Abstract

We report photo-dynamically provoked photoluminescence blue shifts up to ∼8 meV of oleic acid capped 2.5 nm PbS quantum dots in toluene at room temperature. Exposing the solution to pulsed laser (26 ps, 10 Hz) emissions at 532 nm and 1064 nm, the photo-induced band gap increase is evoked by single and two-photon transitions, respectively. The emission peak blue shifts, recorded in reflection and transmission geometries, show a 2/3 power dependence on the optical stimulus gain, rendering the Burstein-Moss shift to be the underlying inherent n-type doping effect in the quantized colloid.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Excitation-wavelength- and size-dependent photo-darkening and photo-brightening of photoluminescence from PbS quantum dots in glasses

Qiaoyun Yin, Chao Liu, Jing Wang, Zhiyong Zhao, Jong Heo, Jun Xie, and Jianjun Han
Opt. Mater. Express 9(2) 504-515 (2019)

Formation and photoluminescence property of PbS quantum dots in silica optical fiber based on atomic layer deposition

Yanhua Dong, Jianxiang Wen, Fufei Pang, Yanhua Luo, Gang-ding Peng, Zhenyi Chen, and Tingyun Wang
Opt. Mater. Express 5(4) 712-719 (2015)

Incorporation of luminescent CdSe/ZnS core-shell quantum dots and PbS quantum dots into solution-derived chalcogenide glass films

Spencer Novak, Luca Scarpantonio, Jacklyn Novak, Marta Dai Prè, Alessandro Martucci, Jonathan D. Musgraves, Nathan D. McClenaghan, and Kathleen Richardson
Opt. Mater. Express 3(6) 729-738 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. L. Efros and A. L. Efros, “Interband absorption of light in a semiconductor sphere,” Sov. Phys. Semicond. 16(7), 772–775 (1982).
  2. L. E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys. 80(9), 4403–4409 (1984).
    [Crossref]
  3. P. V. Kamat, N. M. Dimitrijevic, and A. J. Nozik, “Dynamic Burstein-Moss shift in semiconductor colloids,” J. Phys. Chem. 93(8), 2873–2875 (1989).
    [Crossref]
  4. S. Nomura and T. Kobayashi, “Clearly resolved exciton peaks in CdSxSe1-x microcrystallites by modulation spectroscopy,” Solid State Commun. 73(6), 425–429 (1990).
    [Crossref]
  5. A. Olkhovets, R.-C. Hsu, A. Lipovskii, and F. W. Wise, “Size-dependent temperature variation of the energy gap in lead-salt quantum dots,” Phys. Rev. Lett. 81(16), 3539–3542 (1998).
    [Crossref]
  6. J. Auxier, K. Wundke, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “Luminescence and gain around 1.3 µm in PbS quantum dots,” in Conference on Lasers and Electro-Optics, S. Brueck, R. Fields, M. Fejer, and F. Leonberger, eds., OSA Technical Digest (Optical Society of America, 2000), paper CWV2.
  7. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
    [Crossref] [PubMed]
  8. R. D. Schaller and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion,” Phys. Rev. Lett. 92(18), 186601 (2004).
    [Crossref] [PubMed]
  9. R. D. Schaller, V. M. Agranovich, and V. I. Klimov, “High-effciency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states,” Nat. Phys. 1(3), 189–194 (2005).
    [Crossref]
  10. D. Mocatta, G. Cohen, J. Schattner, O. Millo, E. Rabani, and U. Banin, “Heavily doped semiconductor nanocrystal quantum dots,” Science 332(6025), 77–81 (2011).
    [Crossref] [PubMed]
  11. X. He, I. N. Demchenko, W. C. Stolte, A. van Buuren, and H. Liang, “Synthesis and transformation of Zn-doped PbS quantum dots,” J. Phys. Chem. C 116(41), 22001–22008 (2012).
    [Crossref]
  12. A. Stavrinadis, A. K. Rath, F. P. de Arquer, S. L. Diedenhofen, C. Magén, L. Martinez, D. So, and G. Konstantatos, “Heterovalent cation substitutional doping for quantum dot homojunction solar cells,” Nat. Commun. 4, 2981 (2013), doi:.
    [Crossref] [PubMed]
  13. W. K. Koh, A. Y. Koposov, J. T. Stewart, B. N. Pal, I. Robel, J. M. Pietryga, and V. I. Klimov, “Heavily doped n-type PbSe and PbS nanocrystals using ground-state charge transfer from cobaltocene,” Sci. Rep. 3, 2004 (2013), doi:.
    [Crossref] [PubMed]
  14. B. Ullrich, H. Xi, and J. S. Wang, “Photoinduced band filling in strongly confined colloidal PbS quantum dots,” J. Appl. Phys. 115(23), 233503 (2014).
    [Crossref]
  15. T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-Electronics (Wiley, New York, 1973).
  16. A. I. Ekimov, F. Hache, M. C. Schanne-Klein, D. Ricard, C. Flytzanis, I. A. Kudryavtsev, T. V. Yazeva, A. V. Rodina, and A. L. Efros, “Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions,” J. Opt. Soc. Am. B 10(1), 100–107 (1993).
    [Crossref]
  17. B. Ullrich and J. S. Wang, “Impact of laser excitation variations on the photoluminescence of PbS quantum dots on GaAs,” J. Lumin. 143, 645–648 (2013).
    [Crossref]
  18. B. Ullrich and J. S. Wang, “All-optical tuning of the Stokes shift in PbS quantum dots,” Appl. Phys. Lett. 102(7), 071905 (2013).
    [Crossref]
  19. J. S. Wang, B. Ullrich, G. J. Brown, and C. M. Wai, “Morphology and energy transfer in PbS quantum dot arrays formed with supercritical fluid deposition,” Mater. Chem. Phys. 141(1), 195–202 (2013).
    [Crossref]
  20. A. K. Singh, P. Barik, and B. Ullrich, “Magneto-optical controlled transmittance alteration of PbS quantum dots by moderately applied magnetic fields at room temperature,” Appl. Phys. Lett. 105(24), 242410 (2014).
    [Crossref]
  21. B. Ullrich, A. K. Singh, J. S. Wang, and H. Xi, “Colloidal PbS quantum dots on GaAs: Optical properties and Urbach tail slope tuning,” in Nanotechnology for Optics and Sensors, M. Aliofkhazraei, ed. (One Central Press, 2015).
  22. B. Ullrich, R. Schroeder, W. Graupner, and S. Sakai, “The influence of self-absorption on the photoluminescence of thin film CdS demonstrated by two-photon absorption,” Opt. Express 9(3), 116–120 (2001).
    [Crossref] [PubMed]
  23. B. Ullrich and R. Schroeder, “Green single- and two-photon gap emission of thin-film CdS formed by infrared pulsed-laser deposition on glass,” IEEE J. Quantum Electron. 37(10), 1363–1367 (2001).
    [Crossref]
  24. B. Ullrich, R. Schroeder, and H. Sakai, “Intrinsic gap emission and its geometry dependence of thin-film CdS excited by two-photon absorption,” Semicond. Sci. Technol. 16(12), L89–L92 (2001).
    [Crossref]
  25. The solution’s transmittance in the vial used for the BMS experiments is ~0.90 at 1064 nm.
  26. B. Ullrich, H. Xi, and J. S. Wang, “Photoluminescence limiting of PbS quantum dots,” Adv. Cond. Mat. Phys. (to be published).
  27. B. Ullrich and H. Xi, “Photocurrent limit in nanowires,” Opt. Lett. 38(22), 4698–4700 (2013).
    [Crossref] [PubMed]

2014 (2)

B. Ullrich, H. Xi, and J. S. Wang, “Photoinduced band filling in strongly confined colloidal PbS quantum dots,” J. Appl. Phys. 115(23), 233503 (2014).
[Crossref]

A. K. Singh, P. Barik, and B. Ullrich, “Magneto-optical controlled transmittance alteration of PbS quantum dots by moderately applied magnetic fields at room temperature,” Appl. Phys. Lett. 105(24), 242410 (2014).
[Crossref]

2013 (6)

B. Ullrich and H. Xi, “Photocurrent limit in nanowires,” Opt. Lett. 38(22), 4698–4700 (2013).
[Crossref] [PubMed]

B. Ullrich and J. S. Wang, “Impact of laser excitation variations on the photoluminescence of PbS quantum dots on GaAs,” J. Lumin. 143, 645–648 (2013).
[Crossref]

B. Ullrich and J. S. Wang, “All-optical tuning of the Stokes shift in PbS quantum dots,” Appl. Phys. Lett. 102(7), 071905 (2013).
[Crossref]

J. S. Wang, B. Ullrich, G. J. Brown, and C. M. Wai, “Morphology and energy transfer in PbS quantum dot arrays formed with supercritical fluid deposition,” Mater. Chem. Phys. 141(1), 195–202 (2013).
[Crossref]

A. Stavrinadis, A. K. Rath, F. P. de Arquer, S. L. Diedenhofen, C. Magén, L. Martinez, D. So, and G. Konstantatos, “Heterovalent cation substitutional doping for quantum dot homojunction solar cells,” Nat. Commun. 4, 2981 (2013), doi:.
[Crossref] [PubMed]

W. K. Koh, A. Y. Koposov, J. T. Stewart, B. N. Pal, I. Robel, J. M. Pietryga, and V. I. Klimov, “Heavily doped n-type PbSe and PbS nanocrystals using ground-state charge transfer from cobaltocene,” Sci. Rep. 3, 2004 (2013), doi:.
[Crossref] [PubMed]

2012 (1)

X. He, I. N. Demchenko, W. C. Stolte, A. van Buuren, and H. Liang, “Synthesis and transformation of Zn-doped PbS quantum dots,” J. Phys. Chem. C 116(41), 22001–22008 (2012).
[Crossref]

2011 (1)

D. Mocatta, G. Cohen, J. Schattner, O. Millo, E. Rabani, and U. Banin, “Heavily doped semiconductor nanocrystal quantum dots,” Science 332(6025), 77–81 (2011).
[Crossref] [PubMed]

2005 (1)

R. D. Schaller, V. M. Agranovich, and V. I. Klimov, “High-effciency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states,” Nat. Phys. 1(3), 189–194 (2005).
[Crossref]

2004 (1)

R. D. Schaller and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion,” Phys. Rev. Lett. 92(18), 186601 (2004).
[Crossref] [PubMed]

2001 (3)

B. Ullrich, R. Schroeder, W. Graupner, and S. Sakai, “The influence of self-absorption on the photoluminescence of thin film CdS demonstrated by two-photon absorption,” Opt. Express 9(3), 116–120 (2001).
[Crossref] [PubMed]

B. Ullrich and R. Schroeder, “Green single- and two-photon gap emission of thin-film CdS formed by infrared pulsed-laser deposition on glass,” IEEE J. Quantum Electron. 37(10), 1363–1367 (2001).
[Crossref]

B. Ullrich, R. Schroeder, and H. Sakai, “Intrinsic gap emission and its geometry dependence of thin-film CdS excited by two-photon absorption,” Semicond. Sci. Technol. 16(12), L89–L92 (2001).
[Crossref]

2000 (1)

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[Crossref] [PubMed]

1998 (1)

A. Olkhovets, R.-C. Hsu, A. Lipovskii, and F. W. Wise, “Size-dependent temperature variation of the energy gap in lead-salt quantum dots,” Phys. Rev. Lett. 81(16), 3539–3542 (1998).
[Crossref]

1993 (1)

1990 (1)

S. Nomura and T. Kobayashi, “Clearly resolved exciton peaks in CdSxSe1-x microcrystallites by modulation spectroscopy,” Solid State Commun. 73(6), 425–429 (1990).
[Crossref]

1989 (1)

P. V. Kamat, N. M. Dimitrijevic, and A. J. Nozik, “Dynamic Burstein-Moss shift in semiconductor colloids,” J. Phys. Chem. 93(8), 2873–2875 (1989).
[Crossref]

1984 (1)

L. E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys. 80(9), 4403–4409 (1984).
[Crossref]

1982 (1)

A. L. Efros and A. L. Efros, “Interband absorption of light in a semiconductor sphere,” Sov. Phys. Semicond. 16(7), 772–775 (1982).

Agranovich, V. M.

R. D. Schaller, V. M. Agranovich, and V. I. Klimov, “High-effciency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states,” Nat. Phys. 1(3), 189–194 (2005).
[Crossref]

Banin, U.

D. Mocatta, G. Cohen, J. Schattner, O. Millo, E. Rabani, and U. Banin, “Heavily doped semiconductor nanocrystal quantum dots,” Science 332(6025), 77–81 (2011).
[Crossref] [PubMed]

Barik, P.

A. K. Singh, P. Barik, and B. Ullrich, “Magneto-optical controlled transmittance alteration of PbS quantum dots by moderately applied magnetic fields at room temperature,” Appl. Phys. Lett. 105(24), 242410 (2014).
[Crossref]

Bawendi, M. G.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[Crossref] [PubMed]

Brown, G. J.

J. S. Wang, B. Ullrich, G. J. Brown, and C. M. Wai, “Morphology and energy transfer in PbS quantum dot arrays formed with supercritical fluid deposition,” Mater. Chem. Phys. 141(1), 195–202 (2013).
[Crossref]

Brus, L. E.

L. E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys. 80(9), 4403–4409 (1984).
[Crossref]

Cohen, G.

D. Mocatta, G. Cohen, J. Schattner, O. Millo, E. Rabani, and U. Banin, “Heavily doped semiconductor nanocrystal quantum dots,” Science 332(6025), 77–81 (2011).
[Crossref] [PubMed]

de Arquer, F. P.

A. Stavrinadis, A. K. Rath, F. P. de Arquer, S. L. Diedenhofen, C. Magén, L. Martinez, D. So, and G. Konstantatos, “Heterovalent cation substitutional doping for quantum dot homojunction solar cells,” Nat. Commun. 4, 2981 (2013), doi:.
[Crossref] [PubMed]

Demchenko, I. N.

X. He, I. N. Demchenko, W. C. Stolte, A. van Buuren, and H. Liang, “Synthesis and transformation of Zn-doped PbS quantum dots,” J. Phys. Chem. C 116(41), 22001–22008 (2012).
[Crossref]

Diedenhofen, S. L.

A. Stavrinadis, A. K. Rath, F. P. de Arquer, S. L. Diedenhofen, C. Magén, L. Martinez, D. So, and G. Konstantatos, “Heterovalent cation substitutional doping for quantum dot homojunction solar cells,” Nat. Commun. 4, 2981 (2013), doi:.
[Crossref] [PubMed]

Dimitrijevic, N. M.

P. V. Kamat, N. M. Dimitrijevic, and A. J. Nozik, “Dynamic Burstein-Moss shift in semiconductor colloids,” J. Phys. Chem. 93(8), 2873–2875 (1989).
[Crossref]

Efros, A. L.

A. I. Ekimov, F. Hache, M. C. Schanne-Klein, D. Ricard, C. Flytzanis, I. A. Kudryavtsev, T. V. Yazeva, A. V. Rodina, and A. L. Efros, “Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions,” J. Opt. Soc. Am. B 10(1), 100–107 (1993).
[Crossref]

A. L. Efros and A. L. Efros, “Interband absorption of light in a semiconductor sphere,” Sov. Phys. Semicond. 16(7), 772–775 (1982).

A. L. Efros and A. L. Efros, “Interband absorption of light in a semiconductor sphere,” Sov. Phys. Semicond. 16(7), 772–775 (1982).

Ekimov, A. I.

Flytzanis, C.

Graupner, W.

Hache, F.

He, X.

X. He, I. N. Demchenko, W. C. Stolte, A. van Buuren, and H. Liang, “Synthesis and transformation of Zn-doped PbS quantum dots,” J. Phys. Chem. C 116(41), 22001–22008 (2012).
[Crossref]

Hsu, R.-C.

A. Olkhovets, R.-C. Hsu, A. Lipovskii, and F. W. Wise, “Size-dependent temperature variation of the energy gap in lead-salt quantum dots,” Phys. Rev. Lett. 81(16), 3539–3542 (1998).
[Crossref]

Kamat, P. V.

P. V. Kamat, N. M. Dimitrijevic, and A. J. Nozik, “Dynamic Burstein-Moss shift in semiconductor colloids,” J. Phys. Chem. 93(8), 2873–2875 (1989).
[Crossref]

Klimov, V. I.

W. K. Koh, A. Y. Koposov, J. T. Stewart, B. N. Pal, I. Robel, J. M. Pietryga, and V. I. Klimov, “Heavily doped n-type PbSe and PbS nanocrystals using ground-state charge transfer from cobaltocene,” Sci. Rep. 3, 2004 (2013), doi:.
[Crossref] [PubMed]

R. D. Schaller, V. M. Agranovich, and V. I. Klimov, “High-effciency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states,” Nat. Phys. 1(3), 189–194 (2005).
[Crossref]

R. D. Schaller and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion,” Phys. Rev. Lett. 92(18), 186601 (2004).
[Crossref] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[Crossref] [PubMed]

Kobayashi, T.

S. Nomura and T. Kobayashi, “Clearly resolved exciton peaks in CdSxSe1-x microcrystallites by modulation spectroscopy,” Solid State Commun. 73(6), 425–429 (1990).
[Crossref]

Koh, W. K.

W. K. Koh, A. Y. Koposov, J. T. Stewart, B. N. Pal, I. Robel, J. M. Pietryga, and V. I. Klimov, “Heavily doped n-type PbSe and PbS nanocrystals using ground-state charge transfer from cobaltocene,” Sci. Rep. 3, 2004 (2013), doi:.
[Crossref] [PubMed]

Konstantatos, G.

A. Stavrinadis, A. K. Rath, F. P. de Arquer, S. L. Diedenhofen, C. Magén, L. Martinez, D. So, and G. Konstantatos, “Heterovalent cation substitutional doping for quantum dot homojunction solar cells,” Nat. Commun. 4, 2981 (2013), doi:.
[Crossref] [PubMed]

Koposov, A. Y.

W. K. Koh, A. Y. Koposov, J. T. Stewart, B. N. Pal, I. Robel, J. M. Pietryga, and V. I. Klimov, “Heavily doped n-type PbSe and PbS nanocrystals using ground-state charge transfer from cobaltocene,” Sci. Rep. 3, 2004 (2013), doi:.
[Crossref] [PubMed]

Kudryavtsev, I. A.

Leatherdale, C. A.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[Crossref] [PubMed]

Liang, H.

X. He, I. N. Demchenko, W. C. Stolte, A. van Buuren, and H. Liang, “Synthesis and transformation of Zn-doped PbS quantum dots,” J. Phys. Chem. C 116(41), 22001–22008 (2012).
[Crossref]

Lipovskii, A.

A. Olkhovets, R.-C. Hsu, A. Lipovskii, and F. W. Wise, “Size-dependent temperature variation of the energy gap in lead-salt quantum dots,” Phys. Rev. Lett. 81(16), 3539–3542 (1998).
[Crossref]

Magén, C.

A. Stavrinadis, A. K. Rath, F. P. de Arquer, S. L. Diedenhofen, C. Magén, L. Martinez, D. So, and G. Konstantatos, “Heterovalent cation substitutional doping for quantum dot homojunction solar cells,” Nat. Commun. 4, 2981 (2013), doi:.
[Crossref] [PubMed]

Martinez, L.

A. Stavrinadis, A. K. Rath, F. P. de Arquer, S. L. Diedenhofen, C. Magén, L. Martinez, D. So, and G. Konstantatos, “Heterovalent cation substitutional doping for quantum dot homojunction solar cells,” Nat. Commun. 4, 2981 (2013), doi:.
[Crossref] [PubMed]

McBranch, D. W.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[Crossref] [PubMed]

Mikhailovsky, A. A.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[Crossref] [PubMed]

Millo, O.

D. Mocatta, G. Cohen, J. Schattner, O. Millo, E. Rabani, and U. Banin, “Heavily doped semiconductor nanocrystal quantum dots,” Science 332(6025), 77–81 (2011).
[Crossref] [PubMed]

Mocatta, D.

D. Mocatta, G. Cohen, J. Schattner, O. Millo, E. Rabani, and U. Banin, “Heavily doped semiconductor nanocrystal quantum dots,” Science 332(6025), 77–81 (2011).
[Crossref] [PubMed]

Nomura, S.

S. Nomura and T. Kobayashi, “Clearly resolved exciton peaks in CdSxSe1-x microcrystallites by modulation spectroscopy,” Solid State Commun. 73(6), 425–429 (1990).
[Crossref]

Nozik, A. J.

P. V. Kamat, N. M. Dimitrijevic, and A. J. Nozik, “Dynamic Burstein-Moss shift in semiconductor colloids,” J. Phys. Chem. 93(8), 2873–2875 (1989).
[Crossref]

Olkhovets, A.

A. Olkhovets, R.-C. Hsu, A. Lipovskii, and F. W. Wise, “Size-dependent temperature variation of the energy gap in lead-salt quantum dots,” Phys. Rev. Lett. 81(16), 3539–3542 (1998).
[Crossref]

Pal, B. N.

W. K. Koh, A. Y. Koposov, J. T. Stewart, B. N. Pal, I. Robel, J. M. Pietryga, and V. I. Klimov, “Heavily doped n-type PbSe and PbS nanocrystals using ground-state charge transfer from cobaltocene,” Sci. Rep. 3, 2004 (2013), doi:.
[Crossref] [PubMed]

Pietryga, J. M.

W. K. Koh, A. Y. Koposov, J. T. Stewart, B. N. Pal, I. Robel, J. M. Pietryga, and V. I. Klimov, “Heavily doped n-type PbSe and PbS nanocrystals using ground-state charge transfer from cobaltocene,” Sci. Rep. 3, 2004 (2013), doi:.
[Crossref] [PubMed]

Rabani, E.

D. Mocatta, G. Cohen, J. Schattner, O. Millo, E. Rabani, and U. Banin, “Heavily doped semiconductor nanocrystal quantum dots,” Science 332(6025), 77–81 (2011).
[Crossref] [PubMed]

Rath, A. K.

A. Stavrinadis, A. K. Rath, F. P. de Arquer, S. L. Diedenhofen, C. Magén, L. Martinez, D. So, and G. Konstantatos, “Heterovalent cation substitutional doping for quantum dot homojunction solar cells,” Nat. Commun. 4, 2981 (2013), doi:.
[Crossref] [PubMed]

Ricard, D.

Robel, I.

W. K. Koh, A. Y. Koposov, J. T. Stewart, B. N. Pal, I. Robel, J. M. Pietryga, and V. I. Klimov, “Heavily doped n-type PbSe and PbS nanocrystals using ground-state charge transfer from cobaltocene,” Sci. Rep. 3, 2004 (2013), doi:.
[Crossref] [PubMed]

Rodina, A. V.

Sakai, H.

B. Ullrich, R. Schroeder, and H. Sakai, “Intrinsic gap emission and its geometry dependence of thin-film CdS excited by two-photon absorption,” Semicond. Sci. Technol. 16(12), L89–L92 (2001).
[Crossref]

Sakai, S.

Schaller, R. D.

R. D. Schaller, V. M. Agranovich, and V. I. Klimov, “High-effciency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states,” Nat. Phys. 1(3), 189–194 (2005).
[Crossref]

R. D. Schaller and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion,” Phys. Rev. Lett. 92(18), 186601 (2004).
[Crossref] [PubMed]

Schanne-Klein, M. C.

Schattner, J.

D. Mocatta, G. Cohen, J. Schattner, O. Millo, E. Rabani, and U. Banin, “Heavily doped semiconductor nanocrystal quantum dots,” Science 332(6025), 77–81 (2011).
[Crossref] [PubMed]

Schroeder, R.

B. Ullrich, R. Schroeder, W. Graupner, and S. Sakai, “The influence of self-absorption on the photoluminescence of thin film CdS demonstrated by two-photon absorption,” Opt. Express 9(3), 116–120 (2001).
[Crossref] [PubMed]

B. Ullrich and R. Schroeder, “Green single- and two-photon gap emission of thin-film CdS formed by infrared pulsed-laser deposition on glass,” IEEE J. Quantum Electron. 37(10), 1363–1367 (2001).
[Crossref]

B. Ullrich, R. Schroeder, and H. Sakai, “Intrinsic gap emission and its geometry dependence of thin-film CdS excited by two-photon absorption,” Semicond. Sci. Technol. 16(12), L89–L92 (2001).
[Crossref]

Singh, A. K.

A. K. Singh, P. Barik, and B. Ullrich, “Magneto-optical controlled transmittance alteration of PbS quantum dots by moderately applied magnetic fields at room temperature,” Appl. Phys. Lett. 105(24), 242410 (2014).
[Crossref]

So, D.

A. Stavrinadis, A. K. Rath, F. P. de Arquer, S. L. Diedenhofen, C. Magén, L. Martinez, D. So, and G. Konstantatos, “Heterovalent cation substitutional doping for quantum dot homojunction solar cells,” Nat. Commun. 4, 2981 (2013), doi:.
[Crossref] [PubMed]

Stavrinadis, A.

A. Stavrinadis, A. K. Rath, F. P. de Arquer, S. L. Diedenhofen, C. Magén, L. Martinez, D. So, and G. Konstantatos, “Heterovalent cation substitutional doping for quantum dot homojunction solar cells,” Nat. Commun. 4, 2981 (2013), doi:.
[Crossref] [PubMed]

Stewart, J. T.

W. K. Koh, A. Y. Koposov, J. T. Stewart, B. N. Pal, I. Robel, J. M. Pietryga, and V. I. Klimov, “Heavily doped n-type PbSe and PbS nanocrystals using ground-state charge transfer from cobaltocene,” Sci. Rep. 3, 2004 (2013), doi:.
[Crossref] [PubMed]

Stolte, W. C.

X. He, I. N. Demchenko, W. C. Stolte, A. van Buuren, and H. Liang, “Synthesis and transformation of Zn-doped PbS quantum dots,” J. Phys. Chem. C 116(41), 22001–22008 (2012).
[Crossref]

Ullrich, B.

B. Ullrich, H. Xi, and J. S. Wang, “Photoinduced band filling in strongly confined colloidal PbS quantum dots,” J. Appl. Phys. 115(23), 233503 (2014).
[Crossref]

A. K. Singh, P. Barik, and B. Ullrich, “Magneto-optical controlled transmittance alteration of PbS quantum dots by moderately applied magnetic fields at room temperature,” Appl. Phys. Lett. 105(24), 242410 (2014).
[Crossref]

J. S. Wang, B. Ullrich, G. J. Brown, and C. M. Wai, “Morphology and energy transfer in PbS quantum dot arrays formed with supercritical fluid deposition,” Mater. Chem. Phys. 141(1), 195–202 (2013).
[Crossref]

B. Ullrich and J. S. Wang, “All-optical tuning of the Stokes shift in PbS quantum dots,” Appl. Phys. Lett. 102(7), 071905 (2013).
[Crossref]

B. Ullrich and J. S. Wang, “Impact of laser excitation variations on the photoluminescence of PbS quantum dots on GaAs,” J. Lumin. 143, 645–648 (2013).
[Crossref]

B. Ullrich and H. Xi, “Photocurrent limit in nanowires,” Opt. Lett. 38(22), 4698–4700 (2013).
[Crossref] [PubMed]

B. Ullrich, R. Schroeder, and H. Sakai, “Intrinsic gap emission and its geometry dependence of thin-film CdS excited by two-photon absorption,” Semicond. Sci. Technol. 16(12), L89–L92 (2001).
[Crossref]

B. Ullrich, R. Schroeder, W. Graupner, and S. Sakai, “The influence of self-absorption on the photoluminescence of thin film CdS demonstrated by two-photon absorption,” Opt. Express 9(3), 116–120 (2001).
[Crossref] [PubMed]

B. Ullrich and R. Schroeder, “Green single- and two-photon gap emission of thin-film CdS formed by infrared pulsed-laser deposition on glass,” IEEE J. Quantum Electron. 37(10), 1363–1367 (2001).
[Crossref]

B. Ullrich, H. Xi, and J. S. Wang, “Photoluminescence limiting of PbS quantum dots,” Adv. Cond. Mat. Phys. (to be published).

van Buuren, A.

X. He, I. N. Demchenko, W. C. Stolte, A. van Buuren, and H. Liang, “Synthesis and transformation of Zn-doped PbS quantum dots,” J. Phys. Chem. C 116(41), 22001–22008 (2012).
[Crossref]

Wai, C. M.

J. S. Wang, B. Ullrich, G. J. Brown, and C. M. Wai, “Morphology and energy transfer in PbS quantum dot arrays formed with supercritical fluid deposition,” Mater. Chem. Phys. 141(1), 195–202 (2013).
[Crossref]

Wang, J. S.

B. Ullrich, H. Xi, and J. S. Wang, “Photoinduced band filling in strongly confined colloidal PbS quantum dots,” J. Appl. Phys. 115(23), 233503 (2014).
[Crossref]

B. Ullrich and J. S. Wang, “Impact of laser excitation variations on the photoluminescence of PbS quantum dots on GaAs,” J. Lumin. 143, 645–648 (2013).
[Crossref]

B. Ullrich and J. S. Wang, “All-optical tuning of the Stokes shift in PbS quantum dots,” Appl. Phys. Lett. 102(7), 071905 (2013).
[Crossref]

J. S. Wang, B. Ullrich, G. J. Brown, and C. M. Wai, “Morphology and energy transfer in PbS quantum dot arrays formed with supercritical fluid deposition,” Mater. Chem. Phys. 141(1), 195–202 (2013).
[Crossref]

B. Ullrich, H. Xi, and J. S. Wang, “Photoluminescence limiting of PbS quantum dots,” Adv. Cond. Mat. Phys. (to be published).

Wise, F. W.

A. Olkhovets, R.-C. Hsu, A. Lipovskii, and F. W. Wise, “Size-dependent temperature variation of the energy gap in lead-salt quantum dots,” Phys. Rev. Lett. 81(16), 3539–3542 (1998).
[Crossref]

Xi, H.

B. Ullrich, H. Xi, and J. S. Wang, “Photoinduced band filling in strongly confined colloidal PbS quantum dots,” J. Appl. Phys. 115(23), 233503 (2014).
[Crossref]

B. Ullrich and H. Xi, “Photocurrent limit in nanowires,” Opt. Lett. 38(22), 4698–4700 (2013).
[Crossref] [PubMed]

B. Ullrich, H. Xi, and J. S. Wang, “Photoluminescence limiting of PbS quantum dots,” Adv. Cond. Mat. Phys. (to be published).

Yazeva, T. V.

Appl. Phys. Lett. (2)

B. Ullrich and J. S. Wang, “All-optical tuning of the Stokes shift in PbS quantum dots,” Appl. Phys. Lett. 102(7), 071905 (2013).
[Crossref]

A. K. Singh, P. Barik, and B. Ullrich, “Magneto-optical controlled transmittance alteration of PbS quantum dots by moderately applied magnetic fields at room temperature,” Appl. Phys. Lett. 105(24), 242410 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

B. Ullrich and R. Schroeder, “Green single- and two-photon gap emission of thin-film CdS formed by infrared pulsed-laser deposition on glass,” IEEE J. Quantum Electron. 37(10), 1363–1367 (2001).
[Crossref]

J. Appl. Phys. (1)

B. Ullrich, H. Xi, and J. S. Wang, “Photoinduced band filling in strongly confined colloidal PbS quantum dots,” J. Appl. Phys. 115(23), 233503 (2014).
[Crossref]

J. Chem. Phys. (1)

L. E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys. 80(9), 4403–4409 (1984).
[Crossref]

J. Lumin. (1)

B. Ullrich and J. S. Wang, “Impact of laser excitation variations on the photoluminescence of PbS quantum dots on GaAs,” J. Lumin. 143, 645–648 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

P. V. Kamat, N. M. Dimitrijevic, and A. J. Nozik, “Dynamic Burstein-Moss shift in semiconductor colloids,” J. Phys. Chem. 93(8), 2873–2875 (1989).
[Crossref]

J. Phys. Chem. C (1)

X. He, I. N. Demchenko, W. C. Stolte, A. van Buuren, and H. Liang, “Synthesis and transformation of Zn-doped PbS quantum dots,” J. Phys. Chem. C 116(41), 22001–22008 (2012).
[Crossref]

Mater. Chem. Phys. (1)

J. S. Wang, B. Ullrich, G. J. Brown, and C. M. Wai, “Morphology and energy transfer in PbS quantum dot arrays formed with supercritical fluid deposition,” Mater. Chem. Phys. 141(1), 195–202 (2013).
[Crossref]

Nat. Commun. (1)

A. Stavrinadis, A. K. Rath, F. P. de Arquer, S. L. Diedenhofen, C. Magén, L. Martinez, D. So, and G. Konstantatos, “Heterovalent cation substitutional doping for quantum dot homojunction solar cells,” Nat. Commun. 4, 2981 (2013), doi:.
[Crossref] [PubMed]

Nat. Phys. (1)

R. D. Schaller, V. M. Agranovich, and V. I. Klimov, “High-effciency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states,” Nat. Phys. 1(3), 189–194 (2005).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

A. Olkhovets, R.-C. Hsu, A. Lipovskii, and F. W. Wise, “Size-dependent temperature variation of the energy gap in lead-salt quantum dots,” Phys. Rev. Lett. 81(16), 3539–3542 (1998).
[Crossref]

R. D. Schaller and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion,” Phys. Rev. Lett. 92(18), 186601 (2004).
[Crossref] [PubMed]

Sci. Rep. (1)

W. K. Koh, A. Y. Koposov, J. T. Stewart, B. N. Pal, I. Robel, J. M. Pietryga, and V. I. Klimov, “Heavily doped n-type PbSe and PbS nanocrystals using ground-state charge transfer from cobaltocene,” Sci. Rep. 3, 2004 (2013), doi:.
[Crossref] [PubMed]

Science (2)

D. Mocatta, G. Cohen, J. Schattner, O. Millo, E. Rabani, and U. Banin, “Heavily doped semiconductor nanocrystal quantum dots,” Science 332(6025), 77–81 (2011).
[Crossref] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

B. Ullrich, R. Schroeder, and H. Sakai, “Intrinsic gap emission and its geometry dependence of thin-film CdS excited by two-photon absorption,” Semicond. Sci. Technol. 16(12), L89–L92 (2001).
[Crossref]

Solid State Commun. (1)

S. Nomura and T. Kobayashi, “Clearly resolved exciton peaks in CdSxSe1-x microcrystallites by modulation spectroscopy,” Solid State Commun. 73(6), 425–429 (1990).
[Crossref]

Sov. Phys. Semicond. (1)

A. L. Efros and A. L. Efros, “Interband absorption of light in a semiconductor sphere,” Sov. Phys. Semicond. 16(7), 772–775 (1982).

Other (5)

J. Auxier, K. Wundke, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “Luminescence and gain around 1.3 µm in PbS quantum dots,” in Conference on Lasers and Electro-Optics, S. Brueck, R. Fields, M. Fejer, and F. Leonberger, eds., OSA Technical Digest (Optical Society of America, 2000), paper CWV2.

T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-Electronics (Wiley, New York, 1973).

The solution’s transmittance in the vial used for the BMS experiments is ~0.90 at 1064 nm.

B. Ullrich, H. Xi, and J. S. Wang, “Photoluminescence limiting of PbS quantum dots,” Adv. Cond. Mat. Phys. (to be published).

B. Ullrich, A. K. Singh, J. S. Wang, and H. Xi, “Colloidal PbS quantum dots on GaAs: Optical properties and Urbach tail slope tuning,” in Nanotechnology for Optics and Sensors, M. Aliofkhazraei, ed. (One Central Press, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 SPL spectra excited at 532 nm. The solid and broken lines represent the measurements in RE and TR geometry, respectively, and the dotted lines are Gaussian fits. The tilted arrow visualizes the photo-dynamic BMS. Four spectra are shown per geometry, excited with the corresponding laser intensities noted to the right.
Fig. 2
Fig. 2 TPL spectra excited at 1064 nm. Lines and arrows have the equivalent meaning as in Fig. 1. The spectra have been corrected by eliminating remainders of the exciting laser emission around 1.17 eV. The corresponding geometries and laser excitation intensities are written to the right.
Fig. 3
Fig. 3 ESPL vs. Iex measured in RE and TR geometry. The symbols represent the experimental results and the solid lines fits using Eq. (1).
Fig. 4
Fig. 4 ETPL vs. Iex measured in RE and TR geometry. Symbols and lines have the equivalent meaning as in Fig. 3.

Tables (1)

Tables Icon

Table 1 Fit parameters used in Eq. (1) and χ2, which expresses the goodness of fit.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E SPL = E 0 +C× I ex 2 3 ,

Metrics