Jia, Z. Y. Lin, T. Zhang, T. Yang, C. Johnson, D. McCamey, G. Conibeer, and I. Perez-Wurfl, “Passivation effects in B doped self-assembled Si nanocrystals,” Appl. Phys. Lett. 105(22), 222108 (2014).
[Crossref]

Xu, J.

P. Lu, W. Mu, J. Xu, X. Zhang, W. Zhang, W. Li, L. Xu, and K. Chen, “Phosphorus doping in Si nanocrystals/SiO2 multilayers and light emission with wavelength compatible for optical telecommunication,” Sci. Rep. 6, 22888 (2016).
[Crossref] [PubMed]

W. W. Mu, P. Zhang, J. Xu, S. H. Sun, J. Xu, W. Li, and K. J. Chen, “Direct-current and alternating-current driving Si quantum dots-based light emitting device,” IEEE J. Sel. Top. Quant. 20(4), 8200106 (2014).

W. W. Mu, P. Zhang, J. Xu, S. H. Sun, J. Xu, W. Li, and K. J. Chen, “Direct-current and alternating-current driving Si quantum dots-based light emitting device,” IEEE J. Sel. Top. Quant. 20(4), 8200106 (2014).

J. Xu, S. H. Sun, Y. Q. Cao, P. Lu, W. Li, and K. J. Chen, “Light trapping and down-shifting effect of periodically nanopatterned Si-quantum-dot-based structures for enhanced photovoltaic properties,” Part. Part. Syst. Charact. 31(4), 459–464 (2014).
[Crossref]

H. C. Sun, J. Xu, Y. Liu, W. W. Mu, W. Xu, W. Li, and K. J. Chen, “Subband light emission from phosphorous-doped amorphous Si/SiO2 multilayers at room temperature,” Chin. Phys. Lett. 28(6), 067802 (2011).
[Crossref]

J. Zhou, G. R. Chen, Y. Liu, J. Xu, T. Wang, N. Wan, Z. Y. Ma, W. Li, C. Song, and K. J. Chen, “Electroluminescent devices based on amorphous SiN/Si quantum dots/amorphous SiN sandwiched structures,” Opt. Express 17(1), 156–162 (2009).
[Crossref] [PubMed]

Z. H. Cen, J. Xu, Y. S. Liu, W. Li, L. Xu, Z. Y. Ma, X. F. Huang, and K. J. Chen, “Visible light emission from single layer Si nanodots fabricated by laser irradiation method,” Appl. Phys. Lett. 89(16), 163107 (2006).
[Crossref]

Xu, L.

P. Lu, W. Mu, J. Xu, X. Zhang, W. Zhang, W. Li, L. Xu, and K. Chen, “Phosphorus doping in Si nanocrystals/SiO2 multilayers and light emission with wavelength compatible for optical telecommunication,” Sci. Rep. 6, 22888 (2016).
[Crossref] [PubMed]

Z. H. Cen, J. Xu, Y. S. Liu, W. Li, L. Xu, Z. Y. Ma, X. F. Huang, and K. J. Chen, “Visible light emission from single layer Si nanodots fabricated by laser irradiation method,” Appl. Phys. Lett. 89(16), 163107 (2006).
[Crossref]

Xu, W.

H. C. Sun, J. Xu, Y. Liu, W. W. Mu, W. Xu, W. Li, and K. J. Chen, “Subband light emission from phosphorous-doped amorphous Si/SiO2 multilayers at room temperature,” Chin. Phys. Lett. 28(6), 067802 (2011).
[Crossref]

Xu, Y.

T. Yu, F. Wang, Y. Xu, L. Ma, X. Pi, and D. Yang, “Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors,” Adv. Mater. 28(24), 4912–4919 (2016).
[Crossref] [PubMed]

Yamaguchi, Y.

M. Fujii, K. Toshikiyo, Y. Takase, Y. Yamaguchi, and S. Hayashi, “Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystals,” J. Appl. Phys. 94(3), 1990–1995 (2003).
[Crossref]

Yamamoto, K.

M. Fujii, A. Mimura, S. Hayashi, K. Yamamoto, C. Urakawa, and H. Ohta, “Improvement in photoluminescence efficiency of SiO2 films containing Si nanocrystals by P doping: An electron spin resonance study,” J. Appl. Phys. 87(4), 1855–1857 (2000).
[Crossref]

M. Fujii, A. Mimura, S. Hayashi, and K. Yamamoto, “Photoluminescence from Si nanocrystals dispersed in phosphosilicate glass thin films: Improvement of photoluminescence efficiency,” Appl. Phys. Lett. 75(2), 184–186 (1999).
[Crossref]

Yamamoto, Y.

M. Fujii, A. Mimura, S. Hayashi, Y. Yamamoto, and K. Murakami, “Hyperfine structure of the electron spin resonance of phosphorus-doped Si nanocrystals,” Phys. Rev. Lett. 89(20), 206805 (2002).
[Crossref] [PubMed]

Yang, D.

T. Yu, F. Wang, Y. Xu, L. Ma, X. Pi, and D. Yang, “Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors,” Adv. Mater. 28(24), 4912–4919 (2016).
[Crossref] [PubMed]

Yang, D. R.

Z. Y. Ni, X. D. Pi, M. Ali, S. Zhou, T. Nozaki, and D. R. Yang, “Freestanding doped silicon nanocrystals synthesized by plasma,” J. Phys. D Appl. Phys. 48(31), 314006 (2015).
[Crossref]

Z. Y. Ni, X. D. Pi, and D. R. Yang, “Doping Si nanocrystals embedded in SiO2 with P in the framework of density functional theory,” Phys. Rev. B 89(3), 035312 (2014).
[Crossref]

X. D. Pi, Z. Y. Ni, D. R. Yang, and C. Delerue, “Ab initio study on the effect of structural relaxation on the electronic and optical properties of P-doped Si nanocrystals,” J. Appl. Lett. 116(19), 194304 (2014).

Yang, F. L.

Y. C. Lien, J. M. Shieh, W. H. Huang, C. H. Tu, C. Wang, C. H. Shen, B. T. Dai, C. L. Pan, C. M. Hu, and F. L. Yang, “Fast programming metal-gate Si quantum dot nonvolatile memory using green nanosecond laser spike annealing,” Appl. Phys. Lett. 100(14), 143501 (2012).
[Crossref]

Yang, T.

B. P. Veettil, L. F. Wu, X. G. Jia, Z. Y. Lin, T. Zhang, T. Yang, C. Johnson, D. McCamey, G. Conibeer, and I. Perez-Wurfl, “Passivation effects in B doped self-assembled Si nanocrystals,” Appl. Phys. Lett. 105(22), 222108 (2014).
[Crossref]

Yu, J. Z.

X. X. Wang, J. G. Zhang, L. Ding, B. W. Cheng, W. K. Ge, J. Z. Yu, and Q. M. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72(19), 195313 (2005).
[Crossref]

Yu, K. C.

G. R. Lin, C. J. Lin, and K. C. Yu, “Time-resolved photoluminescence and capacitance–voltage analysis of the neutral vacancy defect in silicon implanted SiO2 on silicon substrate,” J. Appl. Phys. 96(5), 3025–3027 (2004).
[Crossref]

Yu, T.

T. Yu, F. Wang, Y. Xu, L. Ma, X. Pi, and D. Yang, “Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors,” Adv. Mater. 28(24), 4912–4919 (2016).
[Crossref] [PubMed]

Zacharias, M.

A. M. Hartel, S. Gutsch, D. Hiller, and M. Zacharias, “Fundamental temperature-dependent properties of the Si nanocrystal band gap,” Phys. Rev. B 85(16), 165306 (2012).
[Crossref]

Zhan, Z. Y.

T. Lin, X. Liu, B. Zhou, Z. Y. Zhan, A. N. Cartwright, and M. T. Swihart, “A solution-processed UV-sensitive photodiode produced using a new silicon nanocrystal ink,” Adv. Funct. Mater. 24(38), 6016–6022 (2014).
[Crossref]

Zhang, J. G.

X. X. Wang, J. G. Zhang, L. Ding, B. W. Cheng, W. K. Ge, J. Z. Yu, and Q. M. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72(19), 195313 (2005).
[Crossref]

Zhang, P.

W. W. Mu, P. Zhang, J. Xu, S. H. Sun, J. Xu, W. Li, and K. J. Chen, “Direct-current and alternating-current driving Si quantum dots-based light emitting device,” IEEE J. Sel. Top. Quant. 20(4), 8200106 (2014).

Zhang, T.

B. P. Veettil, L. F. Wu, X. G. Jia, Z. Y. Lin, T. Zhang, T. Yang, C. Johnson, D. McCamey, G. Conibeer, and I. Perez-Wurfl, “Passivation effects in B doped self-assembled Si nanocrystals,” Appl. Phys. Lett. 105(22), 222108 (2014).
[Crossref]

Zhang, W.

P. Lu, W. Mu, J. Xu, X. Zhang, W. Zhang, W. Li, L. Xu, and K. Chen, “Phosphorus doping in Si nanocrystals/SiO2 multilayers and light emission with wavelength compatible for optical telecommunication,” Sci. Rep. 6, 22888 (2016).
[Crossref] [PubMed]

Zhang, X.

P. Lu, W. Mu, J. Xu, X. Zhang, W. Zhang, W. Li, L. Xu, and K. Chen, “Phosphorus doping in Si nanocrystals/SiO2 multilayers and light emission with wavelength compatible for optical telecommunication,” Sci. Rep. 6, 22888 (2016).
[Crossref] [PubMed]

Zhou, B.

T. Lin, X. Liu, B. Zhou, Z. Y. Zhan, A. N. Cartwright, and M. T. Swihart, “A solution-processed UV-sensitive photodiode produced using a new silicon nanocrystal ink,” Adv. Funct. Mater. 24(38), 6016–6022 (2014).
[Crossref]

Zhou, J.

Zhou, S.

Z. Y. Ni, X. D. Pi, M. Ali, S. Zhou, T. Nozaki, and D. R. Yang, “Freestanding doped silicon nanocrystals synthesized by plasma,” J. Phys. D Appl. Phys. 48(31), 314006 (2015).
[Crossref]

Adv. Funct. Mater. (1)

T. Lin, X. Liu, B. Zhou, Z. Y. Zhan, A. N. Cartwright, and M. T. Swihart, “A solution-processed UV-sensitive photodiode produced using a new silicon nanocrystal ink,” Adv. Funct. Mater. 24(38), 6016–6022 (2014).
[Crossref]

Adv. Mater. (1)

T. Yu, F. Wang, Y. Xu, L. Ma, X. Pi, and D. Yang, “Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors,” Adv. Mater. 28(24), 4912–4919 (2016).
[Crossref] [PubMed]

AIP Adv. (1)

C. L. Wu and G. R. Lin, “Inhomogeneous linewidth broadening and radiative lifetime dispersion of size ependent direct bandgap radiation in Si quantum dot,” AIP Adv. 2(4), 042162 (2012).
[Crossref]

Appl. Phys. Lett. (6)

G. R. Lin, Y. H. Pai, C. T. Lin, and C. C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based lightemitting diodes,” Appl. Phys. Lett. 96(26), 263514 (2010).
[Crossref]

Z. H. Cen, J. Xu, Y. S. Liu, W. Li, L. Xu, Z. Y. Ma, X. F. Huang, and K. J. Chen, “Visible light emission from single layer Si nanodots fabricated by laser irradiation method,” Appl. Phys. Lett. 89(16), 163107 (2006).
[Crossref]

Y. C. Lien, J. M. Shieh, W. H. Huang, C. H. Tu, C. Wang, C. H. Shen, B. T. Dai, C. L. Pan, C. M. Hu, and F. L. Yang, “Fast programming metal-gate Si quantum dot nonvolatile memory using green nanosecond laser spike annealing,” Appl. Phys. Lett. 100(14), 143501 (2012).
[Crossref]

M. Fujii, A. Mimura, S. Hayashi, and K. Yamamoto, “Photoluminescence from Si nanocrystals dispersed in phosphosilicate glass thin films: Improvement of photoluminescence efficiency,” Appl. Phys. Lett. 75(2), 184–186 (1999).
[Crossref]

B. P. Veettil, L. F. Wu, X. G. Jia, Z. Y. Lin, T. Zhang, T. Yang, C. Johnson, D. McCamey, G. Conibeer, and I. Perez-Wurfl, “Passivation effects in B doped self-assembled Si nanocrystals,” Appl. Phys. Lett. 105(22), 222108 (2014).
[Crossref]

M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, “Size-dependent electron-hole exchange interaction in Si nanocrystals,” Appl. Phys. Lett. 76(3), 351–353 (2000).
[Crossref]

Chem. Phys. (1)

F. Maier-Flaig, E. J. Henderson, S. Valouch, S. Klinkhammer, C. Kubel, G. A. Ozin, and U. Lemmer, “Photophysics of organically-capped silicon nanocrystals-A closer look into silicon nanocrystal luminescence using low temperature transient spectroscopy,” Chem. Phys. 405, 175–180 (2012).
[Crossref]

Chin. Phys. Lett. (1)

H. C. Sun, J. Xu, Y. Liu, W. W. Mu, W. Xu, W. Li, and K. J. Chen, “Subband light emission from phosphorous-doped amorphous Si/SiO2 multilayers at room temperature,” Chin. Phys. Lett. 28(6), 067802 (2011).
[Crossref]

IEEE J. Sel. Top. Quant. (3)

C. L. Wu, Y. H. Lin, and G. R. Lin, “Narrow-linewidth and wavelength-tunable red-light emission from an Si-quantum-dot embedded oxynitride distributed Bragg reflector,” IEEE J. Sel. Top. Quant. 18(6), 1643–1649 (2012).
[Crossref]

W. W. Mu, P. Zhang, J. Xu, S. H. Sun, J. Xu, W. Li, and K. J. Chen, “Direct-current and alternating-current driving Si quantum dots-based light emitting device,” IEEE J. Sel. Top. Quant. 20(4), 8200106 (2014).

L. Wu and G. R. Lin, “Power gain modeling of Si quantum dots embedded in a SiOx waveguide amplifier with inhomogeneous broadened spontaneous emission,” IEEE J. Sel. Top. Quant. 19(5), 3000109 (2013).

J. Appl. Lett. (1)

X. D. Pi, Z. Y. Ni, D. R. Yang, and C. Delerue, “Ab initio study on the effect of structural relaxation on the electronic and optical properties of P-doped Si nanocrystals,” J. Appl. Lett. 116(19), 194304 (2014).

J. Appl. Phys. (4)

M. Fujii, K. Toshikiyo, Y. Takase, Y. Yamaguchi, and S. Hayashi, “Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystals,” J. Appl. Phys. 94(3), 1990–1995 (2003).
[Crossref]

H. Rinnert, O. Jambois, and M. Vergnat, “Photoluminescence properties of size-controlled silicon nanocrystals at low temperatures,” J. Appl. Phys. 106(2), 023501 (2009).
[Crossref]

G. R. Lin, C. J. Lin, and K. C. Yu, “Time-resolved photoluminescence and capacitance–voltage analysis of the neutral vacancy defect in silicon implanted SiO2 on silicon substrate,” J. Appl. Phys. 96(5), 3025–3027 (2004).
[Crossref]

M. Fujii, A. Mimura, S. Hayashi, K. Yamamoto, C. Urakawa, and H. Ohta, “Improvement in photoluminescence efficiency of SiO2 films containing Si nanocrystals by P doping: An electron spin resonance study,” J. Appl. Phys. 87(4), 1855–1857 (2000).
[Crossref]

J. Lightwave Technol. (1)

J. Lumin. (1)

M. Fukuda, M. Fujii, and S. Hayashi, “Room-temperature below bulk-Si band gap photoluminescence from P and B co-doped and compensated Si nanocrystals with narrow size distributions,” J. Lumin. 131(5), 1066–1069 (2011).
[Crossref]

J. Phys. D Appl. Phys. (1)

Z. Y. Ni, X. D. Pi, M. Ali, S. Zhou, T. Nozaki, and D. R. Yang, “Freestanding doped silicon nanocrystals synthesized by plasma,” J. Phys. D Appl. Phys. 48(31), 314006 (2015).
[Crossref]

Nanoscale (1)

B. L. Oliva-Chatelain, T. M. Ticich, and A. R. Barron, “Doping silicon nanocrystals and quantum dots,” Nanoscale 8(4), 1733–1745 (2016).
[Crossref] [PubMed]

Nanotechnology (1)

M. Fujii, H. Sugimoto, and K. Imakita, “All-inorganic colloidal silicon nanocrystals-surface modification by boron and phosphorus co-doping,” Nanotechnology 27(26), 262001 (2016).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

Nature (1)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[Crossref] [PubMed]

Opt. Express (3)

Part. Part. Syst. Charact. (1)

J. Xu, S. H. Sun, Y. Q. Cao, P. Lu, W. Li, and K. J. Chen, “Light trapping and down-shifting effect of periodically nanopatterned Si-quantum-dot-based structures for enhanced photovoltaic properties,” Part. Part. Syst. Charact. 31(4), 459–464 (2014).
[Crossref]

Phys. Rev. B (3)

Z. Y. Ni, X. D. Pi, and D. R. Yang, “Doping Si nanocrystals embedded in SiO2 with P in the framework of density functional theory,” Phys. Rev. B 89(3), 035312 (2014).
[Crossref]

A. M. Hartel, S. Gutsch, D. Hiller, and M. Zacharias, “Fundamental temperature-dependent properties of the Si nanocrystal band gap,” Phys. Rev. B 85(16), 165306 (2012).
[Crossref]

X. X. Wang, J. G. Zhang, L. Ding, B. W. Cheng, W. K. Ge, J. Z. Yu, and Q. M. Wang, “Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72(19), 195313 (2005).
[Crossref]

Phys. Rev. Lett. (3)

M. S. Hybertsen, “Absorption and emission of light in nanoscale silicon structures,” Phys. Rev. Lett. 72(10), 1514–1517 (1994).
[Crossref] [PubMed]

M. Fujii, A. Mimura, S. Hayashi, Y. Yamamoto, and K. Murakami, “Hyperfine structure of the electron spin resonance of phosphorus-doped Si nanocrystals,” Phys. Rev. Lett. 89(20), 206805 (2002).
[Crossref] [PubMed]

S. Öğüt, J. R. Chelikowsky, and S. G. Louie, “Quantum confinement and optical gaps in Si nanocrystals,” Phys. Rev. Lett. 79(9), 1770–1773 (1997).
[Crossref]

Phys. Status Solidi, B Basic Res. (1)

D. Kovalev, H. Heckler, G. Polisski, and F. Koch, “Optical properties of Si nanocrystals,” Phys. Status Solidi, B Basic Res. 215(2), 871–932 (1999).
[Crossref]

Sci. Rep. (1)

P. Lu, W. Mu, J. Xu, X. Zhang, W. Zhang, W. Li, L. Xu, and K. Chen, “Phosphorus doping in Si nanocrystals/SiO2 multilayers and light emission with wavelength compatible for optical telecommunication,” Sci. Rep. 6, 22888 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Cross-sectional TEM images for P-doped Si/SiO2 multilayers after 900°C annealing. Inset is the magnified image for a single Si QD.
Fig. 2
Fig. 2 Room temperature PL spectra of 900°C annealed Si QDs/SiO2 multilayers in (a) 600-1000nm range and (b) 1000-1600nm range. (c)Integrated PL intensity of P-doped Si QDs/SiO2 multilayers annealed at 900°C with various doping concentrations.
Fig. 3
Fig. 3 TRPL spectrum with fitting curve of band Ι (a) and band Π (b) for 1% P-doped sample; (c) The intensity-weighted averaged PL lifetime of the two emission bands of the Si QDs/SiO2 multilayers with various doping concentrations.
Fig. 4
Fig. 4 Temperature dependent PL spectra of Band II for (a) 0.2% and (b) 2% P-doped Si QDs/SiO2 multilayers (c) Integrated PL intensity of Band II for P-doped Si QDs/SiO2 multilayers with various concentrations.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) =   i = 1 n A i exp ( t / τ i )
τ ¯ =   i = 1 n A i τ i 2 / A i τ i
I P L ( T ) N G 1 + G τ r ( T ) ,

Metrics