Abstract

Precise micro-scale patterning of metal thin-films with semiconductor materials is a critical step in the fabrication of any micro-devices. Conventional metal patterning methods such as photolithography, laser-induced direct printing techniques, and micro-contact printing methods all have different disadvantages such as high capital equipment cost and low throughput efficiency. In this article, an optically-controlled digital electrodeposition (ODE) method for direct patterning of metal thin-films on a semiconductor substrate has been demonstrated. This method allows for dynamic patterning of custom micro-scale silver structures with high conductivity of 2 × 107 S/m in large scale within 10 seconds and could reach a smallest line width of 2.7 μm. The entire process is performed at room temperature and atmospheric pressure conditions, while requiring no photolithographic steps or metal nanoparticle inks. Utilizing this direct structural formation technique, a bottom-up protocol for rapidly assembling nanowire-based field-effect transistors has been demonstrated, which shows that this novel technique could potentially become an alternative, low-cost and flexible technology for fabricating integrated nano-devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monolithically integrated bacteriorhodopsin–GaAs field-effect transistor photoreceiver

Pallab Bhattacharya, Jian Xu, Gyorgy Váró, Duane L. Marcy, and Robert R. Birge
Opt. Lett. 27(10) 839-841 (2002)

Pulsed-laser printing of silver nanoparticles ink: control of morphological properties

Ludovic Rapp, Julie Ailuno, Anne Patricia Alloncle, and Philippe Delaporte
Opt. Express 19(22) 21563-21574 (2011)

References

  • View by:
  • |
  • |
  • |

  1. F. C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009).
    [Crossref]
  2. W. Yin, D.-H. Lee, J. Choi, C. Park, and S. M. Cho, “Screen printing of silver nanoparticle suspension for metal interconnects,” Korean J. Chem.Eng. 25(6), 1358–1361 (2008).
    [Crossref]
  3. T. Schüler, T. Asmus, W. Fritzsche, and R. Möller, “Screen printing as cost-efficient fabrication method for DNA-chips with electrical readout for detection of viral DNA,” Biosens. Bioelectron. 24(7), 2077–2084 (2009).
    [Crossref] [PubMed]
  4. C. H. Hsu, M. C. Yeh, K. L. Lo, and L. J. Chen, “Application of microcontact printing to electroless plating for the fabrication of microscale silver patterns on glass,” Langmuir 23(24), 12111–12118 (2007).
    [Crossref] [PubMed]
  5. M. S. Miller, G. J. E. Davidson, B. J. Sahli, C. M. Mailloux, and T. B. Carmichael, “Fabrication of Elastomeric Wires by Selective Electroless Metallization of Poly(dimethylsiloxane),” Adv. Mater. 20(1), 59–64 (2008).
    [Crossref]
  6. S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett. 7(7), 1869–1877 (2007).
    [Crossref] [PubMed]
  7. S. H. Ahn and L. J. Guo, “Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting,” ACS Nano 3(8), 2304–2310 (2009).
    [Crossref] [PubMed]
  8. P. Calvert, “Inkjet printing for materials and devices,” Chem. Mater. 13(10), 3299–3305 (2001).
    [Crossref]
  9. M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, “Inkjet Printing-Process and Its Applications,” Adv. Mater. 22(6), 673–685 (2010).
    [Crossref] [PubMed]
  10. J. Perelaer, B. J. de Gans, and U. S. Schubert, “Ink-jet Printing and Microwave Sintering of Conductive Silver Tracks,” Adv. Mater. 18(16), 2101–2104 (2006).
    [Crossref]
  11. M. Makrygianni, I. Kalpyris, C. Boutopoulos, and I. Zergioti, “Laser induced forward transfer of Ag nanoparticles ink deposition and characterization,” Appl. Surf. Sci. 297, 40–44 (2014).
    [Crossref]
  12. J. Yeo, S. Hong, D. Lee, N. Hotz, M. T. Lee, C. P. Grigoropoulos, S. H. Ko, and S. H. Ko, “Next Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics,” PLoS ONE 7(8), e42315 (2012).
    [Crossref] [PubMed]
  13. S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fréchet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
    [Crossref]
  14. T. Moffat, J. Bonevich, W. Huber, A. Stanishevsky, D. Kelly, G. Stafford, and D. Josell, “Superconformal electrodeposition of copper in 500–90 nm features,” J. Electrochem. Soc. 147(12), 4524–4535 (2000).
    [Crossref]
  15. S. Cherevko, N. Kulyk, and C.-H. Chung, “Pulse-reverse electrodeposition for mesoporous metal films: combination of hydrogen evolution assisted deposition and electrochemical dealloying,” Nanoscale 4(2), 568–575 (2012).
    [Crossref] [PubMed]
  16. C. Liu, K. Wang, S. Luo, Y. Tang, and L. Chen, “Direct Electrodeposition of Graphene Enabling the One-Step Synthesis of Graphene-Metal Nanocomposite Films,” Small 7(9), 1203–1206 (2011).
    [Crossref] [PubMed]
  17. Y. Son, J. Yeo, H. Moon, T. W. Lim, S. Hong, K. H. Nam, S. Yoo, C. P. Grigoropoulos, D.-Y. Yang, and S. H. Ko, “Nanoscale Electronics: Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles,” Adv. Mater. 23(28), 3176–3181 (2011).
    [Crossref] [PubMed]
  18. Y. Son, J. Yeo, C. W. Ha, J. Lee, S. Hong, K. H. Nam, D.-Y. Yang, and S. H. Ko, “Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning,” Thermochim. Acta 542, 52–56 (2012).
    [Crossref]
  19. M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
    [Crossref] [PubMed]
  20. A. J. Pascall, F. Qian, G. Wang, M. A. Worsley, Y. Li, and J. D. Kuntz, “Light-Directed Electrophoretic Deposition: A New Additive Manufacturing Technique for Arbitrarily Patterned 3D Composites,” Adv. Mater. 26(14), 2252–2256 (2014).
    [Crossref] [PubMed]
  21. S. Cherevko, N. Kulyk, and C.-H. Chung, “Pulse-reverse electrodeposition for mesoporous metal films: combination of hydrogen evolution assisted deposition and electrochemical dealloying,” Nanoscale 4(2), 568–575 (2012).
    [Crossref] [PubMed]
  22. S. Cherevko and C.-H. Chung, “Direct electrodeposition of nanoporous gold with controlled multimodal pore size distribution,” Electrochem. Commun. 13(1), 16–19 (2011).
    [Crossref]
  23. N. Yamachika, Y. Musha, J. Sasano, K. Senda, M. Kato, Y. Okinaka, and T. Osaka, “Electrodeposition of amorphous Au–Ni alloy film,” Electrochim. Acta 53(13), 4520–4527 (2008).
    [Crossref]
  24. T. A. Green, “Gold electrodeposition for microelectronic, optoelectronic and microsystem applications,” Gold Bull. 40(2), 105–114 (2007).
    [Crossref]
  25. R. Mema, L. Yuan, Q. Du, Y. Wang, and G. Zhou, “Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper,” Chem. Phys. Lett. 512(1-3), 87–91 (2011).
    [Crossref]
  26. Y. Gamburg and G. Zangari, “The Structure of the Metal-Solution Interface,” in Theory and Practice of Metal Electrodeposition (Springer, 2011), pp. 27–51.
  27. H. Morgan and N. G. Green, AC Electrokinetics: Colloids and Nanoparticles (Research Studies Press, 2003).
  28. A. A. Ramadan, R. D. Gould, and A. Ashour, “On the Van der Pauw method of resistivity measurements,” Thin Solid Films 239(2), 272–275 (1994).
    [Crossref]
  29. N. Liu, W. Liang, J. D. Mai, L. Liu, G. B. Lee, and W. J. Li, “Rapid Fabrication of Nanomaterial Electrodes Using Digitally Controlled Electrokinetics,” IEEE T. Nanotechnol 13(2), 245–253 (2014).
    [Crossref]
  30. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
    [Crossref] [PubMed]
  31. A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. D. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
    [Crossref] [PubMed]
  32. M.-W. Lee, Y.-H. Lin, and G.-B. Lee, “Manipulation and patterning of carbon nanotubes utilizing optically induced dielectrophoretic forces,” Microfluid. Nanofluid. 8(5), 609–617 (2010).
    [Crossref]

2014 (3)

M. Makrygianni, I. Kalpyris, C. Boutopoulos, and I. Zergioti, “Laser induced forward transfer of Ag nanoparticles ink deposition and characterization,” Appl. Surf. Sci. 297, 40–44 (2014).
[Crossref]

A. J. Pascall, F. Qian, G. Wang, M. A. Worsley, Y. Li, and J. D. Kuntz, “Light-Directed Electrophoretic Deposition: A New Additive Manufacturing Technique for Arbitrarily Patterned 3D Composites,” Adv. Mater. 26(14), 2252–2256 (2014).
[Crossref] [PubMed]

N. Liu, W. Liang, J. D. Mai, L. Liu, G. B. Lee, and W. J. Li, “Rapid Fabrication of Nanomaterial Electrodes Using Digitally Controlled Electrokinetics,” IEEE T. Nanotechnol 13(2), 245–253 (2014).
[Crossref]

2012 (5)

S. Cherevko, N. Kulyk, and C.-H. Chung, “Pulse-reverse electrodeposition for mesoporous metal films: combination of hydrogen evolution assisted deposition and electrochemical dealloying,” Nanoscale 4(2), 568–575 (2012).
[Crossref] [PubMed]

Y. Son, J. Yeo, C. W. Ha, J. Lee, S. Hong, K. H. Nam, D.-Y. Yang, and S. H. Ko, “Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning,” Thermochim. Acta 542, 52–56 (2012).
[Crossref]

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

J. Yeo, S. Hong, D. Lee, N. Hotz, M. T. Lee, C. P. Grigoropoulos, S. H. Ko, and S. H. Ko, “Next Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics,” PLoS ONE 7(8), e42315 (2012).
[Crossref] [PubMed]

S. Cherevko, N. Kulyk, and C.-H. Chung, “Pulse-reverse electrodeposition for mesoporous metal films: combination of hydrogen evolution assisted deposition and electrochemical dealloying,” Nanoscale 4(2), 568–575 (2012).
[Crossref] [PubMed]

2011 (4)

C. Liu, K. Wang, S. Luo, Y. Tang, and L. Chen, “Direct Electrodeposition of Graphene Enabling the One-Step Synthesis of Graphene-Metal Nanocomposite Films,” Small 7(9), 1203–1206 (2011).
[Crossref] [PubMed]

Y. Son, J. Yeo, H. Moon, T. W. Lim, S. Hong, K. H. Nam, S. Yoo, C. P. Grigoropoulos, D.-Y. Yang, and S. H. Ko, “Nanoscale Electronics: Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles,” Adv. Mater. 23(28), 3176–3181 (2011).
[Crossref] [PubMed]

R. Mema, L. Yuan, Q. Du, Y. Wang, and G. Zhou, “Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper,” Chem. Phys. Lett. 512(1-3), 87–91 (2011).
[Crossref]

S. Cherevko and C.-H. Chung, “Direct electrodeposition of nanoporous gold with controlled multimodal pore size distribution,” Electrochem. Commun. 13(1), 16–19 (2011).
[Crossref]

2010 (2)

M.-W. Lee, Y.-H. Lin, and G.-B. Lee, “Manipulation and patterning of carbon nanotubes utilizing optically induced dielectrophoretic forces,” Microfluid. Nanofluid. 8(5), 609–617 (2010).
[Crossref]

M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, “Inkjet Printing-Process and Its Applications,” Adv. Mater. 22(6), 673–685 (2010).
[Crossref] [PubMed]

2009 (3)

F. C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009).
[Crossref]

T. Schüler, T. Asmus, W. Fritzsche, and R. Möller, “Screen printing as cost-efficient fabrication method for DNA-chips with electrical readout for detection of viral DNA,” Biosens. Bioelectron. 24(7), 2077–2084 (2009).
[Crossref] [PubMed]

S. H. Ahn and L. J. Guo, “Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting,” ACS Nano 3(8), 2304–2310 (2009).
[Crossref] [PubMed]

2008 (4)

M. S. Miller, G. J. E. Davidson, B. J. Sahli, C. M. Mailloux, and T. B. Carmichael, “Fabrication of Elastomeric Wires by Selective Electroless Metallization of Poly(dimethylsiloxane),” Adv. Mater. 20(1), 59–64 (2008).
[Crossref]

W. Yin, D.-H. Lee, J. Choi, C. Park, and S. M. Cho, “Screen printing of silver nanoparticle suspension for metal interconnects,” Korean J. Chem.Eng. 25(6), 1358–1361 (2008).
[Crossref]

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. D. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[Crossref] [PubMed]

N. Yamachika, Y. Musha, J. Sasano, K. Senda, M. Kato, Y. Okinaka, and T. Osaka, “Electrodeposition of amorphous Au–Ni alloy film,” Electrochim. Acta 53(13), 4520–4527 (2008).
[Crossref]

2007 (4)

T. A. Green, “Gold electrodeposition for microelectronic, optoelectronic and microsystem applications,” Gold Bull. 40(2), 105–114 (2007).
[Crossref]

C. H. Hsu, M. C. Yeh, K. L. Lo, and L. J. Chen, “Application of microcontact printing to electroless plating for the fabrication of microscale silver patterns on glass,” Langmuir 23(24), 12111–12118 (2007).
[Crossref] [PubMed]

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett. 7(7), 1869–1877 (2007).
[Crossref] [PubMed]

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fréchet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
[Crossref]

2006 (1)

J. Perelaer, B. J. de Gans, and U. S. Schubert, “Ink-jet Printing and Microwave Sintering of Conductive Silver Tracks,” Adv. Mater. 18(16), 2101–2104 (2006).
[Crossref]

2005 (1)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

2001 (1)

P. Calvert, “Inkjet printing for materials and devices,” Chem. Mater. 13(10), 3299–3305 (2001).
[Crossref]

2000 (1)

T. Moffat, J. Bonevich, W. Huber, A. Stanishevsky, D. Kelly, G. Stafford, and D. Josell, “Superconformal electrodeposition of copper in 500–90 nm features,” J. Electrochem. Soc. 147(12), 4524–4535 (2000).
[Crossref]

1994 (1)

A. A. Ramadan, R. D. Gould, and A. Ashour, “On the Van der Pauw method of resistivity measurements,” Thin Solid Films 239(2), 272–275 (1994).
[Crossref]

Ahn, S. H.

S. H. Ahn and L. J. Guo, “Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting,” ACS Nano 3(8), 2304–2310 (2009).
[Crossref] [PubMed]

Alstrup, J.

F. C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009).
[Crossref]

Ashour, A.

A. A. Ramadan, R. D. Gould, and A. Ashour, “On the Van der Pauw method of resistivity measurements,” Thin Solid Films 239(2), 272–275 (1994).
[Crossref]

Asmus, T.

T. Schüler, T. Asmus, W. Fritzsche, and R. Möller, “Screen printing as cost-efficient fabrication method for DNA-chips with electrical readout for detection of viral DNA,” Biosens. Bioelectron. 24(7), 2077–2084 (2009).
[Crossref] [PubMed]

Bonevich, J.

T. Moffat, J. Bonevich, W. Huber, A. Stanishevsky, D. Kelly, G. Stafford, and D. Josell, “Superconformal electrodeposition of copper in 500–90 nm features,” J. Electrochem. Soc. 147(12), 4524–4535 (2000).
[Crossref]

Boutopoulos, C.

M. Makrygianni, I. Kalpyris, C. Boutopoulos, and I. Zergioti, “Laser induced forward transfer of Ag nanoparticles ink deposition and characterization,” Appl. Surf. Sci. 297, 40–44 (2014).
[Crossref]

Calvert, P.

P. Calvert, “Inkjet printing for materials and devices,” Chem. Mater. 13(10), 3299–3305 (2001).
[Crossref]

Carmichael, T. B.

M. S. Miller, G. J. E. Davidson, B. J. Sahli, C. M. Mailloux, and T. B. Carmichael, “Fabrication of Elastomeric Wires by Selective Electroless Metallization of Poly(dimethylsiloxane),” Adv. Mater. 20(1), 59–64 (2008).
[Crossref]

Chang, C. M.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Chen, H. M.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Chen, L.

C. Liu, K. Wang, S. Luo, Y. Tang, and L. Chen, “Direct Electrodeposition of Graphene Enabling the One-Step Synthesis of Graphene-Metal Nanocomposite Films,” Small 7(9), 1203–1206 (2011).
[Crossref] [PubMed]

Chen, L. J.

C. H. Hsu, M. C. Yeh, K. L. Lo, and L. J. Chen, “Application of microcontact printing to electroless plating for the fabrication of microscale silver patterns on glass,” Langmuir 23(24), 12111–12118 (2007).
[Crossref] [PubMed]

Chen, Y. L.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Cherevko, S.

S. Cherevko, N. Kulyk, and C.-H. Chung, “Pulse-reverse electrodeposition for mesoporous metal films: combination of hydrogen evolution assisted deposition and electrochemical dealloying,” Nanoscale 4(2), 568–575 (2012).
[Crossref] [PubMed]

S. Cherevko, N. Kulyk, and C.-H. Chung, “Pulse-reverse electrodeposition for mesoporous metal films: combination of hydrogen evolution assisted deposition and electrochemical dealloying,” Nanoscale 4(2), 568–575 (2012).
[Crossref] [PubMed]

S. Cherevko and C.-H. Chung, “Direct electrodeposition of nanoporous gold with controlled multimodal pore size distribution,” Electrochem. Commun. 13(1), 16–19 (2011).
[Crossref]

Chiang, H. P.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Chiou, P. Y.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. D. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[Crossref] [PubMed]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Cho, S. M.

W. Yin, D.-H. Lee, J. Choi, C. Park, and S. M. Cho, “Screen printing of silver nanoparticle suspension for metal interconnects,” Korean J. Chem.Eng. 25(6), 1358–1361 (2008).
[Crossref]

Choi, J.

W. Yin, D.-H. Lee, J. Choi, C. Park, and S. M. Cho, “Screen printing of silver nanoparticle suspension for metal interconnects,” Korean J. Chem.Eng. 25(6), 1358–1361 (2008).
[Crossref]

Chou, J.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. D. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[Crossref] [PubMed]

Chu, C. H.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Chu, N.-N.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Chung, C.-H.

S. Cherevko, N. Kulyk, and C.-H. Chung, “Pulse-reverse electrodeposition for mesoporous metal films: combination of hydrogen evolution assisted deposition and electrochemical dealloying,” Nanoscale 4(2), 568–575 (2012).
[Crossref] [PubMed]

S. Cherevko, N. Kulyk, and C.-H. Chung, “Pulse-reverse electrodeposition for mesoporous metal films: combination of hydrogen evolution assisted deposition and electrochemical dealloying,” Nanoscale 4(2), 568–575 (2012).
[Crossref] [PubMed]

S. Cherevko and C.-H. Chung, “Direct electrodeposition of nanoporous gold with controlled multimodal pore size distribution,” Electrochem. Commun. 13(1), 16–19 (2011).
[Crossref]

Davidson, G. J. E.

M. S. Miller, G. J. E. Davidson, B. J. Sahli, C. M. Mailloux, and T. B. Carmichael, “Fabrication of Elastomeric Wires by Selective Electroless Metallization of Poly(dimethylsiloxane),” Adv. Mater. 20(1), 59–64 (2008).
[Crossref]

de Gans, B. J.

J. Perelaer, B. J. de Gans, and U. S. Schubert, “Ink-jet Printing and Microwave Sintering of Conductive Silver Tracks,” Adv. Mater. 18(16), 2101–2104 (2006).
[Crossref]

Dhagat, P.

M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, “Inkjet Printing-Process and Its Applications,” Adv. Mater. 22(6), 673–685 (2010).
[Crossref] [PubMed]

Du, Q.

R. Mema, L. Yuan, Q. Du, Y. Wang, and G. Zhou, “Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper,” Chem. Phys. Lett. 512(1-3), 87–91 (2011).
[Crossref]

Fréchet, J. M. J.

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fréchet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
[Crossref]

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett. 7(7), 1869–1877 (2007).
[Crossref] [PubMed]

Fritzsche, W.

T. Schüler, T. Asmus, W. Fritzsche, and R. Möller, “Screen printing as cost-efficient fabrication method for DNA-chips with electrical readout for detection of viral DNA,” Biosens. Bioelectron. 24(7), 2077–2084 (2009).
[Crossref] [PubMed]

Fyenbo, J.

F. C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009).
[Crossref]

Gould, R. D.

A. A. Ramadan, R. D. Gould, and A. Ashour, “On the Van der Pauw method of resistivity measurements,” Thin Solid Films 239(2), 272–275 (1994).
[Crossref]

Green, T. A.

T. A. Green, “Gold electrodeposition for microelectronic, optoelectronic and microsystem applications,” Gold Bull. 40(2), 105–114 (2007).
[Crossref]

Grigoropoulos, C. P.

J. Yeo, S. Hong, D. Lee, N. Hotz, M. T. Lee, C. P. Grigoropoulos, S. H. Ko, and S. H. Ko, “Next Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics,” PLoS ONE 7(8), e42315 (2012).
[Crossref] [PubMed]

Y. Son, J. Yeo, H. Moon, T. W. Lim, S. Hong, K. H. Nam, S. Yoo, C. P. Grigoropoulos, D.-Y. Yang, and S. H. Ko, “Nanoscale Electronics: Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles,” Adv. Mater. 23(28), 3176–3181 (2011).
[Crossref] [PubMed]

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fréchet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
[Crossref]

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett. 7(7), 1869–1877 (2007).
[Crossref] [PubMed]

Guo, L. J.

S. H. Ahn and L. J. Guo, “Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting,” ACS Nano 3(8), 2304–2310 (2009).
[Crossref] [PubMed]

Ha, C. W.

Y. Son, J. Yeo, C. W. Ha, J. Lee, S. Hong, K. H. Nam, D.-Y. Yang, and S. H. Ko, “Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning,” Thermochim. Acta 542, 52–56 (2012).
[Crossref]

Hagemann, O.

F. C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009).
[Crossref]

Haverinen, H. M.

M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, “Inkjet Printing-Process and Its Applications,” Adv. Mater. 22(6), 673–685 (2010).
[Crossref] [PubMed]

He, Y. J.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Hong, S.

Y. Son, J. Yeo, C. W. Ha, J. Lee, S. Hong, K. H. Nam, D.-Y. Yang, and S. H. Ko, “Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning,” Thermochim. Acta 542, 52–56 (2012).
[Crossref]

J. Yeo, S. Hong, D. Lee, N. Hotz, M. T. Lee, C. P. Grigoropoulos, S. H. Ko, and S. H. Ko, “Next Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics,” PLoS ONE 7(8), e42315 (2012).
[Crossref] [PubMed]

Y. Son, J. Yeo, H. Moon, T. W. Lim, S. Hong, K. H. Nam, S. Yoo, C. P. Grigoropoulos, D.-Y. Yang, and S. H. Ko, “Nanoscale Electronics: Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles,” Adv. Mater. 23(28), 3176–3181 (2011).
[Crossref] [PubMed]

Hotz, N.

J. Yeo, S. Hong, D. Lee, N. Hotz, M. T. Lee, C. P. Grigoropoulos, S. H. Ko, and S. H. Ko, “Next Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics,” PLoS ONE 7(8), e42315 (2012).
[Crossref] [PubMed]

Hsiao, M.-K.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Hsu, C. H.

C. H. Hsu, M. C. Yeh, K. L. Lo, and L. J. Chen, “Application of microcontact printing to electroless plating for the fabrication of microscale silver patterns on glass,” Langmuir 23(24), 12111–12118 (2007).
[Crossref] [PubMed]

Huang, D. W.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Huang, H. W.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Huang, Y.-W.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Huber, W.

T. Moffat, J. Bonevich, W. Huber, A. Stanishevsky, D. Kelly, G. Stafford, and D. Josell, “Superconformal electrodeposition of copper in 500–90 nm features,” J. Electrochem. Soc. 147(12), 4524–4535 (2000).
[Crossref]

Jabbour, G. E.

M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, “Inkjet Printing-Process and Its Applications,” Adv. Mater. 22(6), 673–685 (2010).
[Crossref] [PubMed]

Jamshidi, A.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. D. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[Crossref] [PubMed]

Jørgensen, M.

F. C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009).
[Crossref]

Josell, D.

T. Moffat, J. Bonevich, W. Huber, A. Stanishevsky, D. Kelly, G. Stafford, and D. Josell, “Superconformal electrodeposition of copper in 500–90 nm features,” J. Electrochem. Soc. 147(12), 4524–4535 (2000).
[Crossref]

Kalpyris, I.

M. Makrygianni, I. Kalpyris, C. Boutopoulos, and I. Zergioti, “Laser induced forward transfer of Ag nanoparticles ink deposition and characterization,” Appl. Surf. Sci. 297, 40–44 (2014).
[Crossref]

Kato, M.

N. Yamachika, Y. Musha, J. Sasano, K. Senda, M. Kato, Y. Okinaka, and T. Osaka, “Electrodeposition of amorphous Au–Ni alloy film,” Electrochim. Acta 53(13), 4520–4527 (2008).
[Crossref]

Kelly, D.

T. Moffat, J. Bonevich, W. Huber, A. Stanishevsky, D. Kelly, G. Stafford, and D. Josell, “Superconformal electrodeposition of copper in 500–90 nm features,” J. Electrochem. Soc. 147(12), 4524–4535 (2000).
[Crossref]

Ko, S. H.

J. Yeo, S. Hong, D. Lee, N. Hotz, M. T. Lee, C. P. Grigoropoulos, S. H. Ko, and S. H. Ko, “Next Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics,” PLoS ONE 7(8), e42315 (2012).
[Crossref] [PubMed]

J. Yeo, S. Hong, D. Lee, N. Hotz, M. T. Lee, C. P. Grigoropoulos, S. H. Ko, and S. H. Ko, “Next Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics,” PLoS ONE 7(8), e42315 (2012).
[Crossref] [PubMed]

Y. Son, J. Yeo, C. W. Ha, J. Lee, S. Hong, K. H. Nam, D.-Y. Yang, and S. H. Ko, “Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning,” Thermochim. Acta 542, 52–56 (2012).
[Crossref]

Y. Son, J. Yeo, H. Moon, T. W. Lim, S. Hong, K. H. Nam, S. Yoo, C. P. Grigoropoulos, D.-Y. Yang, and S. H. Ko, “Nanoscale Electronics: Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles,” Adv. Mater. 23(28), 3176–3181 (2011).
[Crossref] [PubMed]

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fréchet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
[Crossref]

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett. 7(7), 1869–1877 (2007).
[Crossref] [PubMed]

Krebs, F. C.

F. C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009).
[Crossref]

Kristensen, J.

F. C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009).
[Crossref]

Kulyk, N.

S. Cherevko, N. Kulyk, and C.-H. Chung, “Pulse-reverse electrodeposition for mesoporous metal films: combination of hydrogen evolution assisted deposition and electrochemical dealloying,” Nanoscale 4(2), 568–575 (2012).
[Crossref] [PubMed]

S. Cherevko, N. Kulyk, and C.-H. Chung, “Pulse-reverse electrodeposition for mesoporous metal films: combination of hydrogen evolution assisted deposition and electrochemical dealloying,” Nanoscale 4(2), 568–575 (2012).
[Crossref] [PubMed]

Kuntz, J. D.

A. J. Pascall, F. Qian, G. Wang, M. A. Worsley, Y. Li, and J. D. Kuntz, “Light-Directed Electrophoretic Deposition: A New Additive Manufacturing Technique for Arbitrarily Patterned 3D Composites,” Adv. Mater. 26(14), 2252–2256 (2014).
[Crossref] [PubMed]

Larsen, K.

F. C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009).
[Crossref]

Lee, D.

J. Yeo, S. Hong, D. Lee, N. Hotz, M. T. Lee, C. P. Grigoropoulos, S. H. Ko, and S. H. Ko, “Next Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics,” PLoS ONE 7(8), e42315 (2012).
[Crossref] [PubMed]

Lee, D.-H.

W. Yin, D.-H. Lee, J. Choi, C. Park, and S. M. Cho, “Screen printing of silver nanoparticle suspension for metal interconnects,” Korean J. Chem.Eng. 25(6), 1358–1361 (2008).
[Crossref]

Lee, G. B.

N. Liu, W. Liang, J. D. Mai, L. Liu, G. B. Lee, and W. J. Li, “Rapid Fabrication of Nanomaterial Electrodes Using Digitally Controlled Electrokinetics,” IEEE T. Nanotechnol 13(2), 245–253 (2014).
[Crossref]

Lee, G.-B.

M.-W. Lee, Y.-H. Lin, and G.-B. Lee, “Manipulation and patterning of carbon nanotubes utilizing optically induced dielectrophoretic forces,” Microfluid. Nanofluid. 8(5), 609–617 (2010).
[Crossref]

Lee, J.

Y. Son, J. Yeo, C. W. Ha, J. Lee, S. Hong, K. H. Nam, D.-Y. Yang, and S. H. Ko, “Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning,” Thermochim. Acta 542, 52–56 (2012).
[Crossref]

Lee, M. T.

J. Yeo, S. Hong, D. Lee, N. Hotz, M. T. Lee, C. P. Grigoropoulos, S. H. Ko, and S. H. Ko, “Next Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics,” PLoS ONE 7(8), e42315 (2012).
[Crossref] [PubMed]

Lee, M.-W.

M.-W. Lee, Y.-H. Lin, and G.-B. Lee, “Manipulation and patterning of carbon nanotubes utilizing optically induced dielectrophoretic forces,” Microfluid. Nanofluid. 8(5), 609–617 (2010).
[Crossref]

Li, W. J.

N. Liu, W. Liang, J. D. Mai, L. Liu, G. B. Lee, and W. J. Li, “Rapid Fabrication of Nanomaterial Electrodes Using Digitally Controlled Electrokinetics,” IEEE T. Nanotechnol 13(2), 245–253 (2014).
[Crossref]

Li, Y.

A. J. Pascall, F. Qian, G. Wang, M. A. Worsley, Y. Li, and J. D. Kuntz, “Light-Directed Electrophoretic Deposition: A New Additive Manufacturing Technique for Arbitrarily Patterned 3D Composites,” Adv. Mater. 26(14), 2252–2256 (2014).
[Crossref] [PubMed]

Liang, W.

N. Liu, W. Liang, J. D. Mai, L. Liu, G. B. Lee, and W. J. Li, “Rapid Fabrication of Nanomaterial Electrodes Using Digitally Controlled Electrokinetics,” IEEE T. Nanotechnol 13(2), 245–253 (2014).
[Crossref]

Lim, T. W.

Y. Son, J. Yeo, H. Moon, T. W. Lim, S. Hong, K. H. Nam, S. Yoo, C. P. Grigoropoulos, D.-Y. Yang, and S. H. Ko, “Nanoscale Electronics: Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles,” Adv. Mater. 23(28), 3176–3181 (2011).
[Crossref] [PubMed]

Lin, W. C.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Lin, Y.-H.

M.-W. Lee, Y.-H. Lin, and G.-B. Lee, “Manipulation and patterning of carbon nanotubes utilizing optically induced dielectrophoretic forces,” Microfluid. Nanofluid. 8(5), 609–617 (2010).
[Crossref]

Liu, C.

C. Liu, K. Wang, S. Luo, Y. Tang, and L. Chen, “Direct Electrodeposition of Graphene Enabling the One-Step Synthesis of Graphene-Metal Nanocomposite Films,” Small 7(9), 1203–1206 (2011).
[Crossref] [PubMed]

Liu, L.

N. Liu, W. Liang, J. D. Mai, L. Liu, G. B. Lee, and W. J. Li, “Rapid Fabrication of Nanomaterial Electrodes Using Digitally Controlled Electrokinetics,” IEEE T. Nanotechnol 13(2), 245–253 (2014).
[Crossref]

Liu, N.

N. Liu, W. Liang, J. D. Mai, L. Liu, G. B. Lee, and W. J. Li, “Rapid Fabrication of Nanomaterial Electrodes Using Digitally Controlled Electrokinetics,” IEEE T. Nanotechnol 13(2), 245–253 (2014).
[Crossref]

Liu, R. S.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Lo, K. L.

C. H. Hsu, M. C. Yeh, K. L. Lo, and L. J. Chen, “Application of microcontact printing to electroless plating for the fabrication of microscale silver patterns on glass,” Langmuir 23(24), 12111–12118 (2007).
[Crossref] [PubMed]

Luo, S.

C. Liu, K. Wang, S. Luo, Y. Tang, and L. Chen, “Direct Electrodeposition of Graphene Enabling the One-Step Synthesis of Graphene-Metal Nanocomposite Films,” Small 7(9), 1203–1206 (2011).
[Crossref] [PubMed]

Luscombe, C. K.

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett. 7(7), 1869–1877 (2007).
[Crossref] [PubMed]

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fréchet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
[Crossref]

Mai, J. D.

N. Liu, W. Liang, J. D. Mai, L. Liu, G. B. Lee, and W. J. Li, “Rapid Fabrication of Nanomaterial Electrodes Using Digitally Controlled Electrokinetics,” IEEE T. Nanotechnol 13(2), 245–253 (2014).
[Crossref]

Mailloux, C. M.

M. S. Miller, G. J. E. Davidson, B. J. Sahli, C. M. Mailloux, and T. B. Carmichael, “Fabrication of Elastomeric Wires by Selective Electroless Metallization of Poly(dimethylsiloxane),” Adv. Mater. 20(1), 59–64 (2008).
[Crossref]

Makrygianni, M.

M. Makrygianni, I. Kalpyris, C. Boutopoulos, and I. Zergioti, “Laser induced forward transfer of Ag nanoparticles ink deposition and characterization,” Appl. Surf. Sci. 297, 40–44 (2014).
[Crossref]

Mema, R.

R. Mema, L. Yuan, Q. Du, Y. Wang, and G. Zhou, “Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper,” Chem. Phys. Lett. 512(1-3), 87–91 (2011).
[Crossref]

Miller, M. S.

M. S. Miller, G. J. E. Davidson, B. J. Sahli, C. M. Mailloux, and T. B. Carmichael, “Fabrication of Elastomeric Wires by Selective Electroless Metallization of Poly(dimethylsiloxane),” Adv. Mater. 20(1), 59–64 (2008).
[Crossref]

Moffat, T.

T. Moffat, J. Bonevich, W. Huber, A. Stanishevsky, D. Kelly, G. Stafford, and D. Josell, “Superconformal electrodeposition of copper in 500–90 nm features,” J. Electrochem. Soc. 147(12), 4524–4535 (2000).
[Crossref]

Möller, R.

T. Schüler, T. Asmus, W. Fritzsche, and R. Möller, “Screen printing as cost-efficient fabrication method for DNA-chips with electrical readout for detection of viral DNA,” Biosens. Bioelectron. 24(7), 2077–2084 (2009).
[Crossref] [PubMed]

Moon, H.

Y. Son, J. Yeo, H. Moon, T. W. Lim, S. Hong, K. H. Nam, S. Yoo, C. P. Grigoropoulos, D.-Y. Yang, and S. H. Ko, “Nanoscale Electronics: Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles,” Adv. Mater. 23(28), 3176–3181 (2011).
[Crossref] [PubMed]

Musha, Y.

N. Yamachika, Y. Musha, J. Sasano, K. Senda, M. Kato, Y. Okinaka, and T. Osaka, “Electrodeposition of amorphous Au–Ni alloy film,” Electrochim. Acta 53(13), 4520–4527 (2008).
[Crossref]

Nam, K. H.

Y. Son, J. Yeo, C. W. Ha, J. Lee, S. Hong, K. H. Nam, D.-Y. Yang, and S. H. Ko, “Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning,” Thermochim. Acta 542, 52–56 (2012).
[Crossref]

Y. Son, J. Yeo, H. Moon, T. W. Lim, S. Hong, K. H. Nam, S. Yoo, C. P. Grigoropoulos, D.-Y. Yang, and S. H. Ko, “Nanoscale Electronics: Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles,” Adv. Mater. 23(28), 3176–3181 (2011).
[Crossref] [PubMed]

Nielsen, T. D.

F. C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009).
[Crossref]

Norrman, K.

F. C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009).
[Crossref]

Ohta, A. T.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. D. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[Crossref] [PubMed]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Okinaka, Y.

N. Yamachika, Y. Musha, J. Sasano, K. Senda, M. Kato, Y. Okinaka, and T. Osaka, “Electrodeposition of amorphous Au–Ni alloy film,” Electrochim. Acta 53(13), 4520–4527 (2008).
[Crossref]

Osaka, T.

N. Yamachika, Y. Musha, J. Sasano, K. Senda, M. Kato, Y. Okinaka, and T. Osaka, “Electrodeposition of amorphous Au–Ni alloy film,” Electrochim. Acta 53(13), 4520–4527 (2008).
[Crossref]

Pan, H.

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett. 7(7), 1869–1877 (2007).
[Crossref] [PubMed]

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fréchet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
[Crossref]

Park, C.

W. Yin, D.-H. Lee, J. Choi, C. Park, and S. M. Cho, “Screen printing of silver nanoparticle suspension for metal interconnects,” Korean J. Chem.Eng. 25(6), 1358–1361 (2008).
[Crossref]

Park, I.

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett. 7(7), 1869–1877 (2007).
[Crossref] [PubMed]

Pascall, A. J.

A. J. Pascall, F. Qian, G. Wang, M. A. Worsley, Y. Li, and J. D. Kuntz, “Light-Directed Electrophoretic Deposition: A New Additive Manufacturing Technique for Arbitrarily Patterned 3D Composites,” Adv. Mater. 26(14), 2252–2256 (2014).
[Crossref] [PubMed]

Pauzauskie, P. J.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. D. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[Crossref] [PubMed]

Perelaer, J.

J. Perelaer, B. J. de Gans, and U. S. Schubert, “Ink-jet Printing and Microwave Sintering of Conductive Silver Tracks,” Adv. Mater. 18(16), 2101–2104 (2006).
[Crossref]

Pisano, A. P.

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett. 7(7), 1869–1877 (2007).
[Crossref] [PubMed]

Poulikakos, D.

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fréchet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
[Crossref]

Qian, F.

A. J. Pascall, F. Qian, G. Wang, M. A. Worsley, Y. Li, and J. D. Kuntz, “Light-Directed Electrophoretic Deposition: A New Additive Manufacturing Technique for Arbitrarily Patterned 3D Composites,” Adv. Mater. 26(14), 2252–2256 (2014).
[Crossref] [PubMed]

Ramadan, A. A.

A. A. Ramadan, R. D. Gould, and A. Ashour, “On the Van der Pauw method of resistivity measurements,” Thin Solid Films 239(2), 272–275 (1994).
[Crossref]

Sahli, B. J.

M. S. Miller, G. J. E. Davidson, B. J. Sahli, C. M. Mailloux, and T. B. Carmichael, “Fabrication of Elastomeric Wires by Selective Electroless Metallization of Poly(dimethylsiloxane),” Adv. Mater. 20(1), 59–64 (2008).
[Crossref]

Sasano, J.

N. Yamachika, Y. Musha, J. Sasano, K. Senda, M. Kato, Y. Okinaka, and T. Osaka, “Electrodeposition of amorphous Au–Ni alloy film,” Electrochim. Acta 53(13), 4520–4527 (2008).
[Crossref]

Schubert, U. S.

J. Perelaer, B. J. de Gans, and U. S. Schubert, “Ink-jet Printing and Microwave Sintering of Conductive Silver Tracks,” Adv. Mater. 18(16), 2101–2104 (2006).
[Crossref]

Schuck, P. J.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. D. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[Crossref] [PubMed]

Schüler, T.

T. Schüler, T. Asmus, W. Fritzsche, and R. Möller, “Screen printing as cost-efficient fabrication method for DNA-chips with electrical readout for detection of viral DNA,” Biosens. Bioelectron. 24(7), 2077–2084 (2009).
[Crossref] [PubMed]

Senda, K.

N. Yamachika, Y. Musha, J. Sasano, K. Senda, M. Kato, Y. Okinaka, and T. Osaka, “Electrodeposition of amorphous Au–Ni alloy film,” Electrochim. Acta 53(13), 4520–4527 (2008).
[Crossref]

Singh, M.

M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, “Inkjet Printing-Process and Its Applications,” Adv. Mater. 22(6), 673–685 (2010).
[Crossref] [PubMed]

Son, Y.

Y. Son, J. Yeo, C. W. Ha, J. Lee, S. Hong, K. H. Nam, D.-Y. Yang, and S. H. Ko, “Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning,” Thermochim. Acta 542, 52–56 (2012).
[Crossref]

Y. Son, J. Yeo, H. Moon, T. W. Lim, S. Hong, K. H. Nam, S. Yoo, C. P. Grigoropoulos, D.-Y. Yang, and S. H. Ko, “Nanoscale Electronics: Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles,” Adv. Mater. 23(28), 3176–3181 (2011).
[Crossref] [PubMed]

Stafford, G.

T. Moffat, J. Bonevich, W. Huber, A. Stanishevsky, D. Kelly, G. Stafford, and D. Josell, “Superconformal electrodeposition of copper in 500–90 nm features,” J. Electrochem. Soc. 147(12), 4524–4535 (2000).
[Crossref]

Stanishevsky, A.

T. Moffat, J. Bonevich, W. Huber, A. Stanishevsky, D. Kelly, G. Stafford, and D. Josell, “Superconformal electrodeposition of copper in 500–90 nm features,” J. Electrochem. Soc. 147(12), 4524–4535 (2000).
[Crossref]

Sun, G.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Tang, Y.

C. Liu, K. Wang, S. Luo, Y. Tang, and L. Chen, “Direct Electrodeposition of Graphene Enabling the One-Step Synthesis of Graphene-Metal Nanocomposite Films,” Small 7(9), 1203–1206 (2011).
[Crossref] [PubMed]

Tsai, D. P.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Tseng, M. L.

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Wang, G.

A. J. Pascall, F. Qian, G. Wang, M. A. Worsley, Y. Li, and J. D. Kuntz, “Light-Directed Electrophoretic Deposition: A New Additive Manufacturing Technique for Arbitrarily Patterned 3D Composites,” Adv. Mater. 26(14), 2252–2256 (2014).
[Crossref] [PubMed]

Wang, K.

C. Liu, K. Wang, S. Luo, Y. Tang, and L. Chen, “Direct Electrodeposition of Graphene Enabling the One-Step Synthesis of Graphene-Metal Nanocomposite Films,” Small 7(9), 1203–1206 (2011).
[Crossref] [PubMed]

Wang, Y.

R. Mema, L. Yuan, Q. Du, Y. Wang, and G. Zhou, “Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper,” Chem. Phys. Lett. 512(1-3), 87–91 (2011).
[Crossref]

Worsley, M. A.

A. J. Pascall, F. Qian, G. Wang, M. A. Worsley, Y. Li, and J. D. Kuntz, “Light-Directed Electrophoretic Deposition: A New Additive Manufacturing Technique for Arbitrarily Patterned 3D Composites,” Adv. Mater. 26(14), 2252–2256 (2014).
[Crossref] [PubMed]

Wu, M. C.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. D. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[Crossref] [PubMed]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Yamachika, N.

N. Yamachika, Y. Musha, J. Sasano, K. Senda, M. Kato, Y. Okinaka, and T. Osaka, “Electrodeposition of amorphous Au–Ni alloy film,” Electrochim. Acta 53(13), 4520–4527 (2008).
[Crossref]

Yang, D.-Y.

Y. Son, J. Yeo, C. W. Ha, J. Lee, S. Hong, K. H. Nam, D.-Y. Yang, and S. H. Ko, “Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning,” Thermochim. Acta 542, 52–56 (2012).
[Crossref]

Y. Son, J. Yeo, H. Moon, T. W. Lim, S. Hong, K. H. Nam, S. Yoo, C. P. Grigoropoulos, D.-Y. Yang, and S. H. Ko, “Nanoscale Electronics: Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles,” Adv. Mater. 23(28), 3176–3181 (2011).
[Crossref] [PubMed]

Yang, P. D.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. D. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[Crossref] [PubMed]

Yeh, M. C.

C. H. Hsu, M. C. Yeh, K. L. Lo, and L. J. Chen, “Application of microcontact printing to electroless plating for the fabrication of microscale silver patterns on glass,” Langmuir 23(24), 12111–12118 (2007).
[Crossref] [PubMed]

Yeo, J.

J. Yeo, S. Hong, D. Lee, N. Hotz, M. T. Lee, C. P. Grigoropoulos, S. H. Ko, and S. H. Ko, “Next Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics,” PLoS ONE 7(8), e42315 (2012).
[Crossref] [PubMed]

Y. Son, J. Yeo, C. W. Ha, J. Lee, S. Hong, K. H. Nam, D.-Y. Yang, and S. H. Ko, “Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning,” Thermochim. Acta 542, 52–56 (2012).
[Crossref]

Y. Son, J. Yeo, H. Moon, T. W. Lim, S. Hong, K. H. Nam, S. Yoo, C. P. Grigoropoulos, D.-Y. Yang, and S. H. Ko, “Nanoscale Electronics: Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles,” Adv. Mater. 23(28), 3176–3181 (2011).
[Crossref] [PubMed]

Yin, W.

W. Yin, D.-H. Lee, J. Choi, C. Park, and S. M. Cho, “Screen printing of silver nanoparticle suspension for metal interconnects,” Korean J. Chem.Eng. 25(6), 1358–1361 (2008).
[Crossref]

Yoo, S.

Y. Son, J. Yeo, H. Moon, T. W. Lim, S. Hong, K. H. Nam, S. Yoo, C. P. Grigoropoulos, D.-Y. Yang, and S. H. Ko, “Nanoscale Electronics: Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles,” Adv. Mater. 23(28), 3176–3181 (2011).
[Crossref] [PubMed]

Yuan, L.

R. Mema, L. Yuan, Q. Du, Y. Wang, and G. Zhou, “Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper,” Chem. Phys. Lett. 512(1-3), 87–91 (2011).
[Crossref]

Zergioti, I.

M. Makrygianni, I. Kalpyris, C. Boutopoulos, and I. Zergioti, “Laser induced forward transfer of Ag nanoparticles ink deposition and characterization,” Appl. Surf. Sci. 297, 40–44 (2014).
[Crossref]

Zhou, G.

R. Mema, L. Yuan, Q. Du, Y. Wang, and G. Zhou, “Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper,” Chem. Phys. Lett. 512(1-3), 87–91 (2011).
[Crossref]

ACS Nano (2)

S. H. Ahn and L. J. Guo, “Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting,” ACS Nano 3(8), 2304–2310 (2009).
[Crossref] [PubMed]

M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D. W. Huang, H. P. Chiang, R. S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano 6(6), 5190–5197 (2012).
[Crossref] [PubMed]

Adv. Mater. (5)

A. J. Pascall, F. Qian, G. Wang, M. A. Worsley, Y. Li, and J. D. Kuntz, “Light-Directed Electrophoretic Deposition: A New Additive Manufacturing Technique for Arbitrarily Patterned 3D Composites,” Adv. Mater. 26(14), 2252–2256 (2014).
[Crossref] [PubMed]

M. S. Miller, G. J. E. Davidson, B. J. Sahli, C. M. Mailloux, and T. B. Carmichael, “Fabrication of Elastomeric Wires by Selective Electroless Metallization of Poly(dimethylsiloxane),” Adv. Mater. 20(1), 59–64 (2008).
[Crossref]

M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, “Inkjet Printing-Process and Its Applications,” Adv. Mater. 22(6), 673–685 (2010).
[Crossref] [PubMed]

J. Perelaer, B. J. de Gans, and U. S. Schubert, “Ink-jet Printing and Microwave Sintering of Conductive Silver Tracks,” Adv. Mater. 18(16), 2101–2104 (2006).
[Crossref]

Y. Son, J. Yeo, H. Moon, T. W. Lim, S. Hong, K. H. Nam, S. Yoo, C. P. Grigoropoulos, D.-Y. Yang, and S. H. Ko, “Nanoscale Electronics: Digital Fabrication by Direct Femtosecond Laser Processing of Metal Nanoparticles,” Adv. Mater. 23(28), 3176–3181 (2011).
[Crossref] [PubMed]

Appl. Surf. Sci. (1)

M. Makrygianni, I. Kalpyris, C. Boutopoulos, and I. Zergioti, “Laser induced forward transfer of Ag nanoparticles ink deposition and characterization,” Appl. Surf. Sci. 297, 40–44 (2014).
[Crossref]

Biosens. Bioelectron. (1)

T. Schüler, T. Asmus, W. Fritzsche, and R. Möller, “Screen printing as cost-efficient fabrication method for DNA-chips with electrical readout for detection of viral DNA,” Biosens. Bioelectron. 24(7), 2077–2084 (2009).
[Crossref] [PubMed]

Chem. Mater. (1)

P. Calvert, “Inkjet printing for materials and devices,” Chem. Mater. 13(10), 3299–3305 (2001).
[Crossref]

Chem. Phys. Lett. (1)

R. Mema, L. Yuan, Q. Du, Y. Wang, and G. Zhou, “Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper,” Chem. Phys. Lett. 512(1-3), 87–91 (2011).
[Crossref]

Electrochem. Commun. (1)

S. Cherevko and C.-H. Chung, “Direct electrodeposition of nanoporous gold with controlled multimodal pore size distribution,” Electrochem. Commun. 13(1), 16–19 (2011).
[Crossref]

Electrochim. Acta (1)

N. Yamachika, Y. Musha, J. Sasano, K. Senda, M. Kato, Y. Okinaka, and T. Osaka, “Electrodeposition of amorphous Au–Ni alloy film,” Electrochim. Acta 53(13), 4520–4527 (2008).
[Crossref]

Gold Bull. (1)

T. A. Green, “Gold electrodeposition for microelectronic, optoelectronic and microsystem applications,” Gold Bull. 40(2), 105–114 (2007).
[Crossref]

IEEE T. Nanotechnol (1)

N. Liu, W. Liang, J. D. Mai, L. Liu, G. B. Lee, and W. J. Li, “Rapid Fabrication of Nanomaterial Electrodes Using Digitally Controlled Electrokinetics,” IEEE T. Nanotechnol 13(2), 245–253 (2014).
[Crossref]

J. Electrochem. Soc. (1)

T. Moffat, J. Bonevich, W. Huber, A. Stanishevsky, D. Kelly, G. Stafford, and D. Josell, “Superconformal electrodeposition of copper in 500–90 nm features,” J. Electrochem. Soc. 147(12), 4524–4535 (2000).
[Crossref]

Korean J. Chem.Eng. (1)

W. Yin, D.-H. Lee, J. Choi, C. Park, and S. M. Cho, “Screen printing of silver nanoparticle suspension for metal interconnects,” Korean J. Chem.Eng. 25(6), 1358–1361 (2008).
[Crossref]

Langmuir (1)

C. H. Hsu, M. C. Yeh, K. L. Lo, and L. J. Chen, “Application of microcontact printing to electroless plating for the fabrication of microscale silver patterns on glass,” Langmuir 23(24), 12111–12118 (2007).
[Crossref] [PubMed]

Microfluid. Nanofluid. (1)

M.-W. Lee, Y.-H. Lin, and G.-B. Lee, “Manipulation and patterning of carbon nanotubes utilizing optically induced dielectrophoretic forces,” Microfluid. Nanofluid. 8(5), 609–617 (2010).
[Crossref]

Nano Lett. (1)

S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Fréchet, “Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication,” Nano Lett. 7(7), 1869–1877 (2007).
[Crossref] [PubMed]

Nanoscale (2)

S. Cherevko, N. Kulyk, and C.-H. Chung, “Pulse-reverse electrodeposition for mesoporous metal films: combination of hydrogen evolution assisted deposition and electrochemical dealloying,” Nanoscale 4(2), 568–575 (2012).
[Crossref] [PubMed]

S. Cherevko, N. Kulyk, and C.-H. Chung, “Pulse-reverse electrodeposition for mesoporous metal films: combination of hydrogen evolution assisted deposition and electrochemical dealloying,” Nanoscale 4(2), 568–575 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fréchet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
[Crossref]

Nat. Photonics (1)

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. D. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[Crossref] [PubMed]

Nature (1)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

PLoS ONE (1)

J. Yeo, S. Hong, D. Lee, N. Hotz, M. T. Lee, C. P. Grigoropoulos, S. H. Ko, and S. H. Ko, “Next Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics,” PLoS ONE 7(8), e42315 (2012).
[Crossref] [PubMed]

Small (1)

C. Liu, K. Wang, S. Luo, Y. Tang, and L. Chen, “Direct Electrodeposition of Graphene Enabling the One-Step Synthesis of Graphene-Metal Nanocomposite Films,” Small 7(9), 1203–1206 (2011).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

F. C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration,” Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009).
[Crossref]

Thermochim. Acta (1)

Y. Son, J. Yeo, C. W. Ha, J. Lee, S. Hong, K. H. Nam, D.-Y. Yang, and S. H. Ko, “Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning,” Thermochim. Acta 542, 52–56 (2012).
[Crossref]

Thin Solid Films (1)

A. A. Ramadan, R. D. Gould, and A. Ashour, “On the Van der Pauw method of resistivity measurements,” Thin Solid Films 239(2), 272–275 (1994).
[Crossref]

Other (2)

Y. Gamburg and G. Zangari, “The Structure of the Metal-Solution Interface,” in Theory and Practice of Metal Electrodeposition (Springer, 2011), pp. 27–51.

H. Morgan and N. G. Green, AC Electrokinetics: Colloids and Nanoparticles (Research Studies Press, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Illustration of the mechanism for fabricating metal electrodes utilizing the optically-controlled digital electrodeposition (ODE) technique. As shown, the light patterns are projected onto an a-Si:H substrate, which creates localized regions of high electrical conductivity. Around the illuminated a-Si:H surface, metal ions in the solution are reduced and deposited on the substrate to create the metal electrodes. (b) Illustration of the OEK experimental system for application of the ODE technique. As shown, light patterns, generated using computer software, are projected from a digital LCD projector through a condenser lens. An alternating electric field is established across the chip using a signal generator. (c) The computer-generated patterns and the corresponding silver electrodes fabricated on the chip’s surface. As shown, the green areas on the a-Si:H substrate illuminated by the square patterns have metal electrodes deposited on them once the silver ions reduction starts. (Scale bar: 50 μm)
Fig. 2
Fig. 2 (a)-(e) SEM pictures of different electrodes and conduction paths fabricated using ODE technique. As shown in the AFM-scanned measurement in (f), a conducting line with a width of ~2.7 μm can be obtained.
Fig. 3
Fig. 3 (a) The equivalent circuit for the ODE chip which can be considered as a series connection of the a-Si:H film, the solid/solution interface, and the metal ion solution. The interface can be represented as a parallel connection of the electrical double layer and Zc. The figure on the right shows the numerically simulated distribution of the electrical potential in the 100 mM silver nitrate solution when a 50 kHz alternating signal with amplitude of 10 Vpp is imposed. (b) Simulation result shows the impedance in each section of the equivalent circuit as a function of the input electric field frequency across the ODE chip. Here, the thickness of the solution layer and the a-Si:H is set at 50 μm and 1 μm, respectively. The area of each section is set as 1 cm2 to simplify the calculation. The conductivity and relative permittivity values of the 100 mM solution are 1.1 S/m and 78, respectively. The conductivity of intrinsic and illuminated a-Si:H is 10−11 S/m and 10−3 S/m, respectively. The relative permittivity of the a-Si:H is 11. (c) Optical images of the silver patterns deposited under different AC electric fields using a 100 mM silver nitrate solution. As shown, silver electrodes fabricated using low frequency (<50 kHz) electric fields could not form the square shapes as following the illumination patterns. And, no metal electrodes could be formed if a DC electric field is used. The results indicate that AC electric field with frequency of 50 – 100 kHz and amplitude of 5 – 10 Vpp is optimum for fabricating silver electrodes using the ODE technique. (Scale bar: 50 μm)
Fig. 4
Fig. 4 (a) SEM images showing growth of the silver electrodes as a function of time (after 10, 20, 30, 40, 50, and 60 seconds; scale bar: 10 μm) (b) The surface roughness of an electrode as characterized using an AFM and an SEM. (c) Silver electrode thickness as a function of deposition time and solution concentration when the AC electric field is 50 kHz and amplitude of 10 Vpp was used. These results demonstrate that the thickness of the silver pattern is linearly proportional to the deposited time and the deposition speed also increases with the increase of solution concentration. (d) Surface roughness of the silver electrodes as a function of the deposition time and solution concentration.
Fig. 5
Fig. 5 (a) Schematic of the Van der Pauw method for measuring the sheet resistance. (b) The measured sheet resistance of the silver film with different thickness, the inserted Figure shows the SEM picture of a silver film with a size of 130 μm × 130 μm.
Fig. 6
Fig. 6 (a) The process for successful fabrication of an integrated CuO nano wire-based field effect transistor, i) The CuO nanowire solution was injected into the ODE chip, ii) manipulating the CuO nanowire utilizing optically-controlled electrokinetics, iii) patterning a silver film on the CuO nano wire in situ, iv) a schematic side view of the CuO nanowire-based FET. (b) SEM image of the fabricated FET, the inserted figures show the CuO nanowires and the detailed features of the connection between the silver and CuO, respectively. (c) The output characteristic curves, IDS-Vds, with the effect of VGS, which indicates that the electrical conductivity of the CuO increases as the VGS decreases.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

λ D =1.764× 10 11 T c
C EDL = ε λ D
n silver = Q zF
Q= j ave At
m silver = V silver ρ= n silver N silver
V silver =hA
h= j ave t N silver ρzF =1.06× 10 10 ( m 3 A 1 s 1 ) j ave t
ρ= R s h

Metrics