Abstract

To discover intrinsic relationship between optical bandgap and structural transformations in relaxor ferroelectric single crystals, electronic band structures and dielectric functions of xPb(In1/2Nb1/2)O3-(1 − xy)Pb(Mg1/3Nb2/3)O3-yPbTiO3 single crystals (x∼0.27–0.28, y∼0.29–0.35) around morphotropic phase boundary have been investigated by variable-temperature (200–750 K) spectroscopic ellipsometry. It was found that the discontinuous evolution from the second derivative of dielectric functions corresponds to structural transformation patterns. Using the SCP (standard critical point) model, four typical interband transitions (Ea∼2.8 eV, Eb∼3.6 eV, Ec∼4.6 eV, and Ed∼5.4 eV) can be uniquely assigned. These interband transitions are mainly attributed to the contributions from B-O bonds and multiphase coexistence. Furthermore, a modified phase diagram based on interband transition variations with the temperature and PT composition for PIMN-PT crystals was provided. In order to verify the accuracy of phase transition temperature, temperature-dependent low-wavenumber Raman scattering was used as a support. The present results provide important supports for the theoretical model, which establish a quantitative relationship between the electronic transition and structural transformation for ferroelectric oxides.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photoluminescence study on polar nanoregions and structural variations in Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals

X. L. Zhang, J. J. Zhu, J. Z. Zhang, G. S. Xu, Z. G. Hu, and J. H. Chu
Opt. Express 22(18) 21903-21911 (2014)

Photorefractive effect in the relaxor ferroelectric material 0.91Pb(Zn1/3Nb2/3)O3–0.09PbTiO3

Saori Abe, Tomoyasu Fujishima, Takashi Tsubone, Ryushi Fujimura, Hidenobu Ono, Osamu Matoba, Katsuroh Oda, Tsutomu Shimura, and Kazuo Kuroda
Opt. Lett. 28(6) 420-422 (2003)

Refractive index modulating Raman spectroscopy based on perovskite PMN-PT ceramics

Danzhu Wei, Tian Xu, Li Yuan, Shu Tian, Jinghuai Fang, Yonglong Jin, Chaonan Wang, Xinxiang Ma, and Jianzhen Shi
Appl. Opt. 55(10) 2748-2751 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S.-E. Park and T. R. Shrout, “Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys. 82, 1804–1811 (1997).
    [Crossref]
  2. S. Kamba and J. Petzelt, in Piezoelectric Single Crystals and Their Application, edited by S. Trolier-McKinstry, L. E. Cross, and Y. Yamashita, eds. (Penn State University, 2004).
  3. J. F. Scott, “Applications of Modern Ferroelectrics,” Science 315, 954–959 (2007).
    [Crossref] [PubMed]
  4. M. Suewattana and D. J. Singh, “Electronic structure and lattice distortions in PbMg1/3Nb2/3O3 studied with density functional theory using the linearized augmented plane-wave method,” Phys. Rev. B 73, 224105 (2006).
    [Crossref]
  5. D. W. Wang, M. S. Cao, and S. J. Zhang, “Phase diagram and properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 polycrystalline ceramics,” J. Eur. Ceram. Soc. 32, 433–439 (2012).
    [Crossref]
  6. H. Zou, J. Li, X. Wang, D. Peng, Y. Li, and X. Yao, “Color-tunable upconversion emission and optical temperature sensing behaviour in Er-Yb-Mo codoped Bi7Ti4NbO21 multifunctional ferroelectric oxide,” Opt. Mater. Express 4, 1545–1554 (2014).
    [Crossref]
  7. X. L. Zhang, J. J. Zhu, G. S. Xu, J. Z. Zhang, Z. G. Hu, and J. H. Chu, “Photoluminescence study on polar nanoregions and structural variations in Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Opt. Express 22, 21903–21911 (2014).
    [Crossref] [PubMed]
  8. G. A. Rossetti, G. Popov, E. Zlotnikov, and N. Yao, “Domain structures and nonlinear mechanical deformation of soft Pb(ZrxTi1−x)O3 (PZT) piezoelectric ceramic fibers,” Mater. Sci. Eng. A 433, 124–132 (2006).
    [Crossref]
  9. Z. G. Ye, “High-performance piezoelectric single crystals of complex perovskite solid solutions,” MRS Bullentin 34, 277–283 (2009).
    [Crossref]
  10. M. Ahart, M. Somayazulu, R. E. Cohen, P. Ganesh, P. Dera, H. K. Mao, R. J. Hemley, Y. Ren, P. Liermann, and Z. G. Wu, “Origin of morphotropic phase boundaries in ferroelectrics,” Nature 451, 545–548 (2008).
    [Crossref] [PubMed]
  11. N. Zhang, H. Yokota, A. M. Glazer, Z. Ren, D. A. Keen, D. S. Keeble, P. A. Thomoas, and Z.-G. Ye, “The missing boundary in the phase diagram of PbZr1−xTixO3,” Nat. Commun. 5, 5231 (2014).
    [Crossref]
  12. M. Rössle, C. N. Wang, P. Marsik, M. Yazdi-Rizi, K. W. Kin, A. Dubroka, I. Marozau, C. W. Schneider, J. Humlicek, D. Baeriswyl, and C. Bernhard, “Optical probe of ferroelectric order in bulk and thin-film perovskite titanates,” Phys. Rev. B 88, 104110 (2013).
    [Crossref]
  13. B. Ghebouli, M. Ghebouli, T. Chihi, M. Fatmi, S. Boucetta, and M. Reffas, “First-principles study of structural, elastic, electronic and optical properties of SrMO3 (M=Ti and Sn),” Solid State Commun. 149, 2244–2249 (2009).
    [Crossref]
  14. X. L. Zhang, Z. G. Hu, G. S. Xu, J. J. Zhu, Y. W. Li, Z. Q. Zhu, and J. H. Chu, “Optical bandgap and phase transition in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals: An inherent relationship,” Appl. Phys. Lett. 103, 051902 (2013).
    [Crossref]
  15. J. J. Zhu, K. Jiang, G. S. Xu, Z. G. Hu, Y. W. Li, Z. Q. Zhu, and J. H. Chu, “Temperature-dependent Raman scattering and multiple phase coexistence in relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” J. Appl. Phys. 114, 153508 (2013).
    [Crossref]
  16. Z. H. Duan, Z. G. Hu, K. Jiang, G. S. Wang, X. L. Dong, and J. H. Chu, “Temperature-dependent dielectric functions and interband critical points of relaxor lead hafnate-modified PbSc1/2Ta1/2O3 ferroelectric ceramics by spectroscopic ellipsometry,” Appl. Phys. Lett. 102, 151908 (2013).
    [Crossref]
  17. H. Lee, Y. S. Kang, S. J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. B. Li, S. H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98, 094108 (2005).
    [Crossref]
  18. P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35, 9174–9189 (1987).
    [Crossref]
  19. H. Frölich, Theory of Dielectrics (Clarendon Press, 1949).
  20. R. D. King-Smith and D. Vanderbilt, “First-principles investigation of ferroelectricity in perovskite compounds,” Phys. Rev. B 49, 5828–5844 (1994).
    [Crossref]
  21. Z. Zhang, P. Wu, K. P. Ong, L. Lu, and C. Shu, “Electronic properties of A-site substituted lead zirconate titanate: Density functional calculations,” Phys. Rev. B 76, 125102 (2007).
    [Crossref]
  22. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
    [Crossref]
  23. G. S. Xu, K. Chen, D. F. Yang, and J. B. Li, “Growth and electrical properties of large size Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals prepared by the vertical Bridgman technique,” Appl. Phys. Lett. 90, 032901 (2007).
    [Crossref]
  24. O. Svitelskiy, J. Toulouse, G. Yong, and Z. -G. Ye, “Polarized Raman study of the phonon dynamics in Pb(Mg1/3Nb2/3)O3 crystal,” Phys. Rev. B 68, 104107 (2003).
    [Crossref]
  25. X. Chen, P. P. Jiang, Z. H. Duan, Z. G. Hu, X. F. Chen, G. S. Wang, X. L. Dong, and J. H. Chu, “The A-site driven phase transition procedure of (Pb0.97La0.02))(Zr0.42Sn0.40Ti0.18)O3 ceramics: An evidence from electronic structure variation,” Appl. Phys. Lett. 103, 192910 (2013).
    [Crossref]
  26. E. W. Sun, S. J. Zhang, J. Luo, T. R. Shrout, and W. W. Cao, “Elastic, dielectric, and piezoelectric constants of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal poled along [011]c,” Appl. Phys. Lett. 97, 032902 (2010).
    [Crossref]
  27. S. Zapf, H. S. Jeevan, T. Ivek, F. Pfister, F. Klingert, S. Jiang, D. Wu, P. Gegenwart, R. K. Kremer, and M. Dressel, “EuFe2(As1−xPx)2: Reentrant Spin Glass and Superconductivity,” Phys. Rev. Lett. 110, 237002 (2013).
    [Crossref]
  28. J. J. Zhu, J. Z. Zhang, G. S. Xu, X. L. Zhang, Z. G. Hu, and J. H. Chu, “Electronic transitions and dielectric functions of relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals: Temperature dependent spectroscopic study,” Appl. Phys. Lett. 104, 132903 (2014).
    [Crossref]
  29. J. J. Zhu, W. W. Li, G. S. Xu, K. Jiang, Z. G. Hu, and J. H. Chu, “A phenomenological model of electronic band structure in ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals around the morphotropic phase boundary determined by temperature-dependent transmittance spectra,” Acta Mater. 59, 6684–6690 (2011).
    [Crossref]
  30. B. Noheda, “Structure and high-piezoelectricity in lead oxide solid solutions,” Curr. Opin. Solid State Mater. Sci. 6, 27–34 (2002).
    [Crossref]
  31. T. T. Fang and H. Y. Chung, “Dielectric relaxation behavior of undoped, Ce-, and Cr-doped Sr0.5Ba0.5Nb2O6 at high temperatures,” Appl. Phys. Lett. 94, 092905 (2009).
    [Crossref]
  32. K. Y. Chan, W. S. Tsang, C. L. Mak, K. H. Wong, and P. M. Hui, “Effects of composition of PbTiO3 on optical properties of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 thin films,” Phys. Rev. B 69, 144111 (2004).
    [Crossref]
  33. W. Zhong and D. Vanderbilt, “Competing Structural Instabilities in Cubic Perovskites,” Phys. Rev. Lett. 74, 2587–2590 (1995).
    [Crossref] [PubMed]
  34. I. MacLaren, R. Villaurrutia, and A. Peláiz-Barranco, “Domain structures and nanostructures in incommensurate antiferroelectric PbxLa1−x(Zr0.9Ti0.1)O3,” J. Appl. Phys. 108, 034109 (2010).
    [Crossref]
  35. S. G. Choi, J. Hu, L. S. Abdallah, M. Limpinsel, Y. N. Zhang, S. Zollner, R. Q. Wu, and M. Law, “Pseudodielectric function and critical-point energies of iron pyrite,” Phys. Rev. B 86, 115207 (2012).
    [Crossref]
  36. W. Chan, Z. Xu, T. F. Hung, and H. Chen, “Effect of La substitution on phase transitions in lead zirconate stannate titanate (55/35/10) ceramics,” J. Appl. Phys. 96, 6606 (2004).
    [Crossref]
  37. A. S. Mischenko, Q. Zhang, R. W. Whatmore, J. F. Scott, and N. D. Mathur, “Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9PbMg1/3Nb2/3O3C0.1PbTiO3 near room temperature,” Appl. Phys. Lett. 89, 242912 (2006).
    [Crossref]
  38. B. Mihailova, B. Maier, C. Paulmann, T. Malcherek, J. Ihringer, M. Gospodinov, R. Stosch, B. Güttler, and U. Bismayer, “High-temperature structural transformations in the relaxor ferroelectrics PbSc0.5Ta0.5O3 and Pb0.78Ba0.22Sc0.5Ta0.5O3,” Phys. Rev. B 77, 174106 (2008).
    [Crossref]

2014 (4)

H. Zou, J. Li, X. Wang, D. Peng, Y. Li, and X. Yao, “Color-tunable upconversion emission and optical temperature sensing behaviour in Er-Yb-Mo codoped Bi7Ti4NbO21 multifunctional ferroelectric oxide,” Opt. Mater. Express 4, 1545–1554 (2014).
[Crossref]

X. L. Zhang, J. J. Zhu, G. S. Xu, J. Z. Zhang, Z. G. Hu, and J. H. Chu, “Photoluminescence study on polar nanoregions and structural variations in Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Opt. Express 22, 21903–21911 (2014).
[Crossref] [PubMed]

N. Zhang, H. Yokota, A. M. Glazer, Z. Ren, D. A. Keen, D. S. Keeble, P. A. Thomoas, and Z.-G. Ye, “The missing boundary in the phase diagram of PbZr1−xTixO3,” Nat. Commun. 5, 5231 (2014).
[Crossref]

J. J. Zhu, J. Z. Zhang, G. S. Xu, X. L. Zhang, Z. G. Hu, and J. H. Chu, “Electronic transitions and dielectric functions of relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals: Temperature dependent spectroscopic study,” Appl. Phys. Lett. 104, 132903 (2014).
[Crossref]

2013 (6)

S. Zapf, H. S. Jeevan, T. Ivek, F. Pfister, F. Klingert, S. Jiang, D. Wu, P. Gegenwart, R. K. Kremer, and M. Dressel, “EuFe2(As1−xPx)2: Reentrant Spin Glass and Superconductivity,” Phys. Rev. Lett. 110, 237002 (2013).
[Crossref]

X. Chen, P. P. Jiang, Z. H. Duan, Z. G. Hu, X. F. Chen, G. S. Wang, X. L. Dong, and J. H. Chu, “The A-site driven phase transition procedure of (Pb0.97La0.02))(Zr0.42Sn0.40Ti0.18)O3 ceramics: An evidence from electronic structure variation,” Appl. Phys. Lett. 103, 192910 (2013).
[Crossref]

M. Rössle, C. N. Wang, P. Marsik, M. Yazdi-Rizi, K. W. Kin, A. Dubroka, I. Marozau, C. W. Schneider, J. Humlicek, D. Baeriswyl, and C. Bernhard, “Optical probe of ferroelectric order in bulk and thin-film perovskite titanates,” Phys. Rev. B 88, 104110 (2013).
[Crossref]

X. L. Zhang, Z. G. Hu, G. S. Xu, J. J. Zhu, Y. W. Li, Z. Q. Zhu, and J. H. Chu, “Optical bandgap and phase transition in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals: An inherent relationship,” Appl. Phys. Lett. 103, 051902 (2013).
[Crossref]

J. J. Zhu, K. Jiang, G. S. Xu, Z. G. Hu, Y. W. Li, Z. Q. Zhu, and J. H. Chu, “Temperature-dependent Raman scattering and multiple phase coexistence in relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” J. Appl. Phys. 114, 153508 (2013).
[Crossref]

Z. H. Duan, Z. G. Hu, K. Jiang, G. S. Wang, X. L. Dong, and J. H. Chu, “Temperature-dependent dielectric functions and interband critical points of relaxor lead hafnate-modified PbSc1/2Ta1/2O3 ferroelectric ceramics by spectroscopic ellipsometry,” Appl. Phys. Lett. 102, 151908 (2013).
[Crossref]

2012 (2)

D. W. Wang, M. S. Cao, and S. J. Zhang, “Phase diagram and properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 polycrystalline ceramics,” J. Eur. Ceram. Soc. 32, 433–439 (2012).
[Crossref]

S. G. Choi, J. Hu, L. S. Abdallah, M. Limpinsel, Y. N. Zhang, S. Zollner, R. Q. Wu, and M. Law, “Pseudodielectric function and critical-point energies of iron pyrite,” Phys. Rev. B 86, 115207 (2012).
[Crossref]

2011 (1)

J. J. Zhu, W. W. Li, G. S. Xu, K. Jiang, Z. G. Hu, and J. H. Chu, “A phenomenological model of electronic band structure in ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals around the morphotropic phase boundary determined by temperature-dependent transmittance spectra,” Acta Mater. 59, 6684–6690 (2011).
[Crossref]

2010 (2)

E. W. Sun, S. J. Zhang, J. Luo, T. R. Shrout, and W. W. Cao, “Elastic, dielectric, and piezoelectric constants of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal poled along [011]c,” Appl. Phys. Lett. 97, 032902 (2010).
[Crossref]

I. MacLaren, R. Villaurrutia, and A. Peláiz-Barranco, “Domain structures and nanostructures in incommensurate antiferroelectric PbxLa1−x(Zr0.9Ti0.1)O3,” J. Appl. Phys. 108, 034109 (2010).
[Crossref]

2009 (3)

T. T. Fang and H. Y. Chung, “Dielectric relaxation behavior of undoped, Ce-, and Cr-doped Sr0.5Ba0.5Nb2O6 at high temperatures,” Appl. Phys. Lett. 94, 092905 (2009).
[Crossref]

Z. G. Ye, “High-performance piezoelectric single crystals of complex perovskite solid solutions,” MRS Bullentin 34, 277–283 (2009).
[Crossref]

B. Ghebouli, M. Ghebouli, T. Chihi, M. Fatmi, S. Boucetta, and M. Reffas, “First-principles study of structural, elastic, electronic and optical properties of SrMO3 (M=Ti and Sn),” Solid State Commun. 149, 2244–2249 (2009).
[Crossref]

2008 (2)

M. Ahart, M. Somayazulu, R. E. Cohen, P. Ganesh, P. Dera, H. K. Mao, R. J. Hemley, Y. Ren, P. Liermann, and Z. G. Wu, “Origin of morphotropic phase boundaries in ferroelectrics,” Nature 451, 545–548 (2008).
[Crossref] [PubMed]

B. Mihailova, B. Maier, C. Paulmann, T. Malcherek, J. Ihringer, M. Gospodinov, R. Stosch, B. Güttler, and U. Bismayer, “High-temperature structural transformations in the relaxor ferroelectrics PbSc0.5Ta0.5O3 and Pb0.78Ba0.22Sc0.5Ta0.5O3,” Phys. Rev. B 77, 174106 (2008).
[Crossref]

2007 (3)

G. S. Xu, K. Chen, D. F. Yang, and J. B. Li, “Growth and electrical properties of large size Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals prepared by the vertical Bridgman technique,” Appl. Phys. Lett. 90, 032901 (2007).
[Crossref]

J. F. Scott, “Applications of Modern Ferroelectrics,” Science 315, 954–959 (2007).
[Crossref] [PubMed]

Z. Zhang, P. Wu, K. P. Ong, L. Lu, and C. Shu, “Electronic properties of A-site substituted lead zirconate titanate: Density functional calculations,” Phys. Rev. B 76, 125102 (2007).
[Crossref]

2006 (3)

M. Suewattana and D. J. Singh, “Electronic structure and lattice distortions in PbMg1/3Nb2/3O3 studied with density functional theory using the linearized augmented plane-wave method,” Phys. Rev. B 73, 224105 (2006).
[Crossref]

G. A. Rossetti, G. Popov, E. Zlotnikov, and N. Yao, “Domain structures and nonlinear mechanical deformation of soft Pb(ZrxTi1−x)O3 (PZT) piezoelectric ceramic fibers,” Mater. Sci. Eng. A 433, 124–132 (2006).
[Crossref]

A. S. Mischenko, Q. Zhang, R. W. Whatmore, J. F. Scott, and N. D. Mathur, “Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9PbMg1/3Nb2/3O3C0.1PbTiO3 near room temperature,” Appl. Phys. Lett. 89, 242912 (2006).
[Crossref]

2005 (1)

H. Lee, Y. S. Kang, S. J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. B. Li, S. H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98, 094108 (2005).
[Crossref]

2004 (2)

K. Y. Chan, W. S. Tsang, C. L. Mak, K. H. Wong, and P. M. Hui, “Effects of composition of PbTiO3 on optical properties of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 thin films,” Phys. Rev. B 69, 144111 (2004).
[Crossref]

W. Chan, Z. Xu, T. F. Hung, and H. Chen, “Effect of La substitution on phase transitions in lead zirconate stannate titanate (55/35/10) ceramics,” J. Appl. Phys. 96, 6606 (2004).
[Crossref]

2003 (1)

O. Svitelskiy, J. Toulouse, G. Yong, and Z. -G. Ye, “Polarized Raman study of the phonon dynamics in Pb(Mg1/3Nb2/3)O3 crystal,” Phys. Rev. B 68, 104107 (2003).
[Crossref]

2002 (1)

B. Noheda, “Structure and high-piezoelectricity in lead oxide solid solutions,” Curr. Opin. Solid State Mater. Sci. 6, 27–34 (2002).
[Crossref]

1997 (1)

S.-E. Park and T. R. Shrout, “Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys. 82, 1804–1811 (1997).
[Crossref]

1996 (1)

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
[Crossref]

1995 (1)

W. Zhong and D. Vanderbilt, “Competing Structural Instabilities in Cubic Perovskites,” Phys. Rev. Lett. 74, 2587–2590 (1995).
[Crossref] [PubMed]

1994 (1)

R. D. King-Smith and D. Vanderbilt, “First-principles investigation of ferroelectricity in perovskite compounds,” Phys. Rev. B 49, 5828–5844 (1994).
[Crossref]

1987 (1)

P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35, 9174–9189 (1987).
[Crossref]

Abdallah, L. S.

S. G. Choi, J. Hu, L. S. Abdallah, M. Limpinsel, Y. N. Zhang, S. Zollner, R. Q. Wu, and M. Law, “Pseudodielectric function and critical-point energies of iron pyrite,” Phys. Rev. B 86, 115207 (2012).
[Crossref]

Ahart, M.

M. Ahart, M. Somayazulu, R. E. Cohen, P. Ganesh, P. Dera, H. K. Mao, R. J. Hemley, Y. Ren, P. Liermann, and Z. G. Wu, “Origin of morphotropic phase boundaries in ferroelectrics,” Nature 451, 545–548 (2008).
[Crossref] [PubMed]

Baeriswyl, D.

M. Rössle, C. N. Wang, P. Marsik, M. Yazdi-Rizi, K. W. Kin, A. Dubroka, I. Marozau, C. W. Schneider, J. Humlicek, D. Baeriswyl, and C. Bernhard, “Optical probe of ferroelectric order in bulk and thin-film perovskite titanates,” Phys. Rev. B 88, 104110 (2013).
[Crossref]

Bernhard, C.

M. Rössle, C. N. Wang, P. Marsik, M. Yazdi-Rizi, K. W. Kin, A. Dubroka, I. Marozau, C. W. Schneider, J. Humlicek, D. Baeriswyl, and C. Bernhard, “Optical probe of ferroelectric order in bulk and thin-film perovskite titanates,” Phys. Rev. B 88, 104110 (2013).
[Crossref]

Bismayer, U.

B. Mihailova, B. Maier, C. Paulmann, T. Malcherek, J. Ihringer, M. Gospodinov, R. Stosch, B. Güttler, and U. Bismayer, “High-temperature structural transformations in the relaxor ferroelectrics PbSc0.5Ta0.5O3 and Pb0.78Ba0.22Sc0.5Ta0.5O3,” Phys. Rev. B 77, 174106 (2008).
[Crossref]

Boucetta, S.

B. Ghebouli, M. Ghebouli, T. Chihi, M. Fatmi, S. Boucetta, and M. Reffas, “First-principles study of structural, elastic, electronic and optical properties of SrMO3 (M=Ti and Sn),” Solid State Commun. 149, 2244–2249 (2009).
[Crossref]

Cao, M. S.

D. W. Wang, M. S. Cao, and S. J. Zhang, “Phase diagram and properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 polycrystalline ceramics,” J. Eur. Ceram. Soc. 32, 433–439 (2012).
[Crossref]

Cao, W. W.

E. W. Sun, S. J. Zhang, J. Luo, T. R. Shrout, and W. W. Cao, “Elastic, dielectric, and piezoelectric constants of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal poled along [011]c,” Appl. Phys. Lett. 97, 032902 (2010).
[Crossref]

Cardona, M.

P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35, 9174–9189 (1987).
[Crossref]

Chan, K. Y.

K. Y. Chan, W. S. Tsang, C. L. Mak, K. H. Wong, and P. M. Hui, “Effects of composition of PbTiO3 on optical properties of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 thin films,” Phys. Rev. B 69, 144111 (2004).
[Crossref]

Chan, W.

W. Chan, Z. Xu, T. F. Hung, and H. Chen, “Effect of La substitution on phase transitions in lead zirconate stannate titanate (55/35/10) ceramics,” J. Appl. Phys. 96, 6606 (2004).
[Crossref]

Chen, H.

W. Chan, Z. Xu, T. F. Hung, and H. Chen, “Effect of La substitution on phase transitions in lead zirconate stannate titanate (55/35/10) ceramics,” J. Appl. Phys. 96, 6606 (2004).
[Crossref]

Chen, K.

G. S. Xu, K. Chen, D. F. Yang, and J. B. Li, “Growth and electrical properties of large size Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals prepared by the vertical Bridgman technique,” Appl. Phys. Lett. 90, 032901 (2007).
[Crossref]

Chen, X.

X. Chen, P. P. Jiang, Z. H. Duan, Z. G. Hu, X. F. Chen, G. S. Wang, X. L. Dong, and J. H. Chu, “The A-site driven phase transition procedure of (Pb0.97La0.02))(Zr0.42Sn0.40Ti0.18)O3 ceramics: An evidence from electronic structure variation,” Appl. Phys. Lett. 103, 192910 (2013).
[Crossref]

Chen, X. F.

X. Chen, P. P. Jiang, Z. H. Duan, Z. G. Hu, X. F. Chen, G. S. Wang, X. L. Dong, and J. H. Chu, “The A-site driven phase transition procedure of (Pb0.97La0.02))(Zr0.42Sn0.40Ti0.18)O3 ceramics: An evidence from electronic structure variation,” Appl. Phys. Lett. 103, 192910 (2013).
[Crossref]

Chihi, T.

B. Ghebouli, M. Ghebouli, T. Chihi, M. Fatmi, S. Boucetta, and M. Reffas, “First-principles study of structural, elastic, electronic and optical properties of SrMO3 (M=Ti and Sn),” Solid State Commun. 149, 2244–2249 (2009).
[Crossref]

Cho, S. J.

H. Lee, Y. S. Kang, S. J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. B. Li, S. H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98, 094108 (2005).
[Crossref]

Choi, S. G.

S. G. Choi, J. Hu, L. S. Abdallah, M. Limpinsel, Y. N. Zhang, S. Zollner, R. Q. Wu, and M. Law, “Pseudodielectric function and critical-point energies of iron pyrite,” Phys. Rev. B 86, 115207 (2012).
[Crossref]

Chu, J. H.

J. J. Zhu, J. Z. Zhang, G. S. Xu, X. L. Zhang, Z. G. Hu, and J. H. Chu, “Electronic transitions and dielectric functions of relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals: Temperature dependent spectroscopic study,” Appl. Phys. Lett. 104, 132903 (2014).
[Crossref]

X. L. Zhang, J. J. Zhu, G. S. Xu, J. Z. Zhang, Z. G. Hu, and J. H. Chu, “Photoluminescence study on polar nanoregions and structural variations in Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Opt. Express 22, 21903–21911 (2014).
[Crossref] [PubMed]

X. L. Zhang, Z. G. Hu, G. S. Xu, J. J. Zhu, Y. W. Li, Z. Q. Zhu, and J. H. Chu, “Optical bandgap and phase transition in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals: An inherent relationship,” Appl. Phys. Lett. 103, 051902 (2013).
[Crossref]

J. J. Zhu, K. Jiang, G. S. Xu, Z. G. Hu, Y. W. Li, Z. Q. Zhu, and J. H. Chu, “Temperature-dependent Raman scattering and multiple phase coexistence in relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” J. Appl. Phys. 114, 153508 (2013).
[Crossref]

Z. H. Duan, Z. G. Hu, K. Jiang, G. S. Wang, X. L. Dong, and J. H. Chu, “Temperature-dependent dielectric functions and interband critical points of relaxor lead hafnate-modified PbSc1/2Ta1/2O3 ferroelectric ceramics by spectroscopic ellipsometry,” Appl. Phys. Lett. 102, 151908 (2013).
[Crossref]

X. Chen, P. P. Jiang, Z. H. Duan, Z. G. Hu, X. F. Chen, G. S. Wang, X. L. Dong, and J. H. Chu, “The A-site driven phase transition procedure of (Pb0.97La0.02))(Zr0.42Sn0.40Ti0.18)O3 ceramics: An evidence from electronic structure variation,” Appl. Phys. Lett. 103, 192910 (2013).
[Crossref]

J. J. Zhu, W. W. Li, G. S. Xu, K. Jiang, Z. G. Hu, and J. H. Chu, “A phenomenological model of electronic band structure in ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals around the morphotropic phase boundary determined by temperature-dependent transmittance spectra,” Acta Mater. 59, 6684–6690 (2011).
[Crossref]

Chung, H. Y.

T. T. Fang and H. Y. Chung, “Dielectric relaxation behavior of undoped, Ce-, and Cr-doped Sr0.5Ba0.5Nb2O6 at high temperatures,” Appl. Phys. Lett. 94, 092905 (2009).
[Crossref]

Cohen, R. E.

M. Ahart, M. Somayazulu, R. E. Cohen, P. Ganesh, P. Dera, H. K. Mao, R. J. Hemley, Y. Ren, P. Liermann, and Z. G. Wu, “Origin of morphotropic phase boundaries in ferroelectrics,” Nature 451, 545–548 (2008).
[Crossref] [PubMed]

Dera, P.

M. Ahart, M. Somayazulu, R. E. Cohen, P. Ganesh, P. Dera, H. K. Mao, R. J. Hemley, Y. Ren, P. Liermann, and Z. G. Wu, “Origin of morphotropic phase boundaries in ferroelectrics,” Nature 451, 545–548 (2008).
[Crossref] [PubMed]

Dong, X. L.

X. Chen, P. P. Jiang, Z. H. Duan, Z. G. Hu, X. F. Chen, G. S. Wang, X. L. Dong, and J. H. Chu, “The A-site driven phase transition procedure of (Pb0.97La0.02))(Zr0.42Sn0.40Ti0.18)O3 ceramics: An evidence from electronic structure variation,” Appl. Phys. Lett. 103, 192910 (2013).
[Crossref]

Z. H. Duan, Z. G. Hu, K. Jiang, G. S. Wang, X. L. Dong, and J. H. Chu, “Temperature-dependent dielectric functions and interband critical points of relaxor lead hafnate-modified PbSc1/2Ta1/2O3 ferroelectric ceramics by spectroscopic ellipsometry,” Appl. Phys. Lett. 102, 151908 (2013).
[Crossref]

Dressel, M.

S. Zapf, H. S. Jeevan, T. Ivek, F. Pfister, F. Klingert, S. Jiang, D. Wu, P. Gegenwart, R. K. Kremer, and M. Dressel, “EuFe2(As1−xPx)2: Reentrant Spin Glass and Superconductivity,” Phys. Rev. Lett. 110, 237002 (2013).
[Crossref]

Duan, Z. H.

X. Chen, P. P. Jiang, Z. H. Duan, Z. G. Hu, X. F. Chen, G. S. Wang, X. L. Dong, and J. H. Chu, “The A-site driven phase transition procedure of (Pb0.97La0.02))(Zr0.42Sn0.40Ti0.18)O3 ceramics: An evidence from electronic structure variation,” Appl. Phys. Lett. 103, 192910 (2013).
[Crossref]

Z. H. Duan, Z. G. Hu, K. Jiang, G. S. Wang, X. L. Dong, and J. H. Chu, “Temperature-dependent dielectric functions and interband critical points of relaxor lead hafnate-modified PbSc1/2Ta1/2O3 ferroelectric ceramics by spectroscopic ellipsometry,” Appl. Phys. Lett. 102, 151908 (2013).
[Crossref]

Dubroka, A.

M. Rössle, C. N. Wang, P. Marsik, M. Yazdi-Rizi, K. W. Kin, A. Dubroka, I. Marozau, C. W. Schneider, J. Humlicek, D. Baeriswyl, and C. Bernhard, “Optical probe of ferroelectric order in bulk and thin-film perovskite titanates,” Phys. Rev. B 88, 104110 (2013).
[Crossref]

Evans, J. T.

H. Lee, Y. S. Kang, S. J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. B. Li, S. H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98, 094108 (2005).
[Crossref]

Fang, T. T.

T. T. Fang and H. Y. Chung, “Dielectric relaxation behavior of undoped, Ce-, and Cr-doped Sr0.5Ba0.5Nb2O6 at high temperatures,” Appl. Phys. Lett. 94, 092905 (2009).
[Crossref]

Fatmi, M.

B. Ghebouli, M. Ghebouli, T. Chihi, M. Fatmi, S. Boucetta, and M. Reffas, “First-principles study of structural, elastic, electronic and optical properties of SrMO3 (M=Ti and Sn),” Solid State Commun. 149, 2244–2249 (2009).
[Crossref]

Frölich, H.

H. Frölich, Theory of Dielectrics (Clarendon Press, 1949).

Furthmüller, J.

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
[Crossref]

Ganesh, P.

M. Ahart, M. Somayazulu, R. E. Cohen, P. Ganesh, P. Dera, H. K. Mao, R. J. Hemley, Y. Ren, P. Liermann, and Z. G. Wu, “Origin of morphotropic phase boundaries in ferroelectrics,” Nature 451, 545–548 (2008).
[Crossref] [PubMed]

Garriga, M.

P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35, 9174–9189 (1987).
[Crossref]

Gegenwart, P.

S. Zapf, H. S. Jeevan, T. Ivek, F. Pfister, F. Klingert, S. Jiang, D. Wu, P. Gegenwart, R. K. Kremer, and M. Dressel, “EuFe2(As1−xPx)2: Reentrant Spin Glass and Superconductivity,” Phys. Rev. Lett. 110, 237002 (2013).
[Crossref]

Ghebouli, B.

B. Ghebouli, M. Ghebouli, T. Chihi, M. Fatmi, S. Boucetta, and M. Reffas, “First-principles study of structural, elastic, electronic and optical properties of SrMO3 (M=Ti and Sn),” Solid State Commun. 149, 2244–2249 (2009).
[Crossref]

Ghebouli, M.

B. Ghebouli, M. Ghebouli, T. Chihi, M. Fatmi, S. Boucetta, and M. Reffas, “First-principles study of structural, elastic, electronic and optical properties of SrMO3 (M=Ti and Sn),” Solid State Commun. 149, 2244–2249 (2009).
[Crossref]

Glazer, A. M.

N. Zhang, H. Yokota, A. M. Glazer, Z. Ren, D. A. Keen, D. S. Keeble, P. A. Thomoas, and Z.-G. Ye, “The missing boundary in the phase diagram of PbZr1−xTixO3,” Nat. Commun. 5, 5231 (2014).
[Crossref]

Gospodinov, M.

B. Mihailova, B. Maier, C. Paulmann, T. Malcherek, J. Ihringer, M. Gospodinov, R. Stosch, B. Güttler, and U. Bismayer, “High-temperature structural transformations in the relaxor ferroelectrics PbSc0.5Ta0.5O3 and Pb0.78Ba0.22Sc0.5Ta0.5O3,” Phys. Rev. B 77, 174106 (2008).
[Crossref]

Güttler, B.

B. Mihailova, B. Maier, C. Paulmann, T. Malcherek, J. Ihringer, M. Gospodinov, R. Stosch, B. Güttler, and U. Bismayer, “High-temperature structural transformations in the relaxor ferroelectrics PbSc0.5Ta0.5O3 and Pb0.78Ba0.22Sc0.5Ta0.5O3,” Phys. Rev. B 77, 174106 (2008).
[Crossref]

Hemley, R. J.

M. Ahart, M. Somayazulu, R. E. Cohen, P. Ganesh, P. Dera, H. K. Mao, R. J. Hemley, Y. Ren, P. Liermann, and Z. G. Wu, “Origin of morphotropic phase boundaries in ferroelectrics,” Nature 451, 545–548 (2008).
[Crossref] [PubMed]

Hu, J.

S. G. Choi, J. Hu, L. S. Abdallah, M. Limpinsel, Y. N. Zhang, S. Zollner, R. Q. Wu, and M. Law, “Pseudodielectric function and critical-point energies of iron pyrite,” Phys. Rev. B 86, 115207 (2012).
[Crossref]

Hu, Z. G.

J. J. Zhu, J. Z. Zhang, G. S. Xu, X. L. Zhang, Z. G. Hu, and J. H. Chu, “Electronic transitions and dielectric functions of relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals: Temperature dependent spectroscopic study,” Appl. Phys. Lett. 104, 132903 (2014).
[Crossref]

X. L. Zhang, J. J. Zhu, G. S. Xu, J. Z. Zhang, Z. G. Hu, and J. H. Chu, “Photoluminescence study on polar nanoregions and structural variations in Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Opt. Express 22, 21903–21911 (2014).
[Crossref] [PubMed]

X. L. Zhang, Z. G. Hu, G. S. Xu, J. J. Zhu, Y. W. Li, Z. Q. Zhu, and J. H. Chu, “Optical bandgap and phase transition in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals: An inherent relationship,” Appl. Phys. Lett. 103, 051902 (2013).
[Crossref]

X. Chen, P. P. Jiang, Z. H. Duan, Z. G. Hu, X. F. Chen, G. S. Wang, X. L. Dong, and J. H. Chu, “The A-site driven phase transition procedure of (Pb0.97La0.02))(Zr0.42Sn0.40Ti0.18)O3 ceramics: An evidence from electronic structure variation,” Appl. Phys. Lett. 103, 192910 (2013).
[Crossref]

Z. H. Duan, Z. G. Hu, K. Jiang, G. S. Wang, X. L. Dong, and J. H. Chu, “Temperature-dependent dielectric functions and interband critical points of relaxor lead hafnate-modified PbSc1/2Ta1/2O3 ferroelectric ceramics by spectroscopic ellipsometry,” Appl. Phys. Lett. 102, 151908 (2013).
[Crossref]

J. J. Zhu, K. Jiang, G. S. Xu, Z. G. Hu, Y. W. Li, Z. Q. Zhu, and J. H. Chu, “Temperature-dependent Raman scattering and multiple phase coexistence in relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” J. Appl. Phys. 114, 153508 (2013).
[Crossref]

J. J. Zhu, W. W. Li, G. S. Xu, K. Jiang, Z. G. Hu, and J. H. Chu, “A phenomenological model of electronic band structure in ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals around the morphotropic phase boundary determined by temperature-dependent transmittance spectra,” Acta Mater. 59, 6684–6690 (2011).
[Crossref]

Hui, P. M.

K. Y. Chan, W. S. Tsang, C. L. Mak, K. H. Wong, and P. M. Hui, “Effects of composition of PbTiO3 on optical properties of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 thin films,” Phys. Rev. B 69, 144111 (2004).
[Crossref]

Humlicek, J.

M. Rössle, C. N. Wang, P. Marsik, M. Yazdi-Rizi, K. W. Kin, A. Dubroka, I. Marozau, C. W. Schneider, J. Humlicek, D. Baeriswyl, and C. Bernhard, “Optical probe of ferroelectric order in bulk and thin-film perovskite titanates,” Phys. Rev. B 88, 104110 (2013).
[Crossref]

Hung, T. F.

W. Chan, Z. Xu, T. F. Hung, and H. Chen, “Effect of La substitution on phase transitions in lead zirconate stannate titanate (55/35/10) ceramics,” J. Appl. Phys. 96, 6606 (2004).
[Crossref]

Ihringer, J.

B. Mihailova, B. Maier, C. Paulmann, T. Malcherek, J. Ihringer, M. Gospodinov, R. Stosch, B. Güttler, and U. Bismayer, “High-temperature structural transformations in the relaxor ferroelectrics PbSc0.5Ta0.5O3 and Pb0.78Ba0.22Sc0.5Ta0.5O3,” Phys. Rev. B 77, 174106 (2008).
[Crossref]

Ivek, T.

S. Zapf, H. S. Jeevan, T. Ivek, F. Pfister, F. Klingert, S. Jiang, D. Wu, P. Gegenwart, R. K. Kremer, and M. Dressel, “EuFe2(As1−xPx)2: Reentrant Spin Glass and Superconductivity,” Phys. Rev. Lett. 110, 237002 (2013).
[Crossref]

Jeevan, H. S.

S. Zapf, H. S. Jeevan, T. Ivek, F. Pfister, F. Klingert, S. Jiang, D. Wu, P. Gegenwart, R. K. Kremer, and M. Dressel, “EuFe2(As1−xPx)2: Reentrant Spin Glass and Superconductivity,” Phys. Rev. Lett. 110, 237002 (2013).
[Crossref]

Jiang, K.

J. J. Zhu, K. Jiang, G. S. Xu, Z. G. Hu, Y. W. Li, Z. Q. Zhu, and J. H. Chu, “Temperature-dependent Raman scattering and multiple phase coexistence in relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” J. Appl. Phys. 114, 153508 (2013).
[Crossref]

Z. H. Duan, Z. G. Hu, K. Jiang, G. S. Wang, X. L. Dong, and J. H. Chu, “Temperature-dependent dielectric functions and interband critical points of relaxor lead hafnate-modified PbSc1/2Ta1/2O3 ferroelectric ceramics by spectroscopic ellipsometry,” Appl. Phys. Lett. 102, 151908 (2013).
[Crossref]

J. J. Zhu, W. W. Li, G. S. Xu, K. Jiang, Z. G. Hu, and J. H. Chu, “A phenomenological model of electronic band structure in ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals around the morphotropic phase boundary determined by temperature-dependent transmittance spectra,” Acta Mater. 59, 6684–6690 (2011).
[Crossref]

Jiang, P. P.

X. Chen, P. P. Jiang, Z. H. Duan, Z. G. Hu, X. F. Chen, G. S. Wang, X. L. Dong, and J. H. Chu, “The A-site driven phase transition procedure of (Pb0.97La0.02))(Zr0.42Sn0.40Ti0.18)O3 ceramics: An evidence from electronic structure variation,” Appl. Phys. Lett. 103, 192910 (2013).
[Crossref]

Jiang, S.

S. Zapf, H. S. Jeevan, T. Ivek, F. Pfister, F. Klingert, S. Jiang, D. Wu, P. Gegenwart, R. K. Kremer, and M. Dressel, “EuFe2(As1−xPx)2: Reentrant Spin Glass and Superconductivity,” Phys. Rev. Lett. 110, 237002 (2013).
[Crossref]

Kamba, S.

S. Kamba and J. Petzelt, in Piezoelectric Single Crystals and Their Application, edited by S. Trolier-McKinstry, L. E. Cross, and Y. Yamashita, eds. (Penn State University, 2004).

Kang, T. D.

H. Lee, Y. S. Kang, S. J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. B. Li, S. H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98, 094108 (2005).
[Crossref]

Kang, Y. S.

H. Lee, Y. S. Kang, S. J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. B. Li, S. H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98, 094108 (2005).
[Crossref]

Keeble, D. S.

N. Zhang, H. Yokota, A. M. Glazer, Z. Ren, D. A. Keen, D. S. Keeble, P. A. Thomoas, and Z.-G. Ye, “The missing boundary in the phase diagram of PbZr1−xTixO3,” Nat. Commun. 5, 5231 (2014).
[Crossref]

Keen, D. A.

N. Zhang, H. Yokota, A. M. Glazer, Z. Ren, D. A. Keen, D. S. Keeble, P. A. Thomoas, and Z.-G. Ye, “The missing boundary in the phase diagram of PbZr1−xTixO3,” Nat. Commun. 5, 5231 (2014).
[Crossref]

Kin, K. W.

M. Rössle, C. N. Wang, P. Marsik, M. Yazdi-Rizi, K. W. Kin, A. Dubroka, I. Marozau, C. W. Schneider, J. Humlicek, D. Baeriswyl, and C. Bernhard, “Optical probe of ferroelectric order in bulk and thin-film perovskite titanates,” Phys. Rev. B 88, 104110 (2013).
[Crossref]

King-Smith, R. D.

R. D. King-Smith and D. Vanderbilt, “First-principles investigation of ferroelectricity in perovskite compounds,” Phys. Rev. B 49, 5828–5844 (1994).
[Crossref]

Klingert, F.

S. Zapf, H. S. Jeevan, T. Ivek, F. Pfister, F. Klingert, S. Jiang, D. Wu, P. Gegenwart, R. K. Kremer, and M. Dressel, “EuFe2(As1−xPx)2: Reentrant Spin Glass and Superconductivity,” Phys. Rev. Lett. 110, 237002 (2013).
[Crossref]

Kremer, R. K.

S. Zapf, H. S. Jeevan, T. Ivek, F. Pfister, F. Klingert, S. Jiang, D. Wu, P. Gegenwart, R. K. Kremer, and M. Dressel, “EuFe2(As1−xPx)2: Reentrant Spin Glass and Superconductivity,” Phys. Rev. Lett. 110, 237002 (2013).
[Crossref]

Kresse, G.

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
[Crossref]

Lautenschlager, P.

P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35, 9174–9189 (1987).
[Crossref]

Law, M.

S. G. Choi, J. Hu, L. S. Abdallah, M. Limpinsel, Y. N. Zhang, S. Zollner, R. Q. Wu, and M. Law, “Pseudodielectric function and critical-point energies of iron pyrite,” Phys. Rev. B 86, 115207 (2012).
[Crossref]

Lee, G. S.

H. Lee, Y. S. Kang, S. J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. B. Li, S. H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98, 094108 (2005).
[Crossref]

Lee, H.

H. Lee, Y. S. Kang, S. J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. B. Li, S. H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98, 094108 (2005).
[Crossref]

Li, J.

Li, J. B.

G. S. Xu, K. Chen, D. F. Yang, and J. B. Li, “Growth and electrical properties of large size Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals prepared by the vertical Bridgman technique,” Appl. Phys. Lett. 90, 032901 (2007).
[Crossref]

H. Lee, Y. S. Kang, S. J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. B. Li, S. H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98, 094108 (2005).
[Crossref]

Li, W. W.

J. J. Zhu, W. W. Li, G. S. Xu, K. Jiang, Z. G. Hu, and J. H. Chu, “A phenomenological model of electronic band structure in ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals around the morphotropic phase boundary determined by temperature-dependent transmittance spectra,” Acta Mater. 59, 6684–6690 (2011).
[Crossref]

Li, Y.

Li, Y. W.

X. L. Zhang, Z. G. Hu, G. S. Xu, J. J. Zhu, Y. W. Li, Z. Q. Zhu, and J. H. Chu, “Optical bandgap and phase transition in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals: An inherent relationship,” Appl. Phys. Lett. 103, 051902 (2013).
[Crossref]

J. J. Zhu, K. Jiang, G. S. Xu, Z. G. Hu, Y. W. Li, Z. Q. Zhu, and J. H. Chu, “Temperature-dependent Raman scattering and multiple phase coexistence in relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” J. Appl. Phys. 114, 153508 (2013).
[Crossref]

Liermann, P.

M. Ahart, M. Somayazulu, R. E. Cohen, P. Ganesh, P. Dera, H. K. Mao, R. J. Hemley, Y. Ren, P. Liermann, and Z. G. Wu, “Origin of morphotropic phase boundaries in ferroelectrics,” Nature 451, 545–548 (2008).
[Crossref] [PubMed]

Limpinsel, M.

S. G. Choi, J. Hu, L. S. Abdallah, M. Limpinsel, Y. N. Zhang, S. Zollner, R. Q. Wu, and M. Law, “Pseudodielectric function and critical-point energies of iron pyrite,” Phys. Rev. B 86, 115207 (2012).
[Crossref]

Logothetidis, S.

P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35, 9174–9189 (1987).
[Crossref]

Lu, L.

Z. Zhang, P. Wu, K. P. Ong, L. Lu, and C. Shu, “Electronic properties of A-site substituted lead zirconate titanate: Density functional calculations,” Phys. Rev. B 76, 125102 (2007).
[Crossref]

Luo, J.

E. W. Sun, S. J. Zhang, J. Luo, T. R. Shrout, and W. W. Cao, “Elastic, dielectric, and piezoelectric constants of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal poled along [011]c,” Appl. Phys. Lett. 97, 032902 (2010).
[Crossref]

MacLaren, I.

I. MacLaren, R. Villaurrutia, and A. Peláiz-Barranco, “Domain structures and nanostructures in incommensurate antiferroelectric PbxLa1−x(Zr0.9Ti0.1)O3,” J. Appl. Phys. 108, 034109 (2010).
[Crossref]

Maier, B.

B. Mihailova, B. Maier, C. Paulmann, T. Malcherek, J. Ihringer, M. Gospodinov, R. Stosch, B. Güttler, and U. Bismayer, “High-temperature structural transformations in the relaxor ferroelectrics PbSc0.5Ta0.5O3 and Pb0.78Ba0.22Sc0.5Ta0.5O3,” Phys. Rev. B 77, 174106 (2008).
[Crossref]

Mak, C. L.

K. Y. Chan, W. S. Tsang, C. L. Mak, K. H. Wong, and P. M. Hui, “Effects of composition of PbTiO3 on optical properties of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 thin films,” Phys. Rev. B 69, 144111 (2004).
[Crossref]

Malcherek, T.

B. Mihailova, B. Maier, C. Paulmann, T. Malcherek, J. Ihringer, M. Gospodinov, R. Stosch, B. Güttler, and U. Bismayer, “High-temperature structural transformations in the relaxor ferroelectrics PbSc0.5Ta0.5O3 and Pb0.78Ba0.22Sc0.5Ta0.5O3,” Phys. Rev. B 77, 174106 (2008).
[Crossref]

Mao, H. K.

M. Ahart, M. Somayazulu, R. E. Cohen, P. Ganesh, P. Dera, H. K. Mao, R. J. Hemley, Y. Ren, P. Liermann, and Z. G. Wu, “Origin of morphotropic phase boundaries in ferroelectrics,” Nature 451, 545–548 (2008).
[Crossref] [PubMed]

Marozau, I.

M. Rössle, C. N. Wang, P. Marsik, M. Yazdi-Rizi, K. W. Kin, A. Dubroka, I. Marozau, C. W. Schneider, J. Humlicek, D. Baeriswyl, and C. Bernhard, “Optical probe of ferroelectric order in bulk and thin-film perovskite titanates,” Phys. Rev. B 88, 104110 (2013).
[Crossref]

Marsik, P.

M. Rössle, C. N. Wang, P. Marsik, M. Yazdi-Rizi, K. W. Kin, A. Dubroka, I. Marozau, C. W. Schneider, J. Humlicek, D. Baeriswyl, and C. Bernhard, “Optical probe of ferroelectric order in bulk and thin-film perovskite titanates,” Phys. Rev. B 88, 104110 (2013).
[Crossref]

Mathur, N. D.

A. S. Mischenko, Q. Zhang, R. W. Whatmore, J. F. Scott, and N. D. Mathur, “Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9PbMg1/3Nb2/3O3C0.1PbTiO3 near room temperature,” Appl. Phys. Lett. 89, 242912 (2006).
[Crossref]

Mihailova, B.

B. Mihailova, B. Maier, C. Paulmann, T. Malcherek, J. Ihringer, M. Gospodinov, R. Stosch, B. Güttler, and U. Bismayer, “High-temperature structural transformations in the relaxor ferroelectrics PbSc0.5Ta0.5O3 and Pb0.78Ba0.22Sc0.5Ta0.5O3,” Phys. Rev. B 77, 174106 (2008).
[Crossref]

Mischenko, A. S.

A. S. Mischenko, Q. Zhang, R. W. Whatmore, J. F. Scott, and N. D. Mathur, “Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9PbMg1/3Nb2/3O3C0.1PbTiO3 near room temperature,” Appl. Phys. Lett. 89, 242912 (2006).
[Crossref]

Morkoç, H.

H. Lee, Y. S. Kang, S. J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. B. Li, S. H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98, 094108 (2005).
[Crossref]

Noheda, B.

B. Noheda, “Structure and high-piezoelectricity in lead oxide solid solutions,” Curr. Opin. Solid State Mater. Sci. 6, 27–34 (2002).
[Crossref]

Ong, K. P.

Z. Zhang, P. Wu, K. P. Ong, L. Lu, and C. Shu, “Electronic properties of A-site substituted lead zirconate titanate: Density functional calculations,” Phys. Rev. B 76, 125102 (2007).
[Crossref]

Park, S.-E.

S.-E. Park and T. R. Shrout, “Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys. 82, 1804–1811 (1997).
[Crossref]

Paulmann, C.

B. Mihailova, B. Maier, C. Paulmann, T. Malcherek, J. Ihringer, M. Gospodinov, R. Stosch, B. Güttler, and U. Bismayer, “High-temperature structural transformations in the relaxor ferroelectrics PbSc0.5Ta0.5O3 and Pb0.78Ba0.22Sc0.5Ta0.5O3,” Phys. Rev. B 77, 174106 (2008).
[Crossref]

Peláiz-Barranco, A.

I. MacLaren, R. Villaurrutia, and A. Peláiz-Barranco, “Domain structures and nanostructures in incommensurate antiferroelectric PbxLa1−x(Zr0.9Ti0.1)O3,” J. Appl. Phys. 108, 034109 (2010).
[Crossref]

Peng, D.

Petzelt, J.

S. Kamba and J. Petzelt, in Piezoelectric Single Crystals and Their Application, edited by S. Trolier-McKinstry, L. E. Cross, and Y. Yamashita, eds. (Penn State University, 2004).

Pfister, F.

S. Zapf, H. S. Jeevan, T. Ivek, F. Pfister, F. Klingert, S. Jiang, D. Wu, P. Gegenwart, R. K. Kremer, and M. Dressel, “EuFe2(As1−xPx)2: Reentrant Spin Glass and Superconductivity,” Phys. Rev. Lett. 110, 237002 (2013).
[Crossref]

Popov, G.

G. A. Rossetti, G. Popov, E. Zlotnikov, and N. Yao, “Domain structures and nonlinear mechanical deformation of soft Pb(ZrxTi1−x)O3 (PZT) piezoelectric ceramic fibers,” Mater. Sci. Eng. A 433, 124–132 (2006).
[Crossref]

Reffas, M.

B. Ghebouli, M. Ghebouli, T. Chihi, M. Fatmi, S. Boucetta, and M. Reffas, “First-principles study of structural, elastic, electronic and optical properties of SrMO3 (M=Ti and Sn),” Solid State Commun. 149, 2244–2249 (2009).
[Crossref]

Ren, Y.

M. Ahart, M. Somayazulu, R. E. Cohen, P. Ganesh, P. Dera, H. K. Mao, R. J. Hemley, Y. Ren, P. Liermann, and Z. G. Wu, “Origin of morphotropic phase boundaries in ferroelectrics,” Nature 451, 545–548 (2008).
[Crossref] [PubMed]

Ren, Z.

N. Zhang, H. Yokota, A. M. Glazer, Z. Ren, D. A. Keen, D. S. Keeble, P. A. Thomoas, and Z.-G. Ye, “The missing boundary in the phase diagram of PbZr1−xTixO3,” Nat. Commun. 5, 5231 (2014).
[Crossref]

Rossetti, G. A.

G. A. Rossetti, G. Popov, E. Zlotnikov, and N. Yao, “Domain structures and nonlinear mechanical deformation of soft Pb(ZrxTi1−x)O3 (PZT) piezoelectric ceramic fibers,” Mater. Sci. Eng. A 433, 124–132 (2006).
[Crossref]

Rössle, M.

M. Rössle, C. N. Wang, P. Marsik, M. Yazdi-Rizi, K. W. Kin, A. Dubroka, I. Marozau, C. W. Schneider, J. Humlicek, D. Baeriswyl, and C. Bernhard, “Optical probe of ferroelectric order in bulk and thin-film perovskite titanates,” Phys. Rev. B 88, 104110 (2013).
[Crossref]

Schneider, C. W.

M. Rössle, C. N. Wang, P. Marsik, M. Yazdi-Rizi, K. W. Kin, A. Dubroka, I. Marozau, C. W. Schneider, J. Humlicek, D. Baeriswyl, and C. Bernhard, “Optical probe of ferroelectric order in bulk and thin-film perovskite titanates,” Phys. Rev. B 88, 104110 (2013).
[Crossref]

Scott, J. F.

J. F. Scott, “Applications of Modern Ferroelectrics,” Science 315, 954–959 (2007).
[Crossref] [PubMed]

A. S. Mischenko, Q. Zhang, R. W. Whatmore, J. F. Scott, and N. D. Mathur, “Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9PbMg1/3Nb2/3O3C0.1PbTiO3 near room temperature,” Appl. Phys. Lett. 89, 242912 (2006).
[Crossref]

Shrout, T. R.

E. W. Sun, S. J. Zhang, J. Luo, T. R. Shrout, and W. W. Cao, “Elastic, dielectric, and piezoelectric constants of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal poled along [011]c,” Appl. Phys. Lett. 97, 032902 (2010).
[Crossref]

S.-E. Park and T. R. Shrout, “Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys. 82, 1804–1811 (1997).
[Crossref]

Shu, C.

Z. Zhang, P. Wu, K. P. Ong, L. Lu, and C. Shu, “Electronic properties of A-site substituted lead zirconate titanate: Density functional calculations,” Phys. Rev. B 76, 125102 (2007).
[Crossref]

Singh, D. J.

M. Suewattana and D. J. Singh, “Electronic structure and lattice distortions in PbMg1/3Nb2/3O3 studied with density functional theory using the linearized augmented plane-wave method,” Phys. Rev. B 73, 224105 (2006).
[Crossref]

Snyder, P. G.

H. Lee, Y. S. Kang, S. J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. B. Li, S. H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98, 094108 (2005).
[Crossref]

Somayazulu, M.

M. Ahart, M. Somayazulu, R. E. Cohen, P. Ganesh, P. Dera, H. K. Mao, R. J. Hemley, Y. Ren, P. Liermann, and Z. G. Wu, “Origin of morphotropic phase boundaries in ferroelectrics,” Nature 451, 545–548 (2008).
[Crossref] [PubMed]

Stosch, R.

B. Mihailova, B. Maier, C. Paulmann, T. Malcherek, J. Ihringer, M. Gospodinov, R. Stosch, B. Güttler, and U. Bismayer, “High-temperature structural transformations in the relaxor ferroelectrics PbSc0.5Ta0.5O3 and Pb0.78Ba0.22Sc0.5Ta0.5O3,” Phys. Rev. B 77, 174106 (2008).
[Crossref]

Suewattana, M.

M. Suewattana and D. J. Singh, “Electronic structure and lattice distortions in PbMg1/3Nb2/3O3 studied with density functional theory using the linearized augmented plane-wave method,” Phys. Rev. B 73, 224105 (2006).
[Crossref]

Sun, E. W.

E. W. Sun, S. J. Zhang, J. Luo, T. R. Shrout, and W. W. Cao, “Elastic, dielectric, and piezoelectric constants of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal poled along [011]c,” Appl. Phys. Lett. 97, 032902 (2010).
[Crossref]

Svitelskiy, O.

O. Svitelskiy, J. Toulouse, G. Yong, and Z. -G. Ye, “Polarized Raman study of the phonon dynamics in Pb(Mg1/3Nb2/3)O3 crystal,” Phys. Rev. B 68, 104107 (2003).
[Crossref]

Thomoas, P. A.

N. Zhang, H. Yokota, A. M. Glazer, Z. Ren, D. A. Keen, D. S. Keeble, P. A. Thomoas, and Z.-G. Ye, “The missing boundary in the phase diagram of PbZr1−xTixO3,” Nat. Commun. 5, 5231 (2014).
[Crossref]

Toulouse, J.

O. Svitelskiy, J. Toulouse, G. Yong, and Z. -G. Ye, “Polarized Raman study of the phonon dynamics in Pb(Mg1/3Nb2/3)O3 crystal,” Phys. Rev. B 68, 104107 (2003).
[Crossref]

Tsang, W. S.

K. Y. Chan, W. S. Tsang, C. L. Mak, K. H. Wong, and P. M. Hui, “Effects of composition of PbTiO3 on optical properties of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 thin films,” Phys. Rev. B 69, 144111 (2004).
[Crossref]

Vanderbilt, D.

W. Zhong and D. Vanderbilt, “Competing Structural Instabilities in Cubic Perovskites,” Phys. Rev. Lett. 74, 2587–2590 (1995).
[Crossref] [PubMed]

R. D. King-Smith and D. Vanderbilt, “First-principles investigation of ferroelectricity in perovskite compounds,” Phys. Rev. B 49, 5828–5844 (1994).
[Crossref]

Villaurrutia, R.

I. MacLaren, R. Villaurrutia, and A. Peláiz-Barranco, “Domain structures and nanostructures in incommensurate antiferroelectric PbxLa1−x(Zr0.9Ti0.1)O3,” J. Appl. Phys. 108, 034109 (2010).
[Crossref]

Wang, C. N.

M. Rössle, C. N. Wang, P. Marsik, M. Yazdi-Rizi, K. W. Kin, A. Dubroka, I. Marozau, C. W. Schneider, J. Humlicek, D. Baeriswyl, and C. Bernhard, “Optical probe of ferroelectric order in bulk and thin-film perovskite titanates,” Phys. Rev. B 88, 104110 (2013).
[Crossref]

Wang, D. W.

D. W. Wang, M. S. Cao, and S. J. Zhang, “Phase diagram and properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 polycrystalline ceramics,” J. Eur. Ceram. Soc. 32, 433–439 (2012).
[Crossref]

Wang, G. S.

Z. H. Duan, Z. G. Hu, K. Jiang, G. S. Wang, X. L. Dong, and J. H. Chu, “Temperature-dependent dielectric functions and interband critical points of relaxor lead hafnate-modified PbSc1/2Ta1/2O3 ferroelectric ceramics by spectroscopic ellipsometry,” Appl. Phys. Lett. 102, 151908 (2013).
[Crossref]

X. Chen, P. P. Jiang, Z. H. Duan, Z. G. Hu, X. F. Chen, G. S. Wang, X. L. Dong, and J. H. Chu, “The A-site driven phase transition procedure of (Pb0.97La0.02))(Zr0.42Sn0.40Ti0.18)O3 ceramics: An evidence from electronic structure variation,” Appl. Phys. Lett. 103, 192910 (2013).
[Crossref]

Wang, X.

Wei, S. H.

H. Lee, Y. S. Kang, S. J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. B. Li, S. H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98, 094108 (2005).
[Crossref]

Whatmore, R. W.

A. S. Mischenko, Q. Zhang, R. W. Whatmore, J. F. Scott, and N. D. Mathur, “Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9PbMg1/3Nb2/3O3C0.1PbTiO3 near room temperature,” Appl. Phys. Lett. 89, 242912 (2006).
[Crossref]

Wong, K. H.

K. Y. Chan, W. S. Tsang, C. L. Mak, K. H. Wong, and P. M. Hui, “Effects of composition of PbTiO3 on optical properties of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 thin films,” Phys. Rev. B 69, 144111 (2004).
[Crossref]

Wu, D.

S. Zapf, H. S. Jeevan, T. Ivek, F. Pfister, F. Klingert, S. Jiang, D. Wu, P. Gegenwart, R. K. Kremer, and M. Dressel, “EuFe2(As1−xPx)2: Reentrant Spin Glass and Superconductivity,” Phys. Rev. Lett. 110, 237002 (2013).
[Crossref]

Wu, P.

Z. Zhang, P. Wu, K. P. Ong, L. Lu, and C. Shu, “Electronic properties of A-site substituted lead zirconate titanate: Density functional calculations,” Phys. Rev. B 76, 125102 (2007).
[Crossref]

Wu, R. Q.

S. G. Choi, J. Hu, L. S. Abdallah, M. Limpinsel, Y. N. Zhang, S. Zollner, R. Q. Wu, and M. Law, “Pseudodielectric function and critical-point energies of iron pyrite,” Phys. Rev. B 86, 115207 (2012).
[Crossref]

Wu, Z. G.

M. Ahart, M. Somayazulu, R. E. Cohen, P. Ganesh, P. Dera, H. K. Mao, R. J. Hemley, Y. Ren, P. Liermann, and Z. G. Wu, “Origin of morphotropic phase boundaries in ferroelectrics,” Nature 451, 545–548 (2008).
[Crossref] [PubMed]

Xiao, B.

H. Lee, Y. S. Kang, S. J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. B. Li, S. H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98, 094108 (2005).
[Crossref]

Xu, G. S.

X. L. Zhang, J. J. Zhu, G. S. Xu, J. Z. Zhang, Z. G. Hu, and J. H. Chu, “Photoluminescence study on polar nanoregions and structural variations in Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Opt. Express 22, 21903–21911 (2014).
[Crossref] [PubMed]

J. J. Zhu, J. Z. Zhang, G. S. Xu, X. L. Zhang, Z. G. Hu, and J. H. Chu, “Electronic transitions and dielectric functions of relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals: Temperature dependent spectroscopic study,” Appl. Phys. Lett. 104, 132903 (2014).
[Crossref]

X. L. Zhang, Z. G. Hu, G. S. Xu, J. J. Zhu, Y. W. Li, Z. Q. Zhu, and J. H. Chu, “Optical bandgap and phase transition in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals: An inherent relationship,” Appl. Phys. Lett. 103, 051902 (2013).
[Crossref]

J. J. Zhu, K. Jiang, G. S. Xu, Z. G. Hu, Y. W. Li, Z. Q. Zhu, and J. H. Chu, “Temperature-dependent Raman scattering and multiple phase coexistence in relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” J. Appl. Phys. 114, 153508 (2013).
[Crossref]

J. J. Zhu, W. W. Li, G. S. Xu, K. Jiang, Z. G. Hu, and J. H. Chu, “A phenomenological model of electronic band structure in ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals around the morphotropic phase boundary determined by temperature-dependent transmittance spectra,” Acta Mater. 59, 6684–6690 (2011).
[Crossref]

G. S. Xu, K. Chen, D. F. Yang, and J. B. Li, “Growth and electrical properties of large size Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals prepared by the vertical Bridgman technique,” Appl. Phys. Lett. 90, 032901 (2007).
[Crossref]

Xu, Z.

W. Chan, Z. Xu, T. F. Hung, and H. Chen, “Effect of La substitution on phase transitions in lead zirconate stannate titanate (55/35/10) ceramics,” J. Appl. Phys. 96, 6606 (2004).
[Crossref]

Yang, D. F.

G. S. Xu, K. Chen, D. F. Yang, and J. B. Li, “Growth and electrical properties of large size Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals prepared by the vertical Bridgman technique,” Appl. Phys. Lett. 90, 032901 (2007).
[Crossref]

Yao, N.

G. A. Rossetti, G. Popov, E. Zlotnikov, and N. Yao, “Domain structures and nonlinear mechanical deformation of soft Pb(ZrxTi1−x)O3 (PZT) piezoelectric ceramic fibers,” Mater. Sci. Eng. A 433, 124–132 (2006).
[Crossref]

Yao, X.

Yazdi-Rizi, M.

M. Rössle, C. N. Wang, P. Marsik, M. Yazdi-Rizi, K. W. Kin, A. Dubroka, I. Marozau, C. W. Schneider, J. Humlicek, D. Baeriswyl, and C. Bernhard, “Optical probe of ferroelectric order in bulk and thin-film perovskite titanates,” Phys. Rev. B 88, 104110 (2013).
[Crossref]

Ye, Z. G.

Z. G. Ye, “High-performance piezoelectric single crystals of complex perovskite solid solutions,” MRS Bullentin 34, 277–283 (2009).
[Crossref]

Ye, Z. -G.

O. Svitelskiy, J. Toulouse, G. Yong, and Z. -G. Ye, “Polarized Raman study of the phonon dynamics in Pb(Mg1/3Nb2/3)O3 crystal,” Phys. Rev. B 68, 104107 (2003).
[Crossref]

Ye, Z.-G.

N. Zhang, H. Yokota, A. M. Glazer, Z. Ren, D. A. Keen, D. S. Keeble, P. A. Thomoas, and Z.-G. Ye, “The missing boundary in the phase diagram of PbZr1−xTixO3,” Nat. Commun. 5, 5231 (2014).
[Crossref]

Yokota, H.

N. Zhang, H. Yokota, A. M. Glazer, Z. Ren, D. A. Keen, D. S. Keeble, P. A. Thomoas, and Z.-G. Ye, “The missing boundary in the phase diagram of PbZr1−xTixO3,” Nat. Commun. 5, 5231 (2014).
[Crossref]

Yong, G.

O. Svitelskiy, J. Toulouse, G. Yong, and Z. -G. Ye, “Polarized Raman study of the phonon dynamics in Pb(Mg1/3Nb2/3)O3 crystal,” Phys. Rev. B 68, 104107 (2003).
[Crossref]

Zapf, S.

S. Zapf, H. S. Jeevan, T. Ivek, F. Pfister, F. Klingert, S. Jiang, D. Wu, P. Gegenwart, R. K. Kremer, and M. Dressel, “EuFe2(As1−xPx)2: Reentrant Spin Glass and Superconductivity,” Phys. Rev. Lett. 110, 237002 (2013).
[Crossref]

Zhang, J. Z.

X. L. Zhang, J. J. Zhu, G. S. Xu, J. Z. Zhang, Z. G. Hu, and J. H. Chu, “Photoluminescence study on polar nanoregions and structural variations in Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Opt. Express 22, 21903–21911 (2014).
[Crossref] [PubMed]

J. J. Zhu, J. Z. Zhang, G. S. Xu, X. L. Zhang, Z. G. Hu, and J. H. Chu, “Electronic transitions and dielectric functions of relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals: Temperature dependent spectroscopic study,” Appl. Phys. Lett. 104, 132903 (2014).
[Crossref]

Zhang, N.

N. Zhang, H. Yokota, A. M. Glazer, Z. Ren, D. A. Keen, D. S. Keeble, P. A. Thomoas, and Z.-G. Ye, “The missing boundary in the phase diagram of PbZr1−xTixO3,” Nat. Commun. 5, 5231 (2014).
[Crossref]

Zhang, Q.

A. S. Mischenko, Q. Zhang, R. W. Whatmore, J. F. Scott, and N. D. Mathur, “Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9PbMg1/3Nb2/3O3C0.1PbTiO3 near room temperature,” Appl. Phys. Lett. 89, 242912 (2006).
[Crossref]

Zhang, S. J.

D. W. Wang, M. S. Cao, and S. J. Zhang, “Phase diagram and properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 polycrystalline ceramics,” J. Eur. Ceram. Soc. 32, 433–439 (2012).
[Crossref]

E. W. Sun, S. J. Zhang, J. Luo, T. R. Shrout, and W. W. Cao, “Elastic, dielectric, and piezoelectric constants of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal poled along [011]c,” Appl. Phys. Lett. 97, 032902 (2010).
[Crossref]

Zhang, X. L.

X. L. Zhang, J. J. Zhu, G. S. Xu, J. Z. Zhang, Z. G. Hu, and J. H. Chu, “Photoluminescence study on polar nanoregions and structural variations in Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Opt. Express 22, 21903–21911 (2014).
[Crossref] [PubMed]

J. J. Zhu, J. Z. Zhang, G. S. Xu, X. L. Zhang, Z. G. Hu, and J. H. Chu, “Electronic transitions and dielectric functions of relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals: Temperature dependent spectroscopic study,” Appl. Phys. Lett. 104, 132903 (2014).
[Crossref]

X. L. Zhang, Z. G. Hu, G. S. Xu, J. J. Zhu, Y. W. Li, Z. Q. Zhu, and J. H. Chu, “Optical bandgap and phase transition in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals: An inherent relationship,” Appl. Phys. Lett. 103, 051902 (2013).
[Crossref]

Zhang, Y. N.

S. G. Choi, J. Hu, L. S. Abdallah, M. Limpinsel, Y. N. Zhang, S. Zollner, R. Q. Wu, and M. Law, “Pseudodielectric function and critical-point energies of iron pyrite,” Phys. Rev. B 86, 115207 (2012).
[Crossref]

Zhang, Z.

Z. Zhang, P. Wu, K. P. Ong, L. Lu, and C. Shu, “Electronic properties of A-site substituted lead zirconate titanate: Density functional calculations,” Phys. Rev. B 76, 125102 (2007).
[Crossref]

Zhong, W.

W. Zhong and D. Vanderbilt, “Competing Structural Instabilities in Cubic Perovskites,” Phys. Rev. Lett. 74, 2587–2590 (1995).
[Crossref] [PubMed]

Zhu, J. J.

J. J. Zhu, J. Z. Zhang, G. S. Xu, X. L. Zhang, Z. G. Hu, and J. H. Chu, “Electronic transitions and dielectric functions of relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals: Temperature dependent spectroscopic study,” Appl. Phys. Lett. 104, 132903 (2014).
[Crossref]

X. L. Zhang, J. J. Zhu, G. S. Xu, J. Z. Zhang, Z. G. Hu, and J. H. Chu, “Photoluminescence study on polar nanoregions and structural variations in Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Opt. Express 22, 21903–21911 (2014).
[Crossref] [PubMed]

X. L. Zhang, Z. G. Hu, G. S. Xu, J. J. Zhu, Y. W. Li, Z. Q. Zhu, and J. H. Chu, “Optical bandgap and phase transition in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals: An inherent relationship,” Appl. Phys. Lett. 103, 051902 (2013).
[Crossref]

J. J. Zhu, K. Jiang, G. S. Xu, Z. G. Hu, Y. W. Li, Z. Q. Zhu, and J. H. Chu, “Temperature-dependent Raman scattering and multiple phase coexistence in relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” J. Appl. Phys. 114, 153508 (2013).
[Crossref]

J. J. Zhu, W. W. Li, G. S. Xu, K. Jiang, Z. G. Hu, and J. H. Chu, “A phenomenological model of electronic band structure in ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals around the morphotropic phase boundary determined by temperature-dependent transmittance spectra,” Acta Mater. 59, 6684–6690 (2011).
[Crossref]

Zhu, Z. Q.

X. L. Zhang, Z. G. Hu, G. S. Xu, J. J. Zhu, Y. W. Li, Z. Q. Zhu, and J. H. Chu, “Optical bandgap and phase transition in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals: An inherent relationship,” Appl. Phys. Lett. 103, 051902 (2013).
[Crossref]

J. J. Zhu, K. Jiang, G. S. Xu, Z. G. Hu, Y. W. Li, Z. Q. Zhu, and J. H. Chu, “Temperature-dependent Raman scattering and multiple phase coexistence in relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” J. Appl. Phys. 114, 153508 (2013).
[Crossref]

Zlotnikov, E.

G. A. Rossetti, G. Popov, E. Zlotnikov, and N. Yao, “Domain structures and nonlinear mechanical deformation of soft Pb(ZrxTi1−x)O3 (PZT) piezoelectric ceramic fibers,” Mater. Sci. Eng. A 433, 124–132 (2006).
[Crossref]

Zollner, S.

S. G. Choi, J. Hu, L. S. Abdallah, M. Limpinsel, Y. N. Zhang, S. Zollner, R. Q. Wu, and M. Law, “Pseudodielectric function and critical-point energies of iron pyrite,” Phys. Rev. B 86, 115207 (2012).
[Crossref]

Zou, H.

Acta Mater. (1)

J. J. Zhu, W. W. Li, G. S. Xu, K. Jiang, Z. G. Hu, and J. H. Chu, “A phenomenological model of electronic band structure in ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals around the morphotropic phase boundary determined by temperature-dependent transmittance spectra,” Acta Mater. 59, 6684–6690 (2011).
[Crossref]

Appl. Phys. Lett. (8)

T. T. Fang and H. Y. Chung, “Dielectric relaxation behavior of undoped, Ce-, and Cr-doped Sr0.5Ba0.5Nb2O6 at high temperatures,” Appl. Phys. Lett. 94, 092905 (2009).
[Crossref]

J. J. Zhu, J. Z. Zhang, G. S. Xu, X. L. Zhang, Z. G. Hu, and J. H. Chu, “Electronic transitions and dielectric functions of relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals: Temperature dependent spectroscopic study,” Appl. Phys. Lett. 104, 132903 (2014).
[Crossref]

A. S. Mischenko, Q. Zhang, R. W. Whatmore, J. F. Scott, and N. D. Mathur, “Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9PbMg1/3Nb2/3O3C0.1PbTiO3 near room temperature,” Appl. Phys. Lett. 89, 242912 (2006).
[Crossref]

Z. H. Duan, Z. G. Hu, K. Jiang, G. S. Wang, X. L. Dong, and J. H. Chu, “Temperature-dependent dielectric functions and interband critical points of relaxor lead hafnate-modified PbSc1/2Ta1/2O3 ferroelectric ceramics by spectroscopic ellipsometry,” Appl. Phys. Lett. 102, 151908 (2013).
[Crossref]

X. L. Zhang, Z. G. Hu, G. S. Xu, J. J. Zhu, Y. W. Li, Z. Q. Zhu, and J. H. Chu, “Optical bandgap and phase transition in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals: An inherent relationship,” Appl. Phys. Lett. 103, 051902 (2013).
[Crossref]

G. S. Xu, K. Chen, D. F. Yang, and J. B. Li, “Growth and electrical properties of large size Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals prepared by the vertical Bridgman technique,” Appl. Phys. Lett. 90, 032901 (2007).
[Crossref]

X. Chen, P. P. Jiang, Z. H. Duan, Z. G. Hu, X. F. Chen, G. S. Wang, X. L. Dong, and J. H. Chu, “The A-site driven phase transition procedure of (Pb0.97La0.02))(Zr0.42Sn0.40Ti0.18)O3 ceramics: An evidence from electronic structure variation,” Appl. Phys. Lett. 103, 192910 (2013).
[Crossref]

E. W. Sun, S. J. Zhang, J. Luo, T. R. Shrout, and W. W. Cao, “Elastic, dielectric, and piezoelectric constants of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal poled along [011]c,” Appl. Phys. Lett. 97, 032902 (2010).
[Crossref]

Curr. Opin. Solid State Mater. Sci. (1)

B. Noheda, “Structure and high-piezoelectricity in lead oxide solid solutions,” Curr. Opin. Solid State Mater. Sci. 6, 27–34 (2002).
[Crossref]

J. Appl. Phys. (5)

W. Chan, Z. Xu, T. F. Hung, and H. Chen, “Effect of La substitution on phase transitions in lead zirconate stannate titanate (55/35/10) ceramics,” J. Appl. Phys. 96, 6606 (2004).
[Crossref]

I. MacLaren, R. Villaurrutia, and A. Peláiz-Barranco, “Domain structures and nanostructures in incommensurate antiferroelectric PbxLa1−x(Zr0.9Ti0.1)O3,” J. Appl. Phys. 108, 034109 (2010).
[Crossref]

S.-E. Park and T. R. Shrout, “Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys. 82, 1804–1811 (1997).
[Crossref]

J. J. Zhu, K. Jiang, G. S. Xu, Z. G. Hu, Y. W. Li, Z. Q. Zhu, and J. H. Chu, “Temperature-dependent Raman scattering and multiple phase coexistence in relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” J. Appl. Phys. 114, 153508 (2013).
[Crossref]

H. Lee, Y. S. Kang, S. J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. B. Li, S. H. Wei, P. G. Snyder, and J. T. Evans, “Dielectric functions and electronic band structure of lead zirconate titanate thin films,” J. Appl. Phys. 98, 094108 (2005).
[Crossref]

J. Eur. Ceram. Soc. (1)

D. W. Wang, M. S. Cao, and S. J. Zhang, “Phase diagram and properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 polycrystalline ceramics,” J. Eur. Ceram. Soc. 32, 433–439 (2012).
[Crossref]

Mater. Sci. Eng. A (1)

G. A. Rossetti, G. Popov, E. Zlotnikov, and N. Yao, “Domain structures and nonlinear mechanical deformation of soft Pb(ZrxTi1−x)O3 (PZT) piezoelectric ceramic fibers,” Mater. Sci. Eng. A 433, 124–132 (2006).
[Crossref]

MRS Bullentin (1)

Z. G. Ye, “High-performance piezoelectric single crystals of complex perovskite solid solutions,” MRS Bullentin 34, 277–283 (2009).
[Crossref]

Nat. Commun. (1)

N. Zhang, H. Yokota, A. M. Glazer, Z. Ren, D. A. Keen, D. S. Keeble, P. A. Thomoas, and Z.-G. Ye, “The missing boundary in the phase diagram of PbZr1−xTixO3,” Nat. Commun. 5, 5231 (2014).
[Crossref]

Nature (1)

M. Ahart, M. Somayazulu, R. E. Cohen, P. Ganesh, P. Dera, H. K. Mao, R. J. Hemley, Y. Ren, P. Liermann, and Z. G. Wu, “Origin of morphotropic phase boundaries in ferroelectrics,” Nature 451, 545–548 (2008).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Rev. B (10)

M. Suewattana and D. J. Singh, “Electronic structure and lattice distortions in PbMg1/3Nb2/3O3 studied with density functional theory using the linearized augmented plane-wave method,” Phys. Rev. B 73, 224105 (2006).
[Crossref]

B. Mihailova, B. Maier, C. Paulmann, T. Malcherek, J. Ihringer, M. Gospodinov, R. Stosch, B. Güttler, and U. Bismayer, “High-temperature structural transformations in the relaxor ferroelectrics PbSc0.5Ta0.5O3 and Pb0.78Ba0.22Sc0.5Ta0.5O3,” Phys. Rev. B 77, 174106 (2008).
[Crossref]

S. G. Choi, J. Hu, L. S. Abdallah, M. Limpinsel, Y. N. Zhang, S. Zollner, R. Q. Wu, and M. Law, “Pseudodielectric function and critical-point energies of iron pyrite,” Phys. Rev. B 86, 115207 (2012).
[Crossref]

K. Y. Chan, W. S. Tsang, C. L. Mak, K. H. Wong, and P. M. Hui, “Effects of composition of PbTiO3 on optical properties of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 thin films,” Phys. Rev. B 69, 144111 (2004).
[Crossref]

M. Rössle, C. N. Wang, P. Marsik, M. Yazdi-Rizi, K. W. Kin, A. Dubroka, I. Marozau, C. W. Schneider, J. Humlicek, D. Baeriswyl, and C. Bernhard, “Optical probe of ferroelectric order in bulk and thin-film perovskite titanates,” Phys. Rev. B 88, 104110 (2013).
[Crossref]

P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35, 9174–9189 (1987).
[Crossref]

R. D. King-Smith and D. Vanderbilt, “First-principles investigation of ferroelectricity in perovskite compounds,” Phys. Rev. B 49, 5828–5844 (1994).
[Crossref]

Z. Zhang, P. Wu, K. P. Ong, L. Lu, and C. Shu, “Electronic properties of A-site substituted lead zirconate titanate: Density functional calculations,” Phys. Rev. B 76, 125102 (2007).
[Crossref]

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).
[Crossref]

O. Svitelskiy, J. Toulouse, G. Yong, and Z. -G. Ye, “Polarized Raman study of the phonon dynamics in Pb(Mg1/3Nb2/3)O3 crystal,” Phys. Rev. B 68, 104107 (2003).
[Crossref]

Phys. Rev. Lett. (2)

S. Zapf, H. S. Jeevan, T. Ivek, F. Pfister, F. Klingert, S. Jiang, D. Wu, P. Gegenwart, R. K. Kremer, and M. Dressel, “EuFe2(As1−xPx)2: Reentrant Spin Glass and Superconductivity,” Phys. Rev. Lett. 110, 237002 (2013).
[Crossref]

W. Zhong and D. Vanderbilt, “Competing Structural Instabilities in Cubic Perovskites,” Phys. Rev. Lett. 74, 2587–2590 (1995).
[Crossref] [PubMed]

Science (1)

J. F. Scott, “Applications of Modern Ferroelectrics,” Science 315, 954–959 (2007).
[Crossref] [PubMed]

Solid State Commun. (1)

B. Ghebouli, M. Ghebouli, T. Chihi, M. Fatmi, S. Boucetta, and M. Reffas, “First-principles study of structural, elastic, electronic and optical properties of SrMO3 (M=Ti and Sn),” Solid State Commun. 149, 2244–2249 (2009).
[Crossref]

Other (2)

H. Frölich, Theory of Dielectrics (Clarendon Press, 1949).

S. Kamba and J. Petzelt, in Piezoelectric Single Crystals and Their Application, edited by S. Trolier-McKinstry, L. E. Cross, and Y. Yamashita, eds. (Penn State University, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The experimental data (dots) and calculated curves (lines) of Ψ and Δ at 200 K and 400 K for PIMN-0.33PT single crystal. (b) The real part (ε 1) and imaginary part (ε 2) of numerically inverted complex dielectric functions at 200 K and 400 K. (c) Imaginary parts of dielectric functions for PIMN-PT crystals at the photon energy of 3 eV.
Fig. 2
Fig. 2 Temperature dependence of the second derivatives of ε 2 for (a) PIMN-0.29PT, (b) PIMN-0.31PT, (c) PIMN-0.33PT, and (d) PIMN-0.35PT crystals. Note that the solid lines show some significant variation trends to guide the eyes.
Fig. 3
Fig. 3 Experimental (dots) and the best-fit (solid lines) second derivatives of ε at (a) 700 K (in C phase), (b) 400 K (in T phase), and (c) 200 K (in MPB region) for PIMN-0.33PT crystal, respectively.
Fig. 4
Fig. 4 Temperature dependence of the interband critical point energies for (a) PIMN-0.29PT, (b) PIMN-0.31PT, (c) PIMN-0.33PT, and (d) PIMN-0.35PT crystals, respectively. The dot lines are applied to guide the eyes and indicate anomaly behavior.
Fig. 5
Fig. 5 (a) The assignments for critical point energies Ea , Eb and Ec of PIMNT single crystals. (b) A diagram describes the degree of B-O hybridization in each phase region. Note that the weaker hybridized B-O bond leads to higher-lying interband energy Ed .
Fig. 6
Fig. 6 A phase diagram is based on analysis of the interband critical point variation with the temperature and PT composition. The solid lines indicate the phase transition boundary derived from the present work while the dashed lines are taken from previous study [5]. Note that the shaded area indicates the MPB region determined from the present SE technique.
Fig. 7
Fig. 7 Temperature dependent Raman spectra of PIMN-0.33PT single crystal, with the Lorentzian-shaped spectral deconvolution at 77 K.
Fig. 8
Fig. 8 (a) Temperature dependent E(LO2)+E(TO3) mode for PIMN-0.33PT crystal. (b) The intensity ratio between E(TO1) mode and E(LO2)+E(TO3) as a function of temperature for PIMN-0.33PT crystal. Note that all data are divided into different phase regions with dot lines.

Tables (1)

Tables Icon

Table 1 The SCP model parameters for PIMN-PT single crystals are extracted from fitting the second derivatives of dielectric functions. Note that the label “-” means that the corresponding transition does not exist at the temperature. Note that the CP Ed of PIMN-0.33PT at 200 K is appended below the CP Ec of PIMN-0.33PT at 200 K. The 95% reliability of the fitting parameters is given in parentheses.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d 2 ε d E 2 = { n ( n 1 ) A m e i ϕ m ( E E m + i Γ m ) n 2 n 0 , A m e i ϕ m ( E E m + i Γ m ) 2 n = 0 .

Metrics