Abstract

The Schottky contact behavior of Silver (Ag) with parts of semiconductor materials, such as GaAs and GaN, greatly limits its application for electrodes in electronic devices. Here, a giant photosensitivity is observed in Co-doped amorphous carbon (a-C:Co) films deposited on n-type low-resistance GaAs substrates through a Schottky contact between GaAs and Ag. We ascribe the giant photosensitivity to the turn-on voltage difference in the series-opposing connected a-C:Co/GaAs photosensitive diode and GaAs/Ag Schottky junction with and without light illumination, and also to the surface plasmon resonance absorption of Co nanoparticles.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Direct electrical contact of slanted ITO film on axial p-n junction silicon nanowire solar cells

Ya-Ju Lee, Yung-Chi Yao, and Chia-Hao Yang
Opt. Express 21(S1) A7-A14 (2013)

Review of gallium-oxide-based solar-blind ultraviolet photodetectors

Xuanhu Chen, Fangfang Ren, Shulin Gu, and Jiandong Ye
Photon. Res. 7(4) 381-415 (2019)

Homogeneous ZnO nanowire arrays p-n junction for blue light-emitting diode applications

Mingming Su, Tanglei Zhang, Jun Su, Zhao Wang, Yongming Hu, Yihua Gao, Haoshuang Gu, and Xianghui Zhang
Opt. Express 27(16) A1207-A1215 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Tamor and W. C. Vasell, “Raman ‘fingerprinting’ of amorphous carbon films,” J. Appl. Phys. 76(6), 3823 (1994).
    [Crossref]
  2. X. L. Gao, X. Z. Zhang, C. H. Wan, X. Zhang, L. H. Wu, and X. Y. Tan, “Abnormal humidity-dependent electrical properties of amorphous carbon/silicon heterojunctions,” Appl. Phys. Lett. 97(21), 212101 (2010).
    [Crossref]
  3. N. L. Rupesinghe, M. Chhowalla, G. A. J. Amaratunga, P. Weightman, D. Martin, P. Unsworth, and J. Murray, “Influence of the heterojunction on the field emission from tetrahedral amorphous carbon on Si,” Appl. Phys. Lett. 77(12), 1908 (2000).
    [Crossref]
  4. J. M. Wang, X. Z. Zhang, C. H. Wan, J. Vanacken, and V. V. Moshchalkov, “Magnetotransport properties of undoped amorphous carbon films,” Carbon 59, 278–282 (2013).
    [Crossref]
  5. P. Tian, X. Zhang, and Q. Z. Xue, “Enhanced room-temperature positive magnetoresistance of a-C:Fe film,” Carbon 45(9), 1764–1768 (2007).
    [Crossref]
  6. L. Z. Hao, Z. Q. Xue, X. L. Gao, Q. Li, Q. B. Zheng, and K. Y. Yan, “Abnormal I-V characteristics and metal-insulator transition of Fe-doped amorphous carbon/silicon p-n junction,” J. Appl. Phys. 101(5), 053718 (2007).
    [Crossref]
  7. F. Zhuge, W. Dai, C. L. He, A. Y. Wang, Y. W. Liu, M. Li, Y. H. Wu, P. Cui, and R. W. Li, “Nonvolatile resistive switching memory based on amorphous carbon,” Appl. Phys. Lett. 96(16), 163505 (2010).
    [Crossref]
  8. M. Ma, Q. Z. Xue, H. J. Chen, X. W. Zhou, D. Xia, C. Lv, and J. Xie, “Photovoltaic characteristics of Pd doped amorphous carbon film/SiO2 /Si,” Appl. Phys. Lett. 97(6), 061902 (2010).
    [Crossref]
  9. A. M. M. Omera, S. Adhikari, H. Uchida, and M. Umeno, “Photovoltaic characteristics of postdeposition iodine-doped amorphous carbon films by microwave surface wave plasma chemical vapor deposition,” Appl. Phys. Lett. 87(16), 161912 (2005).
    [Crossref]
  10. R. U. A. Khan, S. R. P. Silva, and R. A. C. M. M. Van Swaaij, “Polymeric amorphous carbon as p-type window within amorphous silicon solar cells,” Appl. Phys. Lett. 82(22), 3979 (2003).
    [Crossref]
  11. J. Robertson, “Diamond-like amorphous carbon,” Mater. Sci. Eng. Rep. 37(4-6), 129–281 (2002).
    [Crossref]
  12. S. K. T. Shinagawa, M. Noda, and M. Umeno, “Photoconductivity of DLC film deposited by pulsed discharge plasma CVD,” Diamond Related Materials 17(4-5), 676–679 (2008).
    [Crossref]
  13. T. S. T. Kokubu, Y. Hayashi, and T. Jimbo, “Effect of rf power on the photovoltaic properties of boron-doped amorphous carbon/n-type silicon junction fabricated by plasma enhanced chemical vapor deposition,” Thin Solid Films 482(1-2), 86–89 (2005).
    [Crossref]
  14. C. H. Wan, X. Z. Zhang, X. Zhang, X. L. Gao, and X. Y. Tan, “Photoconductivity of iron doped amorphous carbon films on n-type silicon substrates,” Appl. Phys. Lett. 95(2), 022105 (2009).
    [Crossref]
  15. Y. C. Jiang, J. F. Wang, and J. Gao, “Giant photoconductivity induced by plasmonic Co nanoparticles in Co-doped amorphous carbon/silicon heterostructures,” Carbon 72, 106–113 (2014).
    [Crossref]
  16. S. J. Henley, J. D. Carey, and S. R. P. Silva, “Room temperature photoluminescence from nanostructured amorphous carbon,” Appl. Phys. Lett. 85(25), 6236 (2004).
    [Crossref]
  17. J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
    [Crossref] [PubMed]
  18. C. S. Gworek, P. Phatak, B. T. Jonker, E. R. Weber, and N. Newman, “Pressure dependence of Cu, Ag, and Fe/n-GaAs Schottky barrier heights,” Phys. Rev. B 64(4), 045322 (2001).
    [Crossref]
  19. A. De Vrieze, K. Strubbe, W. P. Gomes, S. Forment, and R. L. Van Meirhaeghe, “Electrochemical formation and properties of n-GaAs/Au and n-GaAs/Ag Schottky barriers: Influence of surface composition upon the barrier height,” Phys. Chem. Chem. Phys. 3(23), 5297–5303 (2001).
    [Crossref]
  20. H. Kato, J. Fujimot, T. Kanda, A. Yoshida, and T. Arizumi, “Accurate measurement of the jitter time of GaAs photoconductive semiconductor switches triggered by a one-to-two optical fiber,” Phys. Stat. Sol. 32, 255–261 (1975).
    [Crossref]
  21. C.-H. Lin, T.-T. Chen, and Y.-F. Chen, “Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration,” Opt. Express 16(21), 16916–16922 (2008).
    [Crossref] [PubMed]
  22. M.-W. Chen, C.-Y. Chen, D.-H. Lien, Y. Ding, and J.-H. He, “Photoconductive enhancement of single ZnO nanowire through localized Schottky effects,” Opt. Express 18(14), 14836–14841 (2010).
    [Crossref] [PubMed]

2014 (1)

Y. C. Jiang, J. F. Wang, and J. Gao, “Giant photoconductivity induced by plasmonic Co nanoparticles in Co-doped amorphous carbon/silicon heterostructures,” Carbon 72, 106–113 (2014).
[Crossref]

2013 (1)

J. M. Wang, X. Z. Zhang, C. H. Wan, J. Vanacken, and V. V. Moshchalkov, “Magnetotransport properties of undoped amorphous carbon films,” Carbon 59, 278–282 (2013).
[Crossref]

2010 (4)

X. L. Gao, X. Z. Zhang, C. H. Wan, X. Zhang, L. H. Wu, and X. Y. Tan, “Abnormal humidity-dependent electrical properties of amorphous carbon/silicon heterojunctions,” Appl. Phys. Lett. 97(21), 212101 (2010).
[Crossref]

F. Zhuge, W. Dai, C. L. He, A. Y. Wang, Y. W. Liu, M. Li, Y. H. Wu, P. Cui, and R. W. Li, “Nonvolatile resistive switching memory based on amorphous carbon,” Appl. Phys. Lett. 96(16), 163505 (2010).
[Crossref]

M. Ma, Q. Z. Xue, H. J. Chen, X. W. Zhou, D. Xia, C. Lv, and J. Xie, “Photovoltaic characteristics of Pd doped amorphous carbon film/SiO2 /Si,” Appl. Phys. Lett. 97(6), 061902 (2010).
[Crossref]

M.-W. Chen, C.-Y. Chen, D.-H. Lien, Y. Ding, and J.-H. He, “Photoconductive enhancement of single ZnO nanowire through localized Schottky effects,” Opt. Express 18(14), 14836–14841 (2010).
[Crossref] [PubMed]

2009 (1)

C. H. Wan, X. Z. Zhang, X. Zhang, X. L. Gao, and X. Y. Tan, “Photoconductivity of iron doped amorphous carbon films on n-type silicon substrates,” Appl. Phys. Lett. 95(2), 022105 (2009).
[Crossref]

2008 (2)

S. K. T. Shinagawa, M. Noda, and M. Umeno, “Photoconductivity of DLC film deposited by pulsed discharge plasma CVD,” Diamond Related Materials 17(4-5), 676–679 (2008).
[Crossref]

C.-H. Lin, T.-T. Chen, and Y.-F. Chen, “Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration,” Opt. Express 16(21), 16916–16922 (2008).
[Crossref] [PubMed]

2007 (2)

P. Tian, X. Zhang, and Q. Z. Xue, “Enhanced room-temperature positive magnetoresistance of a-C:Fe film,” Carbon 45(9), 1764–1768 (2007).
[Crossref]

L. Z. Hao, Z. Q. Xue, X. L. Gao, Q. Li, Q. B. Zheng, and K. Y. Yan, “Abnormal I-V characteristics and metal-insulator transition of Fe-doped amorphous carbon/silicon p-n junction,” J. Appl. Phys. 101(5), 053718 (2007).
[Crossref]

2006 (1)

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[Crossref] [PubMed]

2005 (2)

T. S. T. Kokubu, Y. Hayashi, and T. Jimbo, “Effect of rf power on the photovoltaic properties of boron-doped amorphous carbon/n-type silicon junction fabricated by plasma enhanced chemical vapor deposition,” Thin Solid Films 482(1-2), 86–89 (2005).
[Crossref]

A. M. M. Omera, S. Adhikari, H. Uchida, and M. Umeno, “Photovoltaic characteristics of postdeposition iodine-doped amorphous carbon films by microwave surface wave plasma chemical vapor deposition,” Appl. Phys. Lett. 87(16), 161912 (2005).
[Crossref]

2004 (1)

S. J. Henley, J. D. Carey, and S. R. P. Silva, “Room temperature photoluminescence from nanostructured amorphous carbon,” Appl. Phys. Lett. 85(25), 6236 (2004).
[Crossref]

2003 (1)

R. U. A. Khan, S. R. P. Silva, and R. A. C. M. M. Van Swaaij, “Polymeric amorphous carbon as p-type window within amorphous silicon solar cells,” Appl. Phys. Lett. 82(22), 3979 (2003).
[Crossref]

2002 (1)

J. Robertson, “Diamond-like amorphous carbon,” Mater. Sci. Eng. Rep. 37(4-6), 129–281 (2002).
[Crossref]

2001 (2)

C. S. Gworek, P. Phatak, B. T. Jonker, E. R. Weber, and N. Newman, “Pressure dependence of Cu, Ag, and Fe/n-GaAs Schottky barrier heights,” Phys. Rev. B 64(4), 045322 (2001).
[Crossref]

A. De Vrieze, K. Strubbe, W. P. Gomes, S. Forment, and R. L. Van Meirhaeghe, “Electrochemical formation and properties of n-GaAs/Au and n-GaAs/Ag Schottky barriers: Influence of surface composition upon the barrier height,” Phys. Chem. Chem. Phys. 3(23), 5297–5303 (2001).
[Crossref]

2000 (1)

N. L. Rupesinghe, M. Chhowalla, G. A. J. Amaratunga, P. Weightman, D. Martin, P. Unsworth, and J. Murray, “Influence of the heterojunction on the field emission from tetrahedral amorphous carbon on Si,” Appl. Phys. Lett. 77(12), 1908 (2000).
[Crossref]

1994 (1)

M. A. Tamor and W. C. Vasell, “Raman ‘fingerprinting’ of amorphous carbon films,” J. Appl. Phys. 76(6), 3823 (1994).
[Crossref]

1975 (1)

H. Kato, J. Fujimot, T. Kanda, A. Yoshida, and T. Arizumi, “Accurate measurement of the jitter time of GaAs photoconductive semiconductor switches triggered by a one-to-two optical fiber,” Phys. Stat. Sol. 32, 255–261 (1975).
[Crossref]

Adhikari, S.

A. M. M. Omera, S. Adhikari, H. Uchida, and M. Umeno, “Photovoltaic characteristics of postdeposition iodine-doped amorphous carbon films by microwave surface wave plasma chemical vapor deposition,” Appl. Phys. Lett. 87(16), 161912 (2005).
[Crossref]

Amaratunga, G. A. J.

N. L. Rupesinghe, M. Chhowalla, G. A. J. Amaratunga, P. Weightman, D. Martin, P. Unsworth, and J. Murray, “Influence of the heterojunction on the field emission from tetrahedral amorphous carbon on Si,” Appl. Phys. Lett. 77(12), 1908 (2000).
[Crossref]

Arizumi, T.

H. Kato, J. Fujimot, T. Kanda, A. Yoshida, and T. Arizumi, “Accurate measurement of the jitter time of GaAs photoconductive semiconductor switches triggered by a one-to-two optical fiber,” Phys. Stat. Sol. 32, 255–261 (1975).
[Crossref]

Carey, J. D.

S. J. Henley, J. D. Carey, and S. R. P. Silva, “Room temperature photoluminescence from nanostructured amorphous carbon,” Appl. Phys. Lett. 85(25), 6236 (2004).
[Crossref]

Chen, C.-Y.

Chen, H. J.

M. Ma, Q. Z. Xue, H. J. Chen, X. W. Zhou, D. Xia, C. Lv, and J. Xie, “Photovoltaic characteristics of Pd doped amorphous carbon film/SiO2 /Si,” Appl. Phys. Lett. 97(6), 061902 (2010).
[Crossref]

Chen, M.-W.

Chen, T.-T.

Chen, Y.-F.

Chhowalla, M.

N. L. Rupesinghe, M. Chhowalla, G. A. J. Amaratunga, P. Weightman, D. Martin, P. Unsworth, and J. Murray, “Influence of the heterojunction on the field emission from tetrahedral amorphous carbon on Si,” Appl. Phys. Lett. 77(12), 1908 (2000).
[Crossref]

Cui, P.

F. Zhuge, W. Dai, C. L. He, A. Y. Wang, Y. W. Liu, M. Li, Y. H. Wu, P. Cui, and R. W. Li, “Nonvolatile resistive switching memory based on amorphous carbon,” Appl. Phys. Lett. 96(16), 163505 (2010).
[Crossref]

Dai, W.

F. Zhuge, W. Dai, C. L. He, A. Y. Wang, Y. W. Liu, M. Li, Y. H. Wu, P. Cui, and R. W. Li, “Nonvolatile resistive switching memory based on amorphous carbon,” Appl. Phys. Lett. 96(16), 163505 (2010).
[Crossref]

De Vrieze, A.

A. De Vrieze, K. Strubbe, W. P. Gomes, S. Forment, and R. L. Van Meirhaeghe, “Electrochemical formation and properties of n-GaAs/Au and n-GaAs/Ag Schottky barriers: Influence of surface composition upon the barrier height,” Phys. Chem. Chem. Phys. 3(23), 5297–5303 (2001).
[Crossref]

Ding, Y.

Forment, S.

A. De Vrieze, K. Strubbe, W. P. Gomes, S. Forment, and R. L. Van Meirhaeghe, “Electrochemical formation and properties of n-GaAs/Au and n-GaAs/Ag Schottky barriers: Influence of surface composition upon the barrier height,” Phys. Chem. Chem. Phys. 3(23), 5297–5303 (2001).
[Crossref]

Fujimot, J.

H. Kato, J. Fujimot, T. Kanda, A. Yoshida, and T. Arizumi, “Accurate measurement of the jitter time of GaAs photoconductive semiconductor switches triggered by a one-to-two optical fiber,” Phys. Stat. Sol. 32, 255–261 (1975).
[Crossref]

Gao, J.

Y. C. Jiang, J. F. Wang, and J. Gao, “Giant photoconductivity induced by plasmonic Co nanoparticles in Co-doped amorphous carbon/silicon heterostructures,” Carbon 72, 106–113 (2014).
[Crossref]

Gao, X. L.

X. L. Gao, X. Z. Zhang, C. H. Wan, X. Zhang, L. H. Wu, and X. Y. Tan, “Abnormal humidity-dependent electrical properties of amorphous carbon/silicon heterojunctions,” Appl. Phys. Lett. 97(21), 212101 (2010).
[Crossref]

C. H. Wan, X. Z. Zhang, X. Zhang, X. L. Gao, and X. Y. Tan, “Photoconductivity of iron doped amorphous carbon films on n-type silicon substrates,” Appl. Phys. Lett. 95(2), 022105 (2009).
[Crossref]

L. Z. Hao, Z. Q. Xue, X. L. Gao, Q. Li, Q. B. Zheng, and K. Y. Yan, “Abnormal I-V characteristics and metal-insulator transition of Fe-doped amorphous carbon/silicon p-n junction,” J. Appl. Phys. 101(5), 053718 (2007).
[Crossref]

Gomes, W. P.

A. De Vrieze, K. Strubbe, W. P. Gomes, S. Forment, and R. L. Van Meirhaeghe, “Electrochemical formation and properties of n-GaAs/Au and n-GaAs/Ag Schottky barriers: Influence of surface composition upon the barrier height,” Phys. Chem. Chem. Phys. 3(23), 5297–5303 (2001).
[Crossref]

Gworek, C. S.

C. S. Gworek, P. Phatak, B. T. Jonker, E. R. Weber, and N. Newman, “Pressure dependence of Cu, Ag, and Fe/n-GaAs Schottky barrier heights,” Phys. Rev. B 64(4), 045322 (2001).
[Crossref]

Hao, L. Z.

L. Z. Hao, Z. Q. Xue, X. L. Gao, Q. Li, Q. B. Zheng, and K. Y. Yan, “Abnormal I-V characteristics and metal-insulator transition of Fe-doped amorphous carbon/silicon p-n junction,” J. Appl. Phys. 101(5), 053718 (2007).
[Crossref]

Hayashi, Y.

T. S. T. Kokubu, Y. Hayashi, and T. Jimbo, “Effect of rf power on the photovoltaic properties of boron-doped amorphous carbon/n-type silicon junction fabricated by plasma enhanced chemical vapor deposition,” Thin Solid Films 482(1-2), 86–89 (2005).
[Crossref]

He, C. L.

F. Zhuge, W. Dai, C. L. He, A. Y. Wang, Y. W. Liu, M. Li, Y. H. Wu, P. Cui, and R. W. Li, “Nonvolatile resistive switching memory based on amorphous carbon,” Appl. Phys. Lett. 96(16), 163505 (2010).
[Crossref]

He, J.-H.

Henley, S. J.

S. J. Henley, J. D. Carey, and S. R. P. Silva, “Room temperature photoluminescence from nanostructured amorphous carbon,” Appl. Phys. Lett. 85(25), 6236 (2004).
[Crossref]

Jiang, Y.

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[Crossref] [PubMed]

Jiang, Y. C.

Y. C. Jiang, J. F. Wang, and J. Gao, “Giant photoconductivity induced by plasmonic Co nanoparticles in Co-doped amorphous carbon/silicon heterostructures,” Carbon 72, 106–113 (2014).
[Crossref]

Jie, J. S.

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[Crossref] [PubMed]

Jimbo, T.

T. S. T. Kokubu, Y. Hayashi, and T. Jimbo, “Effect of rf power on the photovoltaic properties of boron-doped amorphous carbon/n-type silicon junction fabricated by plasma enhanced chemical vapor deposition,” Thin Solid Films 482(1-2), 86–89 (2005).
[Crossref]

Jonker, B. T.

C. S. Gworek, P. Phatak, B. T. Jonker, E. R. Weber, and N. Newman, “Pressure dependence of Cu, Ag, and Fe/n-GaAs Schottky barrier heights,” Phys. Rev. B 64(4), 045322 (2001).
[Crossref]

Kanda, T.

H. Kato, J. Fujimot, T. Kanda, A. Yoshida, and T. Arizumi, “Accurate measurement of the jitter time of GaAs photoconductive semiconductor switches triggered by a one-to-two optical fiber,” Phys. Stat. Sol. 32, 255–261 (1975).
[Crossref]

Kato, H.

H. Kato, J. Fujimot, T. Kanda, A. Yoshida, and T. Arizumi, “Accurate measurement of the jitter time of GaAs photoconductive semiconductor switches triggered by a one-to-two optical fiber,” Phys. Stat. Sol. 32, 255–261 (1975).
[Crossref]

Khan, R. U. A.

R. U. A. Khan, S. R. P. Silva, and R. A. C. M. M. Van Swaaij, “Polymeric amorphous carbon as p-type window within amorphous silicon solar cells,” Appl. Phys. Lett. 82(22), 3979 (2003).
[Crossref]

Kokubu, T. S. T.

T. S. T. Kokubu, Y. Hayashi, and T. Jimbo, “Effect of rf power on the photovoltaic properties of boron-doped amorphous carbon/n-type silicon junction fabricated by plasma enhanced chemical vapor deposition,” Thin Solid Films 482(1-2), 86–89 (2005).
[Crossref]

Lee, S. T.

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[Crossref] [PubMed]

Li, M.

F. Zhuge, W. Dai, C. L. He, A. Y. Wang, Y. W. Liu, M. Li, Y. H. Wu, P. Cui, and R. W. Li, “Nonvolatile resistive switching memory based on amorphous carbon,” Appl. Phys. Lett. 96(16), 163505 (2010).
[Crossref]

Li, Q.

L. Z. Hao, Z. Q. Xue, X. L. Gao, Q. Li, Q. B. Zheng, and K. Y. Yan, “Abnormal I-V characteristics and metal-insulator transition of Fe-doped amorphous carbon/silicon p-n junction,” J. Appl. Phys. 101(5), 053718 (2007).
[Crossref]

Li, R. W.

F. Zhuge, W. Dai, C. L. He, A. Y. Wang, Y. W. Liu, M. Li, Y. H. Wu, P. Cui, and R. W. Li, “Nonvolatile resistive switching memory based on amorphous carbon,” Appl. Phys. Lett. 96(16), 163505 (2010).
[Crossref]

Li, Y. Q.

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[Crossref] [PubMed]

Lien, D.-H.

Lin, C.-H.

Liu, Y. W.

F. Zhuge, W. Dai, C. L. He, A. Y. Wang, Y. W. Liu, M. Li, Y. H. Wu, P. Cui, and R. W. Li, “Nonvolatile resistive switching memory based on amorphous carbon,” Appl. Phys. Lett. 96(16), 163505 (2010).
[Crossref]

Lv, C.

M. Ma, Q. Z. Xue, H. J. Chen, X. W. Zhou, D. Xia, C. Lv, and J. Xie, “Photovoltaic characteristics of Pd doped amorphous carbon film/SiO2 /Si,” Appl. Phys. Lett. 97(6), 061902 (2010).
[Crossref]

Ma, M.

M. Ma, Q. Z. Xue, H. J. Chen, X. W. Zhou, D. Xia, C. Lv, and J. Xie, “Photovoltaic characteristics of Pd doped amorphous carbon film/SiO2 /Si,” Appl. Phys. Lett. 97(6), 061902 (2010).
[Crossref]

Martin, D.

N. L. Rupesinghe, M. Chhowalla, G. A. J. Amaratunga, P. Weightman, D. Martin, P. Unsworth, and J. Murray, “Influence of the heterojunction on the field emission from tetrahedral amorphous carbon on Si,” Appl. Phys. Lett. 77(12), 1908 (2000).
[Crossref]

Meng, X. M.

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[Crossref] [PubMed]

Moshchalkov, V. V.

J. M. Wang, X. Z. Zhang, C. H. Wan, J. Vanacken, and V. V. Moshchalkov, “Magnetotransport properties of undoped amorphous carbon films,” Carbon 59, 278–282 (2013).
[Crossref]

Murray, J.

N. L. Rupesinghe, M. Chhowalla, G. A. J. Amaratunga, P. Weightman, D. Martin, P. Unsworth, and J. Murray, “Influence of the heterojunction on the field emission from tetrahedral amorphous carbon on Si,” Appl. Phys. Lett. 77(12), 1908 (2000).
[Crossref]

Newman, N.

C. S. Gworek, P. Phatak, B. T. Jonker, E. R. Weber, and N. Newman, “Pressure dependence of Cu, Ag, and Fe/n-GaAs Schottky barrier heights,” Phys. Rev. B 64(4), 045322 (2001).
[Crossref]

Noda, M.

S. K. T. Shinagawa, M. Noda, and M. Umeno, “Photoconductivity of DLC film deposited by pulsed discharge plasma CVD,” Diamond Related Materials 17(4-5), 676–679 (2008).
[Crossref]

Omera, A. M. M.

A. M. M. Omera, S. Adhikari, H. Uchida, and M. Umeno, “Photovoltaic characteristics of postdeposition iodine-doped amorphous carbon films by microwave surface wave plasma chemical vapor deposition,” Appl. Phys. Lett. 87(16), 161912 (2005).
[Crossref]

Phatak, P.

C. S. Gworek, P. Phatak, B. T. Jonker, E. R. Weber, and N. Newman, “Pressure dependence of Cu, Ag, and Fe/n-GaAs Schottky barrier heights,” Phys. Rev. B 64(4), 045322 (2001).
[Crossref]

Robertson, J.

J. Robertson, “Diamond-like amorphous carbon,” Mater. Sci. Eng. Rep. 37(4-6), 129–281 (2002).
[Crossref]

Rupesinghe, N. L.

N. L. Rupesinghe, M. Chhowalla, G. A. J. Amaratunga, P. Weightman, D. Martin, P. Unsworth, and J. Murray, “Influence of the heterojunction on the field emission from tetrahedral amorphous carbon on Si,” Appl. Phys. Lett. 77(12), 1908 (2000).
[Crossref]

Shinagawa, S. K. T.

S. K. T. Shinagawa, M. Noda, and M. Umeno, “Photoconductivity of DLC film deposited by pulsed discharge plasma CVD,” Diamond Related Materials 17(4-5), 676–679 (2008).
[Crossref]

Silva, S. R. P.

S. J. Henley, J. D. Carey, and S. R. P. Silva, “Room temperature photoluminescence from nanostructured amorphous carbon,” Appl. Phys. Lett. 85(25), 6236 (2004).
[Crossref]

R. U. A. Khan, S. R. P. Silva, and R. A. C. M. M. Van Swaaij, “Polymeric amorphous carbon as p-type window within amorphous silicon solar cells,” Appl. Phys. Lett. 82(22), 3979 (2003).
[Crossref]

Strubbe, K.

A. De Vrieze, K. Strubbe, W. P. Gomes, S. Forment, and R. L. Van Meirhaeghe, “Electrochemical formation and properties of n-GaAs/Au and n-GaAs/Ag Schottky barriers: Influence of surface composition upon the barrier height,” Phys. Chem. Chem. Phys. 3(23), 5297–5303 (2001).
[Crossref]

Tamor, M. A.

M. A. Tamor and W. C. Vasell, “Raman ‘fingerprinting’ of amorphous carbon films,” J. Appl. Phys. 76(6), 3823 (1994).
[Crossref]

Tan, X. Y.

X. L. Gao, X. Z. Zhang, C. H. Wan, X. Zhang, L. H. Wu, and X. Y. Tan, “Abnormal humidity-dependent electrical properties of amorphous carbon/silicon heterojunctions,” Appl. Phys. Lett. 97(21), 212101 (2010).
[Crossref]

C. H. Wan, X. Z. Zhang, X. Zhang, X. L. Gao, and X. Y. Tan, “Photoconductivity of iron doped amorphous carbon films on n-type silicon substrates,” Appl. Phys. Lett. 95(2), 022105 (2009).
[Crossref]

Tian, P.

P. Tian, X. Zhang, and Q. Z. Xue, “Enhanced room-temperature positive magnetoresistance of a-C:Fe film,” Carbon 45(9), 1764–1768 (2007).
[Crossref]

Uchida, H.

A. M. M. Omera, S. Adhikari, H. Uchida, and M. Umeno, “Photovoltaic characteristics of postdeposition iodine-doped amorphous carbon films by microwave surface wave plasma chemical vapor deposition,” Appl. Phys. Lett. 87(16), 161912 (2005).
[Crossref]

Umeno, M.

S. K. T. Shinagawa, M. Noda, and M. Umeno, “Photoconductivity of DLC film deposited by pulsed discharge plasma CVD,” Diamond Related Materials 17(4-5), 676–679 (2008).
[Crossref]

A. M. M. Omera, S. Adhikari, H. Uchida, and M. Umeno, “Photovoltaic characteristics of postdeposition iodine-doped amorphous carbon films by microwave surface wave plasma chemical vapor deposition,” Appl. Phys. Lett. 87(16), 161912 (2005).
[Crossref]

Unsworth, P.

N. L. Rupesinghe, M. Chhowalla, G. A. J. Amaratunga, P. Weightman, D. Martin, P. Unsworth, and J. Murray, “Influence of the heterojunction on the field emission from tetrahedral amorphous carbon on Si,” Appl. Phys. Lett. 77(12), 1908 (2000).
[Crossref]

Van Meirhaeghe, R. L.

A. De Vrieze, K. Strubbe, W. P. Gomes, S. Forment, and R. L. Van Meirhaeghe, “Electrochemical formation and properties of n-GaAs/Au and n-GaAs/Ag Schottky barriers: Influence of surface composition upon the barrier height,” Phys. Chem. Chem. Phys. 3(23), 5297–5303 (2001).
[Crossref]

Van Swaaij, R. A. C. M. M.

R. U. A. Khan, S. R. P. Silva, and R. A. C. M. M. Van Swaaij, “Polymeric amorphous carbon as p-type window within amorphous silicon solar cells,” Appl. Phys. Lett. 82(22), 3979 (2003).
[Crossref]

Vanacken, J.

J. M. Wang, X. Z. Zhang, C. H. Wan, J. Vanacken, and V. V. Moshchalkov, “Magnetotransport properties of undoped amorphous carbon films,” Carbon 59, 278–282 (2013).
[Crossref]

Vasell, W. C.

M. A. Tamor and W. C. Vasell, “Raman ‘fingerprinting’ of amorphous carbon films,” J. Appl. Phys. 76(6), 3823 (1994).
[Crossref]

Wan, C. H.

J. M. Wang, X. Z. Zhang, C. H. Wan, J. Vanacken, and V. V. Moshchalkov, “Magnetotransport properties of undoped amorphous carbon films,” Carbon 59, 278–282 (2013).
[Crossref]

X. L. Gao, X. Z. Zhang, C. H. Wan, X. Zhang, L. H. Wu, and X. Y. Tan, “Abnormal humidity-dependent electrical properties of amorphous carbon/silicon heterojunctions,” Appl. Phys. Lett. 97(21), 212101 (2010).
[Crossref]

C. H. Wan, X. Z. Zhang, X. Zhang, X. L. Gao, and X. Y. Tan, “Photoconductivity of iron doped amorphous carbon films on n-type silicon substrates,” Appl. Phys. Lett. 95(2), 022105 (2009).
[Crossref]

Wang, A. Y.

F. Zhuge, W. Dai, C. L. He, A. Y. Wang, Y. W. Liu, M. Li, Y. H. Wu, P. Cui, and R. W. Li, “Nonvolatile resistive switching memory based on amorphous carbon,” Appl. Phys. Lett. 96(16), 163505 (2010).
[Crossref]

Wang, J. F.

Y. C. Jiang, J. F. Wang, and J. Gao, “Giant photoconductivity induced by plasmonic Co nanoparticles in Co-doped amorphous carbon/silicon heterostructures,” Carbon 72, 106–113 (2014).
[Crossref]

Wang, J. M.

J. M. Wang, X. Z. Zhang, C. H. Wan, J. Vanacken, and V. V. Moshchalkov, “Magnetotransport properties of undoped amorphous carbon films,” Carbon 59, 278–282 (2013).
[Crossref]

Weber, E. R.

C. S. Gworek, P. Phatak, B. T. Jonker, E. R. Weber, and N. Newman, “Pressure dependence of Cu, Ag, and Fe/n-GaAs Schottky barrier heights,” Phys. Rev. B 64(4), 045322 (2001).
[Crossref]

Weightman, P.

N. L. Rupesinghe, M. Chhowalla, G. A. J. Amaratunga, P. Weightman, D. Martin, P. Unsworth, and J. Murray, “Influence of the heterojunction on the field emission from tetrahedral amorphous carbon on Si,” Appl. Phys. Lett. 77(12), 1908 (2000).
[Crossref]

Wu, L. H.

X. L. Gao, X. Z. Zhang, C. H. Wan, X. Zhang, L. H. Wu, and X. Y. Tan, “Abnormal humidity-dependent electrical properties of amorphous carbon/silicon heterojunctions,” Appl. Phys. Lett. 97(21), 212101 (2010).
[Crossref]

Wu, Y. H.

F. Zhuge, W. Dai, C. L. He, A. Y. Wang, Y. W. Liu, M. Li, Y. H. Wu, P. Cui, and R. W. Li, “Nonvolatile resistive switching memory based on amorphous carbon,” Appl. Phys. Lett. 96(16), 163505 (2010).
[Crossref]

Xia, D.

M. Ma, Q. Z. Xue, H. J. Chen, X. W. Zhou, D. Xia, C. Lv, and J. Xie, “Photovoltaic characteristics of Pd doped amorphous carbon film/SiO2 /Si,” Appl. Phys. Lett. 97(6), 061902 (2010).
[Crossref]

Xie, J.

M. Ma, Q. Z. Xue, H. J. Chen, X. W. Zhou, D. Xia, C. Lv, and J. Xie, “Photovoltaic characteristics of Pd doped amorphous carbon film/SiO2 /Si,” Appl. Phys. Lett. 97(6), 061902 (2010).
[Crossref]

Xue, Q. Z.

M. Ma, Q. Z. Xue, H. J. Chen, X. W. Zhou, D. Xia, C. Lv, and J. Xie, “Photovoltaic characteristics of Pd doped amorphous carbon film/SiO2 /Si,” Appl. Phys. Lett. 97(6), 061902 (2010).
[Crossref]

P. Tian, X. Zhang, and Q. Z. Xue, “Enhanced room-temperature positive magnetoresistance of a-C:Fe film,” Carbon 45(9), 1764–1768 (2007).
[Crossref]

Xue, Z. Q.

L. Z. Hao, Z. Q. Xue, X. L. Gao, Q. Li, Q. B. Zheng, and K. Y. Yan, “Abnormal I-V characteristics and metal-insulator transition of Fe-doped amorphous carbon/silicon p-n junction,” J. Appl. Phys. 101(5), 053718 (2007).
[Crossref]

Yan, K. Y.

L. Z. Hao, Z. Q. Xue, X. L. Gao, Q. Li, Q. B. Zheng, and K. Y. Yan, “Abnormal I-V characteristics and metal-insulator transition of Fe-doped amorphous carbon/silicon p-n junction,” J. Appl. Phys. 101(5), 053718 (2007).
[Crossref]

Yoshida, A.

H. Kato, J. Fujimot, T. Kanda, A. Yoshida, and T. Arizumi, “Accurate measurement of the jitter time of GaAs photoconductive semiconductor switches triggered by a one-to-two optical fiber,” Phys. Stat. Sol. 32, 255–261 (1975).
[Crossref]

Zhang, W. J.

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[Crossref] [PubMed]

Zhang, X.

X. L. Gao, X. Z. Zhang, C. H. Wan, X. Zhang, L. H. Wu, and X. Y. Tan, “Abnormal humidity-dependent electrical properties of amorphous carbon/silicon heterojunctions,” Appl. Phys. Lett. 97(21), 212101 (2010).
[Crossref]

C. H. Wan, X. Z. Zhang, X. Zhang, X. L. Gao, and X. Y. Tan, “Photoconductivity of iron doped amorphous carbon films on n-type silicon substrates,” Appl. Phys. Lett. 95(2), 022105 (2009).
[Crossref]

P. Tian, X. Zhang, and Q. Z. Xue, “Enhanced room-temperature positive magnetoresistance of a-C:Fe film,” Carbon 45(9), 1764–1768 (2007).
[Crossref]

Zhang, X. Z.

J. M. Wang, X. Z. Zhang, C. H. Wan, J. Vanacken, and V. V. Moshchalkov, “Magnetotransport properties of undoped amorphous carbon films,” Carbon 59, 278–282 (2013).
[Crossref]

X. L. Gao, X. Z. Zhang, C. H. Wan, X. Zhang, L. H. Wu, and X. Y. Tan, “Abnormal humidity-dependent electrical properties of amorphous carbon/silicon heterojunctions,” Appl. Phys. Lett. 97(21), 212101 (2010).
[Crossref]

C. H. Wan, X. Z. Zhang, X. Zhang, X. L. Gao, and X. Y. Tan, “Photoconductivity of iron doped amorphous carbon films on n-type silicon substrates,” Appl. Phys. Lett. 95(2), 022105 (2009).
[Crossref]

Zheng, Q. B.

L. Z. Hao, Z. Q. Xue, X. L. Gao, Q. Li, Q. B. Zheng, and K. Y. Yan, “Abnormal I-V characteristics and metal-insulator transition of Fe-doped amorphous carbon/silicon p-n junction,” J. Appl. Phys. 101(5), 053718 (2007).
[Crossref]

Zhou, X. W.

M. Ma, Q. Z. Xue, H. J. Chen, X. W. Zhou, D. Xia, C. Lv, and J. Xie, “Photovoltaic characteristics of Pd doped amorphous carbon film/SiO2 /Si,” Appl. Phys. Lett. 97(6), 061902 (2010).
[Crossref]

Zhuge, F.

F. Zhuge, W. Dai, C. L. He, A. Y. Wang, Y. W. Liu, M. Li, Y. H. Wu, P. Cui, and R. W. Li, “Nonvolatile resistive switching memory based on amorphous carbon,” Appl. Phys. Lett. 96(16), 163505 (2010).
[Crossref]

Appl. Phys. Lett. (8)

X. L. Gao, X. Z. Zhang, C. H. Wan, X. Zhang, L. H. Wu, and X. Y. Tan, “Abnormal humidity-dependent electrical properties of amorphous carbon/silicon heterojunctions,” Appl. Phys. Lett. 97(21), 212101 (2010).
[Crossref]

N. L. Rupesinghe, M. Chhowalla, G. A. J. Amaratunga, P. Weightman, D. Martin, P. Unsworth, and J. Murray, “Influence of the heterojunction on the field emission from tetrahedral amorphous carbon on Si,” Appl. Phys. Lett. 77(12), 1908 (2000).
[Crossref]

F. Zhuge, W. Dai, C. L. He, A. Y. Wang, Y. W. Liu, M. Li, Y. H. Wu, P. Cui, and R. W. Li, “Nonvolatile resistive switching memory based on amorphous carbon,” Appl. Phys. Lett. 96(16), 163505 (2010).
[Crossref]

M. Ma, Q. Z. Xue, H. J. Chen, X. W. Zhou, D. Xia, C. Lv, and J. Xie, “Photovoltaic characteristics of Pd doped amorphous carbon film/SiO2 /Si,” Appl. Phys. Lett. 97(6), 061902 (2010).
[Crossref]

A. M. M. Omera, S. Adhikari, H. Uchida, and M. Umeno, “Photovoltaic characteristics of postdeposition iodine-doped amorphous carbon films by microwave surface wave plasma chemical vapor deposition,” Appl. Phys. Lett. 87(16), 161912 (2005).
[Crossref]

R. U. A. Khan, S. R. P. Silva, and R. A. C. M. M. Van Swaaij, “Polymeric amorphous carbon as p-type window within amorphous silicon solar cells,” Appl. Phys. Lett. 82(22), 3979 (2003).
[Crossref]

C. H. Wan, X. Z. Zhang, X. Zhang, X. L. Gao, and X. Y. Tan, “Photoconductivity of iron doped amorphous carbon films on n-type silicon substrates,” Appl. Phys. Lett. 95(2), 022105 (2009).
[Crossref]

S. J. Henley, J. D. Carey, and S. R. P. Silva, “Room temperature photoluminescence from nanostructured amorphous carbon,” Appl. Phys. Lett. 85(25), 6236 (2004).
[Crossref]

Carbon (3)

Y. C. Jiang, J. F. Wang, and J. Gao, “Giant photoconductivity induced by plasmonic Co nanoparticles in Co-doped amorphous carbon/silicon heterostructures,” Carbon 72, 106–113 (2014).
[Crossref]

J. M. Wang, X. Z. Zhang, C. H. Wan, J. Vanacken, and V. V. Moshchalkov, “Magnetotransport properties of undoped amorphous carbon films,” Carbon 59, 278–282 (2013).
[Crossref]

P. Tian, X. Zhang, and Q. Z. Xue, “Enhanced room-temperature positive magnetoresistance of a-C:Fe film,” Carbon 45(9), 1764–1768 (2007).
[Crossref]

Diamond Related Materials (1)

S. K. T. Shinagawa, M. Noda, and M. Umeno, “Photoconductivity of DLC film deposited by pulsed discharge plasma CVD,” Diamond Related Materials 17(4-5), 676–679 (2008).
[Crossref]

J. Appl. Phys. (2)

L. Z. Hao, Z. Q. Xue, X. L. Gao, Q. Li, Q. B. Zheng, and K. Y. Yan, “Abnormal I-V characteristics and metal-insulator transition of Fe-doped amorphous carbon/silicon p-n junction,” J. Appl. Phys. 101(5), 053718 (2007).
[Crossref]

M. A. Tamor and W. C. Vasell, “Raman ‘fingerprinting’ of amorphous carbon films,” J. Appl. Phys. 76(6), 3823 (1994).
[Crossref]

Mater. Sci. Eng. Rep. (1)

J. Robertson, “Diamond-like amorphous carbon,” Mater. Sci. Eng. Rep. 37(4-6), 129–281 (2002).
[Crossref]

Nano Lett. (1)

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Chem. Chem. Phys. (1)

A. De Vrieze, K. Strubbe, W. P. Gomes, S. Forment, and R. L. Van Meirhaeghe, “Electrochemical formation and properties of n-GaAs/Au and n-GaAs/Ag Schottky barriers: Influence of surface composition upon the barrier height,” Phys. Chem. Chem. Phys. 3(23), 5297–5303 (2001).
[Crossref]

Phys. Rev. B (1)

C. S. Gworek, P. Phatak, B. T. Jonker, E. R. Weber, and N. Newman, “Pressure dependence of Cu, Ag, and Fe/n-GaAs Schottky barrier heights,” Phys. Rev. B 64(4), 045322 (2001).
[Crossref]

Phys. Stat. Sol. (1)

H. Kato, J. Fujimot, T. Kanda, A. Yoshida, and T. Arizumi, “Accurate measurement of the jitter time of GaAs photoconductive semiconductor switches triggered by a one-to-two optical fiber,” Phys. Stat. Sol. 32, 255–261 (1975).
[Crossref]

Thin Solid Films (1)

T. S. T. Kokubu, Y. Hayashi, and T. Jimbo, “Effect of rf power on the photovoltaic properties of boron-doped amorphous carbon/n-type silicon junction fabricated by plasma enhanced chemical vapor deposition,” Thin Solid Films 482(1-2), 86–89 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Raman spectra of a-C:Co film; (b) PL spectra of L-GaAs and a-C:Co/L-GaAs.
Fig. 2
Fig. 2 Dark and light I-V curves of a-C:Co/L-GaAs/Ag heterojunctions at RT using a 650-nm (red light) laser diode with an intensity of 45 mW/cm2. Insert (a) is a schematic illustration of electrical measurement system. Insert (b) shows zoom-in dark and light I-V curves at low voltage. Dark and light turn-on voltages are also labeled.
Fig. 3
Fig. 3 (a) Forward bias voltage dependence of photosensitivity of a-C:Co/L-GaAs/Ag heterojunctions at RT. The red line is fitted by an exp exponential function of measured data. (b) Photosensitivity measured at 0.3 V forward bias voltage at 300, 250, and 200 K. Error bars are also shown. Insert shows the periodic changes in RD and RL。
Fig. 4
Fig. 4 Photon Energy (a) and power (b) dependence of the photosensitivity of a-C:Co/GaAs/Ag heterojunctions at RT. Error bars are also shown.
Fig. 5
Fig. 5 Contact characteristics between Ag and a-C:Co film, Ag and L-GaAs. (a) I-V curves under light illumination (red line) and in dark (black line) between Ag and a-C:Co film. (b) I-V curves under light illumination (red line) and in dark (black line) between Ag and L-GaAs. Inserts are schematic illustrations of electrical measurement system.
Fig. 6
Fig. 6 Contact and photoconductivity of Ag/a-C:Co/L-GaAs. (a) I-V curve between Ag/a-C:Co film and L-GaAs in dark; (b) RD and RL of a-C:Co/L-GaAs at 0.5 V forward bias voltage. Black and red curves represent RD and RL illuminated on L-GaAs substrate and a-C:Co film, respectively.
Fig. 7
Fig. 7 (a) Equivalent circuit diagram of a-C:Co/GaAs/Ag heterojunctions. Inserts are barrier region diagrams of a-C:Co/L-GaAs p-n junction and Ag/L-GaAs Schottky junction. I-V curves of a-C:Co/L-GaAs/Ag heterojunctions at low bias voltage, in dark and under light illumination. (b) Experimental values; (c) Fitted I-V curves in dark from formulas (1), (2), (3-1), and (4); (d) Fitted I-V curves under light illumination from Eqs. (1), (2), (3-2a), and (4). Note that the Voc and Isc of a-C:Co/L-GaAs photosensitive diode are also shown.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

U s = u 1 + u 2 + u 3
Schottky junction                                               I= I s  [ exp(q u 1 /kT)1 ]
 photosensitive diode in dark                             I= I 0  [ 1exp(q u 2 /kT) ]
photosensitive diode under light illumination      I= I 0 [1exp(q u 2 /kT)]+ I sc
photosensitive diode under light illumination   V oc = kT q ln( I sc I 0 +1)
R c                                                                          I= u 3 / R c

Metrics