Abstract

Third order optical nonlinear effects relying on the instantaneous Kerr effect are investigated in a straight chalcogenide ridge waveguide. The sample consists of a GeSbSe film deposited on a thermally oxidized silicon substrate. Ridge waveguides were processed using photolithography and dry etching techniques. From a 1.1 cm long integrated GeSbSe device, self-phase modulation with a maximum nonlinear phase shift of 2.02 π for a peak power of 15.8 W and four-wave mixing with an external conversion efficiency of −42.6 dB for a pump power of 28 mW are demonstrated. Experimental results show a good agreement with calculations.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
    [Crossref]
  2. F. Da Ros, M. P. Yankow, E. P. da Saliva, M. Pu, L. Ottaviana, H. Hu, E. Semenova, S. Forchhammer, D. Zibar, M. Galili, K. Yvind, and L. K. Oxenløwe, “Characterization and optimization of a high efficiency AlGaAs-On-Insulator-Based wavelength converter for 64- and 256-QAM signals,” J. Lightwave Technol. 35(17), 3750–3757 (2017).
    [Crossref]
  3. J. Wang, Q. Sun, and J. Sun, “All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing,” Opt. Express 17(15), 12555–12563 (2009).
    [Crossref]
  4. W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing is sub-micron silicon waveguide,” Opt. Express 16(21), 16735–16745 (2008).
    [Crossref]
  5. K. Dolgaleva, P. Sarrafi, P. Kultavewuti, K. M. Awan, N. Feher, J. S. Aitchison, L. Qian, M. Volatier, R. Arès, and V. Aimez, “Tunable four-wave mixing in AlGaAs nanowires,” Opt. Express 23(17), 22477–22493 (2015).
    [Crossref]
  6. M. Pu, H. Hu, L. Ottaviano, E. Semenova, D. Vukovic, L. K. Oxenløwe, and K. Yvind, “Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing,” Laser Photonics Rev. 12(12), 1800111 (2018).
    [Crossref]
  7. S. Serna, H. Lin, C. Alonso-Ramos, C. Lafforgue, X. Le Roux, K. A. Richardson, E. Cassan, N. Durbeuil, J. Hu, and L. Vivien, “Engineering third-order optical nonlinearities in hybrid chalcogenide-on-silicon platform,” Opt. Lett. 44(20), 5009–5012 (2019).
    [Crossref]
  8. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
    [Crossref]
  9. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
    [Crossref]
  10. K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
    [Crossref]
  11. A. S. Kowligy, D. D. Hickstein, A. Lind, D. R. Carlson, H. Timmers, N. Nader, D. L. Maser, D. Westly, K. Srinivasan, S. B. Papp, and S. A. Diddams, “Tunable mid-infrared generation via wide-band four-wave mixing in silicon nitride waveguide,” Opt. Lett. 43(17), 4220 (2018).
    [Crossref]
  12. J. L. Adam and X. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Woodhead Publishing Limited, 2014).
  13. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
    [Crossref]
  14. F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
    [Crossref]
  15. B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
    [Crossref]
  16. S. Dai, F. Chen, Y. Xu, Z. Xu, X. Shen, T. Xu, R. Wang, and W. Ji, “Mid-infrared optical nonlinearities of chalcogenide glasses in Ge-Sb-Se ternary system,” Opt. Express 23(2), 1300–1307 (2015).
    [Crossref]
  17. A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, J. Lemaitre, I. Hardy, F. Faijan, B. Bureau, V. Nazabal, and J. Charrier, “Optical characterization at 7.7 µm of an intergrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared,” Opt. Express 24(20), 23109–23117 (2016).
    [Crossref]
  18. P. Němec, M. Olivier, E. Baudet, A. Kalendová, P. Benda, and V. Nazabal, “Optical properties of (GeSe2)100-x(Sb2Se3)x glasses in near-and middle-infrared spectral regions,” Mater. Res. Bull. 51, 176–179 (2014).
    [Crossref]
  19. E. Baudet, A. Gutierrez-Arroyo, P. Němec, L. Bodiou, J. Lemaitre, O. De Sagazan, H. Lhermitte, E. Rinnert, K. Michel, B. Bureau, J. Charrier, and V. Nazabal, “Selenide sputtered films development for MIR environmental sensor,” Opt. Mater. Express 6(8), 2616–2627 (2016).
    [Crossref]
  20. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007).
    [Crossref]
  21. J. Charrier, M. L. Anne, H. Lhermite, V. Nazabal, J. P. Guin, F. Charpentier, T. Jouan, F. Henrio, D. Bosc, and J. L. Adam, “Sulphide GaxGe25-xSb10S65(x=0,5) sputtered films: Fabrication and optical characterizations of planar and rib optical waveguide,” J. Appl. Phys. 104(7), 073110 (2008).
    [Crossref]
  22. T. Tamir, Guided-wave Optoelectronics26, (Springer, 1988), Chap. 6.
  23. S. D. Le, E. Delcourt, P. Girault, A. Gutierrez-Arroyo, P. Azuelos, N. Lorrain, L. Bodiou, L. Poffo, J. M. Goujon, Y. Dumeige, I. Hardy, P. Rochard, J. Lemaitre, P. Pirasteh, M. Guendouz, T. Chartier, L. Quétel, S. Claudot, J. Charrier, and M. Thual, “Study of optimized coupling based on micro-lensed fibers for fibers and photonic integrated circuits in the framework of telecommunications and sensing applications,” Commun. Phys. 26(4), 325–334 (2017).
    [Crossref]
  24. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1989).
  25. D. M. Nguyen, T. N. Nguyen, T. Chartier, and M. Thual, “Accuracy improvement in the measurement of the non-linear coefficient of optical fibers based on self-phase modulation,” Fiber Integr. Opt. 29(4), 225–238 (2010).
    [Crossref]
  26. T. Kuriakose, E. Baudet, T. Halenkovič, M. R. M. Elsawy, P. Němec, V. Nazabal, G. Renversez, and M. Chauvet, “Measurement of ultrafast optical kerr effect of Ge-Sb-Se chalcogenide slab waveguide by the beam self-trapping technique,” Opt. Commun. 403, 352–357 (2017).
    [Crossref]
  27. S. Spälter, H. Y. Hwang, J. Zimmermann, G. Lenz, T. Katsufuji, S.-W. Cheong, and R. E. Slusher, “Strong self-phase modulation in planar chalcogenide glass waveguides,” Opt. Lett. 27(5), 363–365 (2002).
    [Crossref]
  28. V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
    [Crossref]
  29. J. W. Choi, Z. Han, B. Sohn, G. F. R. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agrawal, and D. T. H. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguide,” Sci. Rep. 6(1), 39234 (2016).
    [Crossref]
  30. Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
    [Crossref]

2019 (1)

2018 (3)

M. Pu, H. Hu, L. Ottaviano, E. Semenova, D. Vukovic, L. K. Oxenløwe, and K. Yvind, “Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing,” Laser Photonics Rev. 12(12), 1800111 (2018).
[Crossref]

A. S. Kowligy, D. D. Hickstein, A. Lind, D. R. Carlson, H. Timmers, N. Nader, D. L. Maser, D. Westly, K. Srinivasan, S. B. Papp, and S. A. Diddams, “Tunable mid-infrared generation via wide-band four-wave mixing in silicon nitride waveguide,” Opt. Lett. 43(17), 4220 (2018).
[Crossref]

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

2017 (4)

S. D. Le, E. Delcourt, P. Girault, A. Gutierrez-Arroyo, P. Azuelos, N. Lorrain, L. Bodiou, L. Poffo, J. M. Goujon, Y. Dumeige, I. Hardy, P. Rochard, J. Lemaitre, P. Pirasteh, M. Guendouz, T. Chartier, L. Quétel, S. Claudot, J. Charrier, and M. Thual, “Study of optimized coupling based on micro-lensed fibers for fibers and photonic integrated circuits in the framework of telecommunications and sensing applications,” Commun. Phys. 26(4), 325–334 (2017).
[Crossref]

T. Kuriakose, E. Baudet, T. Halenkovič, M. R. M. Elsawy, P. Němec, V. Nazabal, G. Renversez, and M. Chauvet, “Measurement of ultrafast optical kerr effect of Ge-Sb-Se chalcogenide slab waveguide by the beam self-trapping technique,” Opt. Commun. 403, 352–357 (2017).
[Crossref]

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref]

F. Da Ros, M. P. Yankow, E. P. da Saliva, M. Pu, L. Ottaviana, H. Hu, E. Semenova, S. Forchhammer, D. Zibar, M. Galili, K. Yvind, and L. K. Oxenløwe, “Characterization and optimization of a high efficiency AlGaAs-On-Insulator-Based wavelength converter for 64- and 256-QAM signals,” J. Lightwave Technol. 35(17), 3750–3757 (2017).
[Crossref]

2016 (3)

2015 (2)

2014 (1)

P. Němec, M. Olivier, E. Baudet, A. Kalendová, P. Benda, and V. Nazabal, “Optical properties of (GeSe2)100-x(Sb2Se3)x glasses in near-and middle-infrared spectral regions,” Mater. Res. Bull. 51, 176–179 (2014).
[Crossref]

2012 (1)

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

2011 (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

2010 (1)

D. M. Nguyen, T. N. Nguyen, T. Chartier, and M. Thual, “Accuracy improvement in the measurement of the non-linear coefficient of optical fibers based on self-phase modulation,” Fiber Integr. Opt. 29(4), 225–238 (2010).
[Crossref]

2009 (3)

2008 (4)

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing is sub-micron silicon waveguide,” Opt. Express 16(21), 16735–16745 (2008).
[Crossref]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

J. Charrier, M. L. Anne, H. Lhermite, V. Nazabal, J. P. Guin, F. Charpentier, T. Jouan, F. Henrio, D. Bosc, and J. L. Adam, “Sulphide GaxGe25-xSb10S65(x=0,5) sputtered films: Fabrication and optical characterizations of planar and rib optical waveguide,” J. Appl. Phys. 104(7), 073110 (2008).
[Crossref]

2007 (1)

2006 (1)

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[Crossref]

2002 (1)

Adam, J. L.

J. Charrier, M. L. Anne, H. Lhermite, V. Nazabal, J. P. Guin, F. Charpentier, T. Jouan, F. Henrio, D. Bosc, and J. L. Adam, “Sulphide GaxGe25-xSb10S65(x=0,5) sputtered films: Fabrication and optical characterizations of planar and rib optical waveguide,” J. Appl. Phys. 104(7), 073110 (2008).
[Crossref]

J. L. Adam and X. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Woodhead Publishing Limited, 2014).

Agarwal, A. M.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref]

Agrawal, A. M.

J. W. Choi, Z. Han, B. Sohn, G. F. R. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agrawal, and D. T. H. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguide,” Sci. Rep. 6(1), 39234 (2016).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1989).

Aimez, V.

Aitchison, J. S.

Alonso-Ramos, C.

Ang, L. K.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref]

Anne, M. L.

J. Charrier, M. L. Anne, H. Lhermite, V. Nazabal, J. P. Guin, F. Charpentier, T. Jouan, F. Henrio, D. Bosc, and J. L. Adam, “Sulphide GaxGe25-xSb10S65(x=0,5) sputtered films: Fabrication and optical characterizations of planar and rib optical waveguide,” J. Appl. Phys. 104(7), 073110 (2008).
[Crossref]

Arès, R.

Awan, K. M.

Azuelos, P.

S. D. Le, E. Delcourt, P. Girault, A. Gutierrez-Arroyo, P. Azuelos, N. Lorrain, L. Bodiou, L. Poffo, J. M. Goujon, Y. Dumeige, I. Hardy, P. Rochard, J. Lemaitre, P. Pirasteh, M. Guendouz, T. Chartier, L. Quétel, S. Claudot, J. Charrier, and M. Thual, “Study of optimized coupling based on micro-lensed fibers for fibers and photonic integrated circuits in the framework of telecommunications and sensing applications,” Commun. Phys. 26(4), 325–334 (2017).
[Crossref]

Baets, R.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Baudet, E.

T. Kuriakose, E. Baudet, T. Halenkovič, M. R. M. Elsawy, P. Němec, V. Nazabal, G. Renversez, and M. Chauvet, “Measurement of ultrafast optical kerr effect of Ge-Sb-Se chalcogenide slab waveguide by the beam self-trapping technique,” Opt. Commun. 403, 352–357 (2017).
[Crossref]

E. Baudet, A. Gutierrez-Arroyo, P. Němec, L. Bodiou, J. Lemaitre, O. De Sagazan, H. Lhermitte, E. Rinnert, K. Michel, B. Bureau, J. Charrier, and V. Nazabal, “Selenide sputtered films development for MIR environmental sensor,” Opt. Mater. Express 6(8), 2616–2627 (2016).
[Crossref]

A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, J. Lemaitre, I. Hardy, F. Faijan, B. Bureau, V. Nazabal, and J. Charrier, “Optical characterization at 7.7 µm of an intergrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared,” Opt. Express 24(20), 23109–23117 (2016).
[Crossref]

P. Němec, M. Olivier, E. Baudet, A. Kalendová, P. Benda, and V. Nazabal, “Optical properties of (GeSe2)100-x(Sb2Se3)x glasses in near-and middle-infrared spectral regions,” Mater. Res. Bull. 51, 176–179 (2014).
[Crossref]

Benda, P.

P. Němec, M. Olivier, E. Baudet, A. Kalendová, P. Benda, and V. Nazabal, “Optical properties of (GeSe2)100-x(Sb2Se3)x glasses in near-and middle-infrared spectral regions,” Mater. Res. Bull. 51, 176–179 (2014).
[Crossref]

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Bodiou, L.

S. D. Le, E. Delcourt, P. Girault, A. Gutierrez-Arroyo, P. Azuelos, N. Lorrain, L. Bodiou, L. Poffo, J. M. Goujon, Y. Dumeige, I. Hardy, P. Rochard, J. Lemaitre, P. Pirasteh, M. Guendouz, T. Chartier, L. Quétel, S. Claudot, J. Charrier, and M. Thual, “Study of optimized coupling based on micro-lensed fibers for fibers and photonic integrated circuits in the framework of telecommunications and sensing applications,” Commun. Phys. 26(4), 325–334 (2017).
[Crossref]

E. Baudet, A. Gutierrez-Arroyo, P. Němec, L. Bodiou, J. Lemaitre, O. De Sagazan, H. Lhermitte, E. Rinnert, K. Michel, B. Bureau, J. Charrier, and V. Nazabal, “Selenide sputtered films development for MIR environmental sensor,” Opt. Mater. Express 6(8), 2616–2627 (2016).
[Crossref]

A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, J. Lemaitre, I. Hardy, F. Faijan, B. Bureau, V. Nazabal, and J. Charrier, “Optical characterization at 7.7 µm of an intergrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared,” Opt. Express 24(20), 23109–23117 (2016).
[Crossref]

Bogaerts, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Bosc, D.

J. Charrier, M. L. Anne, H. Lhermite, V. Nazabal, J. P. Guin, F. Charpentier, T. Jouan, F. Henrio, D. Bosc, and J. L. Adam, “Sulphide GaxGe25-xSb10S65(x=0,5) sputtered films: Fabrication and optical characterizations of planar and rib optical waveguide,” J. Appl. Phys. 104(7), 073110 (2008).
[Crossref]

Bureau, B.

Carlson, D. R.

Cassan, E.

Charpentier, F.

J. Charrier, M. L. Anne, H. Lhermite, V. Nazabal, J. P. Guin, F. Charpentier, T. Jouan, F. Henrio, D. Bosc, and J. L. Adam, “Sulphide GaxGe25-xSb10S65(x=0,5) sputtered films: Fabrication and optical characterizations of planar and rib optical waveguide,” J. Appl. Phys. 104(7), 073110 (2008).
[Crossref]

Charrier, J.

S. D. Le, E. Delcourt, P. Girault, A. Gutierrez-Arroyo, P. Azuelos, N. Lorrain, L. Bodiou, L. Poffo, J. M. Goujon, Y. Dumeige, I. Hardy, P. Rochard, J. Lemaitre, P. Pirasteh, M. Guendouz, T. Chartier, L. Quétel, S. Claudot, J. Charrier, and M. Thual, “Study of optimized coupling based on micro-lensed fibers for fibers and photonic integrated circuits in the framework of telecommunications and sensing applications,” Commun. Phys. 26(4), 325–334 (2017).
[Crossref]

E. Baudet, A. Gutierrez-Arroyo, P. Němec, L. Bodiou, J. Lemaitre, O. De Sagazan, H. Lhermitte, E. Rinnert, K. Michel, B. Bureau, J. Charrier, and V. Nazabal, “Selenide sputtered films development for MIR environmental sensor,” Opt. Mater. Express 6(8), 2616–2627 (2016).
[Crossref]

A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, J. Lemaitre, I. Hardy, F. Faijan, B. Bureau, V. Nazabal, and J. Charrier, “Optical characterization at 7.7 µm of an intergrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared,” Opt. Express 24(20), 23109–23117 (2016).
[Crossref]

J. Charrier, M. L. Anne, H. Lhermite, V. Nazabal, J. P. Guin, F. Charpentier, T. Jouan, F. Henrio, D. Bosc, and J. L. Adam, “Sulphide GaxGe25-xSb10S65(x=0,5) sputtered films: Fabrication and optical characterizations of planar and rib optical waveguide,” J. Appl. Phys. 104(7), 073110 (2008).
[Crossref]

Chartier, T.

S. D. Le, E. Delcourt, P. Girault, A. Gutierrez-Arroyo, P. Azuelos, N. Lorrain, L. Bodiou, L. Poffo, J. M. Goujon, Y. Dumeige, I. Hardy, P. Rochard, J. Lemaitre, P. Pirasteh, M. Guendouz, T. Chartier, L. Quétel, S. Claudot, J. Charrier, and M. Thual, “Study of optimized coupling based on micro-lensed fibers for fibers and photonic integrated circuits in the framework of telecommunications and sensing applications,” Commun. Phys. 26(4), 325–334 (2017).
[Crossref]

D. M. Nguyen, T. N. Nguyen, T. Chartier, and M. Thual, “Accuracy improvement in the measurement of the non-linear coefficient of optical fibers based on self-phase modulation,” Fiber Integr. Opt. 29(4), 225–238 (2010).
[Crossref]

Chauvet, M.

T. Kuriakose, E. Baudet, T. Halenkovič, M. R. M. Elsawy, P. Němec, V. Nazabal, G. Renversez, and M. Chauvet, “Measurement of ultrafast optical kerr effect of Ge-Sb-Se chalcogenide slab waveguide by the beam self-trapping technique,” Opt. Commun. 403, 352–357 (2017).
[Crossref]

Chee, A. K. L.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref]

Chen, F.

Chen, G. F. R.

J. W. Choi, Z. Han, B. Sohn, G. F. R. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agrawal, and D. T. H. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguide,” Sci. Rep. 6(1), 39234 (2016).
[Crossref]

Cheong, S.-W.

Choi, D.

Choi, J. W.

J. W. Choi, Z. Han, B. Sohn, G. F. R. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agrawal, and D. T. H. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguide,” Sci. Rep. 6(1), 39234 (2016).
[Crossref]

Chu, S.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Claudot, S.

S. D. Le, E. Delcourt, P. Girault, A. Gutierrez-Arroyo, P. Azuelos, N. Lorrain, L. Bodiou, L. Poffo, J. M. Goujon, Y. Dumeige, I. Hardy, P. Rochard, J. Lemaitre, P. Pirasteh, M. Guendouz, T. Chartier, L. Quétel, S. Claudot, J. Charrier, and M. Thual, “Study of optimized coupling based on micro-lensed fibers for fibers and photonic integrated circuits in the framework of telecommunications and sensing applications,” Commun. Phys. 26(4), 325–334 (2017).
[Crossref]

Da Ros, F.

da Saliva, E. P.

Dai, S.

De Sagazan, O.

Delcourt, E.

S. D. Le, E. Delcourt, P. Girault, A. Gutierrez-Arroyo, P. Azuelos, N. Lorrain, L. Bodiou, L. Poffo, J. M. Goujon, Y. Dumeige, I. Hardy, P. Rochard, J. Lemaitre, P. Pirasteh, M. Guendouz, T. Chartier, L. Quétel, S. Claudot, J. Charrier, and M. Thual, “Study of optimized coupling based on micro-lensed fibers for fibers and photonic integrated circuits in the framework of telecommunications and sensing applications,” Commun. Phys. 26(4), 325–334 (2017).
[Crossref]

Diddams, S. A.

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Dolgaleva, K.

Du, Q.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Du, T.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Duchesne, D.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Dumeige, Y.

S. D. Le, E. Delcourt, P. Girault, A. Gutierrez-Arroyo, P. Azuelos, N. Lorrain, L. Bodiou, L. Poffo, J. M. Goujon, Y. Dumeige, I. Hardy, P. Rochard, J. Lemaitre, P. Pirasteh, M. Guendouz, T. Chartier, L. Quétel, S. Claudot, J. Charrier, and M. Thual, “Study of optimized coupling based on micro-lensed fibers for fibers and photonic integrated circuits in the framework of telecommunications and sensing applications,” Commun. Phys. 26(4), 325–334 (2017).
[Crossref]

Dumon, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Durbeuil, N.

Eggleton, B. J.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[Crossref]

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[Crossref]

Elsawy, M. R. M.

T. Kuriakose, E. Baudet, T. Halenkovič, M. R. M. Elsawy, P. Němec, V. Nazabal, G. Renversez, and M. Chauvet, “Measurement of ultrafast optical kerr effect of Ge-Sb-Se chalcogenide slab waveguide by the beam self-trapping technique,” Opt. Commun. 403, 352–357 (2017).
[Crossref]

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Faijan, F.

Feher, N.

Ferrera, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Forchhammer, S.

Foster, M. A.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

Freude, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007).
[Crossref]

Fu, L.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[Crossref]

Gaeta, A. L.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

Galili, M.

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

Girault, P.

S. D. Le, E. Delcourt, P. Girault, A. Gutierrez-Arroyo, P. Azuelos, N. Lorrain, L. Bodiou, L. Poffo, J. M. Goujon, Y. Dumeige, I. Hardy, P. Rochard, J. Lemaitre, P. Pirasteh, M. Guendouz, T. Chartier, L. Quétel, S. Claudot, J. Charrier, and M. Thual, “Study of optimized coupling based on micro-lensed fibers for fibers and photonic integrated circuits in the framework of telecommunications and sensing applications,” Commun. Phys. 26(4), 325–334 (2017).
[Crossref]

Goujon, J. M.

S. D. Le, E. Delcourt, P. Girault, A. Gutierrez-Arroyo, P. Azuelos, N. Lorrain, L. Bodiou, L. Poffo, J. M. Goujon, Y. Dumeige, I. Hardy, P. Rochard, J. Lemaitre, P. Pirasteh, M. Guendouz, T. Chartier, L. Quétel, S. Claudot, J. Charrier, and M. Thual, “Study of optimized coupling based on micro-lensed fibers for fibers and photonic integrated circuits in the framework of telecommunications and sensing applications,” Commun. Phys. 26(4), 325–334 (2017).
[Crossref]

Gu, T.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Guendouz, M.

S. D. Le, E. Delcourt, P. Girault, A. Gutierrez-Arroyo, P. Azuelos, N. Lorrain, L. Bodiou, L. Poffo, J. M. Goujon, Y. Dumeige, I. Hardy, P. Rochard, J. Lemaitre, P. Pirasteh, M. Guendouz, T. Chartier, L. Quétel, S. Claudot, J. Charrier, and M. Thual, “Study of optimized coupling based on micro-lensed fibers for fibers and photonic integrated circuits in the framework of telecommunications and sensing applications,” Commun. Phys. 26(4), 325–334 (2017).
[Crossref]

Guin, J. P.

J. Charrier, M. L. Anne, H. Lhermite, V. Nazabal, J. P. Guin, F. Charpentier, T. Jouan, F. Henrio, D. Bosc, and J. L. Adam, “Sulphide GaxGe25-xSb10S65(x=0,5) sputtered films: Fabrication and optical characterizations of planar and rib optical waveguide,” J. Appl. Phys. 104(7), 073110 (2008).
[Crossref]

Gutierrez-Arroyo, A.

S. D. Le, E. Delcourt, P. Girault, A. Gutierrez-Arroyo, P. Azuelos, N. Lorrain, L. Bodiou, L. Poffo, J. M. Goujon, Y. Dumeige, I. Hardy, P. Rochard, J. Lemaitre, P. Pirasteh, M. Guendouz, T. Chartier, L. Quétel, S. Claudot, J. Charrier, and M. Thual, “Study of optimized coupling based on micro-lensed fibers for fibers and photonic integrated circuits in the framework of telecommunications and sensing applications,” Commun. Phys. 26(4), 325–334 (2017).
[Crossref]

E. Baudet, A. Gutierrez-Arroyo, P. Němec, L. Bodiou, J. Lemaitre, O. De Sagazan, H. Lhermitte, E. Rinnert, K. Michel, B. Bureau, J. Charrier, and V. Nazabal, “Selenide sputtered films development for MIR environmental sensor,” Opt. Mater. Express 6(8), 2616–2627 (2016).
[Crossref]

A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, J. Lemaitre, I. Hardy, F. Faijan, B. Bureau, V. Nazabal, and J. Charrier, “Optical characterization at 7.7 µm of an intergrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared,” Opt. Express 24(20), 23109–23117 (2016).
[Crossref]

Halenkovic, T.

T. Kuriakose, E. Baudet, T. Halenkovič, M. R. M. Elsawy, P. Němec, V. Nazabal, G. Renversez, and M. Chauvet, “Measurement of ultrafast optical kerr effect of Ge-Sb-Se chalcogenide slab waveguide by the beam self-trapping technique,” Opt. Commun. 403, 352–357 (2017).
[Crossref]

Han, Z.

J. W. Choi, Z. Han, B. Sohn, G. F. R. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agrawal, and D. T. H. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguide,” Sci. Rep. 6(1), 39234 (2016).
[Crossref]

Hardy, I.

S. D. Le, E. Delcourt, P. Girault, A. Gutierrez-Arroyo, P. Azuelos, N. Lorrain, L. Bodiou, L. Poffo, J. M. Goujon, Y. Dumeige, I. Hardy, P. Rochard, J. Lemaitre, P. Pirasteh, M. Guendouz, T. Chartier, L. Quétel, S. Claudot, J. Charrier, and M. Thual, “Study of optimized coupling based on micro-lensed fibers for fibers and photonic integrated circuits in the framework of telecommunications and sensing applications,” Commun. Phys. 26(4), 325–334 (2017).
[Crossref]

A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, J. Lemaitre, I. Hardy, F. Faijan, B. Bureau, V. Nazabal, and J. Charrier, “Optical characterization at 7.7 µm of an intergrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared,” Opt. Express 24(20), 23109–23117 (2016).
[Crossref]

Henrio, F.

J. Charrier, M. L. Anne, H. Lhermite, V. Nazabal, J. P. Guin, F. Charpentier, T. Jouan, F. Henrio, D. Bosc, and J. L. Adam, “Sulphide GaxGe25-xSb10S65(x=0,5) sputtered films: Fabrication and optical characterizations of planar and rib optical waveguide,” J. Appl. Phys. 104(7), 073110 (2008).
[Crossref]

Hickstein, D. D.

Hu, H.

M. Pu, H. Hu, L. Ottaviano, E. Semenova, D. Vukovic, L. K. Oxenløwe, and K. Yvind, “Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing,” Laser Photonics Rev. 12(12), 1800111 (2018).
[Crossref]

F. Da Ros, M. P. Yankow, E. P. da Saliva, M. Pu, L. Ottaviana, H. Hu, E. Semenova, S. Forchhammer, D. Zibar, M. Galili, K. Yvind, and L. K. Oxenløwe, “Characterization and optimization of a high efficiency AlGaAs-On-Insulator-Based wavelength converter for 64- and 256-QAM signals,” J. Lightwave Technol. 35(17), 3750–3757 (2017).
[Crossref]

Hu, J.

S. Serna, H. Lin, C. Alonso-Ramos, C. Lafforgue, X. Le Roux, K. A. Richardson, E. Cassan, N. Durbeuil, J. Hu, and L. Vivien, “Engineering third-order optical nonlinearities in hybrid chalcogenide-on-silicon platform,” Opt. Lett. 44(20), 5009–5012 (2019).
[Crossref]

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Huang, Y.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Hwang, H. Y.

Jacome, L.

Ji, W.

Jouan, T.

J. Charrier, M. L. Anne, H. Lhermite, V. Nazabal, J. P. Guin, F. Charpentier, T. Jouan, F. Henrio, D. Bosc, and J. L. Adam, “Sulphide GaxGe25-xSb10S65(x=0,5) sputtered films: Fabrication and optical characterizations of planar and rib optical waveguide,” J. Appl. Phys. 104(7), 073110 (2008).
[Crossref]

Kalendová, A.

P. Němec, M. Olivier, E. Baudet, A. Kalendová, P. Benda, and V. Nazabal, “Optical properties of (GeSe2)100-x(Sb2Se3)x glasses in near-and middle-infrared spectral regions,” Mater. Res. Bull. 51, 176–179 (2014).
[Crossref]

Katsufuji, T.

Kimerling, L. C.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref]

J. W. Choi, Z. Han, B. Sohn, G. F. R. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agrawal, and D. T. H. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguide,” Sci. Rep. 6(1), 39234 (2016).
[Crossref]

Koos, C.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007).
[Crossref]

Kowligy, A. S.

Kultavewuti, P.

Kuriakose, T.

T. Kuriakose, E. Baudet, T. Halenkovič, M. R. M. Elsawy, P. Němec, V. Nazabal, G. Renversez, and M. Chauvet, “Measurement of ultrafast optical kerr effect of Ge-Sb-Se chalcogenide slab waveguide by the beam self-trapping technique,” Opt. Commun. 403, 352–357 (2017).
[Crossref]

Lafforgue, C.

Lamont, M. R. E.

Le, S. D.

S. D. Le, E. Delcourt, P. Girault, A. Gutierrez-Arroyo, P. Azuelos, N. Lorrain, L. Bodiou, L. Poffo, J. M. Goujon, Y. Dumeige, I. Hardy, P. Rochard, J. Lemaitre, P. Pirasteh, M. Guendouz, T. Chartier, L. Quétel, S. Claudot, J. Charrier, and M. Thual, “Study of optimized coupling based on micro-lensed fibers for fibers and photonic integrated circuits in the framework of telecommunications and sensing applications,” Commun. Phys. 26(4), 325–334 (2017).
[Crossref]

Le Roux, X.

Lemaitre, J.

S. D. Le, E. Delcourt, P. Girault, A. Gutierrez-Arroyo, P. Azuelos, N. Lorrain, L. Bodiou, L. Poffo, J. M. Goujon, Y. Dumeige, I. Hardy, P. Rochard, J. Lemaitre, P. Pirasteh, M. Guendouz, T. Chartier, L. Quétel, S. Claudot, J. Charrier, and M. Thual, “Study of optimized coupling based on micro-lensed fibers for fibers and photonic integrated circuits in the framework of telecommunications and sensing applications,” Commun. Phys. 26(4), 325–334 (2017).
[Crossref]

E. Baudet, A. Gutierrez-Arroyo, P. Němec, L. Bodiou, J. Lemaitre, O. De Sagazan, H. Lhermitte, E. Rinnert, K. Michel, B. Bureau, J. Charrier, and V. Nazabal, “Selenide sputtered films development for MIR environmental sensor,” Opt. Mater. Express 6(8), 2616–2627 (2016).
[Crossref]

A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, J. Lemaitre, I. Hardy, F. Faijan, B. Bureau, V. Nazabal, and J. Charrier, “Optical characterization at 7.7 µm of an intergrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared,” Opt. Express 24(20), 23109–23117 (2016).
[Crossref]

Lenz, G.

Leuthold, J.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007).
[Crossref]

Lhermite, H.

J. Charrier, M. L. Anne, H. Lhermite, V. Nazabal, J. P. Guin, F. Charpentier, T. Jouan, F. Henrio, D. Bosc, and J. L. Adam, “Sulphide GaxGe25-xSb10S65(x=0,5) sputtered films: Fabrication and optical characterizations of planar and rib optical waveguide,” J. Appl. Phys. 104(7), 073110 (2008).
[Crossref]

Lhermitte, H.

Lin, H.

Lind, A.

Lipson, M.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

Liscidini, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Little, B. E.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Littler, I. C. M.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[Crossref]

Lorrain, N.

S. D. Le, E. Delcourt, P. Girault, A. Gutierrez-Arroyo, P. Azuelos, N. Lorrain, L. Bodiou, L. Poffo, J. M. Goujon, Y. Dumeige, I. Hardy, P. Rochard, J. Lemaitre, P. Pirasteh, M. Guendouz, T. Chartier, L. Quétel, S. Claudot, J. Charrier, and M. Thual, “Study of optimized coupling based on micro-lensed fibers for fibers and photonic integrated circuits in the framework of telecommunications and sensing applications,” Commun. Phys. 26(4), 325–334 (2017).
[Crossref]

Luan, F.

Luo, Z.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Luther-Davies, B.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[Crossref]

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[Crossref]

Madden, S.

Madden, S. J.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

Maser, D. L.

Mathlouthi, W.

Michel, K.

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Morandotti, R.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Moss, D. J.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[Crossref]

Nader, N.

Nazabal, V.

T. Kuriakose, E. Baudet, T. Halenkovič, M. R. M. Elsawy, P. Němec, V. Nazabal, G. Renversez, and M. Chauvet, “Measurement of ultrafast optical kerr effect of Ge-Sb-Se chalcogenide slab waveguide by the beam self-trapping technique,” Opt. Commun. 403, 352–357 (2017).
[Crossref]

E. Baudet, A. Gutierrez-Arroyo, P. Němec, L. Bodiou, J. Lemaitre, O. De Sagazan, H. Lhermitte, E. Rinnert, K. Michel, B. Bureau, J. Charrier, and V. Nazabal, “Selenide sputtered films development for MIR environmental sensor,” Opt. Mater. Express 6(8), 2616–2627 (2016).
[Crossref]

A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, J. Lemaitre, I. Hardy, F. Faijan, B. Bureau, V. Nazabal, and J. Charrier, “Optical characterization at 7.7 µm of an intergrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared,” Opt. Express 24(20), 23109–23117 (2016).
[Crossref]

P. Němec, M. Olivier, E. Baudet, A. Kalendová, P. Benda, and V. Nazabal, “Optical properties of (GeSe2)100-x(Sb2Se3)x glasses in near-and middle-infrared spectral regions,” Mater. Res. Bull. 51, 176–179 (2014).
[Crossref]

J. Charrier, M. L. Anne, H. Lhermite, V. Nazabal, J. P. Guin, F. Charpentier, T. Jouan, F. Henrio, D. Bosc, and J. L. Adam, “Sulphide GaxGe25-xSb10S65(x=0,5) sputtered films: Fabrication and optical characterizations of planar and rib optical waveguide,” J. Appl. Phys. 104(7), 073110 (2008).
[Crossref]

Nemec, P.

T. Kuriakose, E. Baudet, T. Halenkovič, M. R. M. Elsawy, P. Němec, V. Nazabal, G. Renversez, and M. Chauvet, “Measurement of ultrafast optical kerr effect of Ge-Sb-Se chalcogenide slab waveguide by the beam self-trapping technique,” Opt. Commun. 403, 352–357 (2017).
[Crossref]

E. Baudet, A. Gutierrez-Arroyo, P. Němec, L. Bodiou, J. Lemaitre, O. De Sagazan, H. Lhermitte, E. Rinnert, K. Michel, B. Bureau, J. Charrier, and V. Nazabal, “Selenide sputtered films development for MIR environmental sensor,” Opt. Mater. Express 6(8), 2616–2627 (2016).
[Crossref]

P. Němec, M. Olivier, E. Baudet, A. Kalendová, P. Benda, and V. Nazabal, “Optical properties of (GeSe2)100-x(Sb2Se3)x glasses in near-and middle-infrared spectral regions,” Mater. Res. Bull. 51, 176–179 (2014).
[Crossref]

Ng, D. K. T.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref]

Ng, S. K.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref]

Nguyen, D. M.

D. M. Nguyen, T. N. Nguyen, T. Chartier, and M. Thual, “Accuracy improvement in the measurement of the non-linear coefficient of optical fibers based on self-phase modulation,” Fiber Integr. Opt. 29(4), 225–238 (2010).
[Crossref]

Nguyen, T. N.

D. M. Nguyen, T. N. Nguyen, T. Chartier, and M. Thual, “Accuracy improvement in the measurement of the non-linear coefficient of optical fibers based on self-phase modulation,” Fiber Integr. Opt. 29(4), 225–238 (2010).
[Crossref]

Olivier, M.

P. Němec, M. Olivier, E. Baudet, A. Kalendová, P. Benda, and V. Nazabal, “Optical properties of (GeSe2)100-x(Sb2Se3)x glasses in near-and middle-infrared spectral regions,” Mater. Res. Bull. 51, 176–179 (2014).
[Crossref]

Ooi, K. J. A.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref]

Ottaviana, L.

Ottaviano, L.

M. Pu, H. Hu, L. Ottaviano, E. Semenova, D. Vukovic, L. K. Oxenløwe, and K. Yvind, “Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing,” Laser Photonics Rev. 12(12), 1800111 (2018).
[Crossref]

Oxenløwe, L. K.

M. Pu, H. Hu, L. Ottaviano, E. Semenova, D. Vukovic, L. K. Oxenløwe, and K. Yvind, “Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing,” Laser Photonics Rev. 12(12), 1800111 (2018).
[Crossref]

F. Da Ros, M. P. Yankow, E. P. da Saliva, M. Pu, L. Ottaviana, H. Hu, E. Semenova, S. Forchhammer, D. Zibar, M. Galili, K. Yvind, and L. K. Oxenløwe, “Characterization and optimization of a high efficiency AlGaAs-On-Insulator-Based wavelength converter for 64- and 256-QAM signals,” J. Lightwave Technol. 35(17), 3750–3757 (2017).
[Crossref]

Paniccia, M.

Pant, R.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

Papp, S. B.

Pelusi, M. D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[Crossref]

Pirasteh, P.

S. D. Le, E. Delcourt, P. Girault, A. Gutierrez-Arroyo, P. Azuelos, N. Lorrain, L. Bodiou, L. Poffo, J. M. Goujon, Y. Dumeige, I. Hardy, P. Rochard, J. Lemaitre, P. Pirasteh, M. Guendouz, T. Chartier, L. Quétel, S. Claudot, J. Charrier, and M. Thual, “Study of optimized coupling based on micro-lensed fibers for fibers and photonic integrated circuits in the framework of telecommunications and sensing applications,” Commun. Phys. 26(4), 325–334 (2017).
[Crossref]

Poffo, L.

S. D. Le, E. Delcourt, P. Girault, A. Gutierrez-Arroyo, P. Azuelos, N. Lorrain, L. Bodiou, L. Poffo, J. M. Goujon, Y. Dumeige, I. Hardy, P. Rochard, J. Lemaitre, P. Pirasteh, M. Guendouz, T. Chartier, L. Quétel, S. Claudot, J. Charrier, and M. Thual, “Study of optimized coupling based on micro-lensed fibers for fibers and photonic integrated circuits in the framework of telecommunications and sensing applications,” Commun. Phys. 26(4), 325–334 (2017).
[Crossref]

Poulton, C.

Pu, M.

M. Pu, H. Hu, L. Ottaviano, E. Semenova, D. Vukovic, L. K. Oxenløwe, and K. Yvind, “Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing,” Laser Photonics Rev. 12(12), 1800111 (2018).
[Crossref]

F. Da Ros, M. P. Yankow, E. P. da Saliva, M. Pu, L. Ottaviana, H. Hu, E. Semenova, S. Forchhammer, D. Zibar, M. Galili, K. Yvind, and L. K. Oxenløwe, “Characterization and optimization of a high efficiency AlGaAs-On-Insulator-Based wavelength converter for 64- and 256-QAM signals,” J. Lightwave Technol. 35(17), 3750–3757 (2017).
[Crossref]

Qian, L.

Quétel, L.

S. D. Le, E. Delcourt, P. Girault, A. Gutierrez-Arroyo, P. Azuelos, N. Lorrain, L. Bodiou, L. Poffo, J. M. Goujon, Y. Dumeige, I. Hardy, P. Rochard, J. Lemaitre, P. Pirasteh, M. Guendouz, T. Chartier, L. Quétel, S. Claudot, J. Charrier, and M. Thual, “Study of optimized coupling based on micro-lensed fibers for fibers and photonic integrated circuits in the framework of telecommunications and sensing applications,” Commun. Phys. 26(4), 325–334 (2017).
[Crossref]

Razzari, L.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Renversez, G.

T. Kuriakose, E. Baudet, T. Halenkovič, M. R. M. Elsawy, P. Němec, V. Nazabal, G. Renversez, and M. Chauvet, “Measurement of ultrafast optical kerr effect of Ge-Sb-Se chalcogenide slab waveguide by the beam self-trapping technique,” Opt. Commun. 403, 352–357 (2017).
[Crossref]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Richardson, K. A.

S. Serna, H. Lin, C. Alonso-Ramos, C. Lafforgue, X. Le Roux, K. A. Richardson, E. Cassan, N. Durbeuil, J. Hu, and L. Vivien, “Engineering third-order optical nonlinearities in hybrid chalcogenide-on-silicon platform,” Opt. Lett. 44(20), 5009–5012 (2019).
[Crossref]

J. W. Choi, Z. Han, B. Sohn, G. F. R. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agrawal, and D. T. H. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguide,” Sci. Rep. 6(1), 39234 (2016).
[Crossref]

Rinnert, E.

Rochard, P.

S. D. Le, E. Delcourt, P. Girault, A. Gutierrez-Arroyo, P. Azuelos, N. Lorrain, L. Bodiou, L. Poffo, J. M. Goujon, Y. Dumeige, I. Hardy, P. Rochard, J. Lemaitre, P. Pirasteh, M. Guendouz, T. Chartier, L. Quétel, S. Claudot, J. Charrier, and M. Thual, “Study of optimized coupling based on micro-lensed fibers for fibers and photonic integrated circuits in the framework of telecommunications and sensing applications,” Commun. Phys. 26(4), 325–334 (2017).
[Crossref]

Rochette, M.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[Crossref]

Rong, H.

Ruan, Y.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[Crossref]

Salem, R.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

Sarrafi, P.

Schr, J.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

Semenova, E.

M. Pu, H. Hu, L. Ottaviano, E. Semenova, D. Vukovic, L. K. Oxenløwe, and K. Yvind, “Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing,” Laser Photonics Rev. 12(12), 1800111 (2018).
[Crossref]

F. Da Ros, M. P. Yankow, E. P. da Saliva, M. Pu, L. Ottaviana, H. Hu, E. Semenova, S. Forchhammer, D. Zibar, M. Galili, K. Yvind, and L. K. Oxenløwe, “Characterization and optimization of a high efficiency AlGaAs-On-Insulator-Based wavelength converter for 64- and 256-QAM signals,” J. Lightwave Technol. 35(17), 3750–3757 (2017).
[Crossref]

Serna, S.

Shen, X.

Shokooh-Saremi, M.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[Crossref]

Sipe, J. E.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Slusher, R. E.

Smith, C.

J. W. Choi, Z. Han, B. Sohn, G. F. R. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agrawal, and D. T. H. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguide,” Sci. Rep. 6(1), 39234 (2016).
[Crossref]

Sohn, B.

J. W. Choi, Z. Han, B. Sohn, G. F. R. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agrawal, and D. T. H. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguide,” Sci. Rep. 6(1), 39234 (2016).
[Crossref]

Spälter, S.

Srinivasan, K.

Sun, J.

Sun, Q.

Ta’eed, V. G.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[Crossref]

Tamir, T.

T. Tamir, Guided-wave Optoelectronics26, (Springer, 1988), Chap. 6.

Tan, D. T. H.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref]

J. W. Choi, Z. Han, B. Sohn, G. F. R. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agrawal, and D. T. H. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguide,” Sci. Rep. 6(1), 39234 (2016).
[Crossref]

Thual, M.

S. D. Le, E. Delcourt, P. Girault, A. Gutierrez-Arroyo, P. Azuelos, N. Lorrain, L. Bodiou, L. Poffo, J. M. Goujon, Y. Dumeige, I. Hardy, P. Rochard, J. Lemaitre, P. Pirasteh, M. Guendouz, T. Chartier, L. Quétel, S. Claudot, J. Charrier, and M. Thual, “Study of optimized coupling based on micro-lensed fibers for fibers and photonic integrated circuits in the framework of telecommunications and sensing applications,” Commun. Phys. 26(4), 325–334 (2017).
[Crossref]

D. M. Nguyen, T. N. Nguyen, T. Chartier, and M. Thual, “Accuracy improvement in the measurement of the non-linear coefficient of optical fibers based on self-phase modulation,” Fiber Integr. Opt. 29(4), 225–238 (2010).
[Crossref]

Timmers, H.

Turner, A. C.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Vivien, L.

Vo, T. D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

Volatier, M.

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Vukovic, D.

M. Pu, H. Hu, L. Ottaviano, E. Semenova, D. Vukovic, L. K. Oxenløwe, and K. Yvind, “Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing,” Laser Photonics Rev. 12(12), 1800111 (2018).
[Crossref]

Wang, J.

Wang, Q.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref]

Wang, R.

Wang, T.

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref]

Westly, D.

Xu, T.

Xu, Y.

Xu, Z.

Yang, Z.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Yankow, M. P.

Yong Choi, D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

Yvind, K.

M. Pu, H. Hu, L. Ottaviano, E. Semenova, D. Vukovic, L. K. Oxenløwe, and K. Yvind, “Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing,” Laser Photonics Rev. 12(12), 1800111 (2018).
[Crossref]

F. Da Ros, M. P. Yankow, E. P. da Saliva, M. Pu, L. Ottaviana, H. Hu, E. Semenova, S. Forchhammer, D. Zibar, M. Galili, K. Yvind, and L. K. Oxenløwe, “Characterization and optimization of a high efficiency AlGaAs-On-Insulator-Based wavelength converter for 64- and 256-QAM signals,” J. Lightwave Technol. 35(17), 3750–3757 (2017).
[Crossref]

Zhang, W.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Zhang, X.

J. L. Adam and X. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Woodhead Publishing Limited, 2014).

Zhang, Y.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Zhong, H.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Zibar, D.

Zimmermann, J.

Commun. Phys. (1)

S. D. Le, E. Delcourt, P. Girault, A. Gutierrez-Arroyo, P. Azuelos, N. Lorrain, L. Bodiou, L. Poffo, J. M. Goujon, Y. Dumeige, I. Hardy, P. Rochard, J. Lemaitre, P. Pirasteh, M. Guendouz, T. Chartier, L. Quétel, S. Claudot, J. Charrier, and M. Thual, “Study of optimized coupling based on micro-lensed fibers for fibers and photonic integrated circuits in the framework of telecommunications and sensing applications,” Commun. Phys. 26(4), 325–334 (2017).
[Crossref]

Fiber Integr. Opt. (1)

D. M. Nguyen, T. N. Nguyen, T. Chartier, and M. Thual, “Accuracy improvement in the measurement of the non-linear coefficient of optical fibers based on self-phase modulation,” Fiber Integr. Opt. 29(4), 225–238 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[Crossref]

J. Appl. Phys. (1)

J. Charrier, M. L. Anne, H. Lhermite, V. Nazabal, J. P. Guin, F. Charpentier, T. Jouan, F. Henrio, D. Bosc, and J. L. Adam, “Sulphide GaxGe25-xSb10S65(x=0,5) sputtered films: Fabrication and optical characterizations of planar and rib optical waveguide,” J. Appl. Phys. 104(7), 073110 (2008).
[Crossref]

J. Lightwave Technol. (1)

Laser Photonics Rev. (2)

M. Pu, H. Hu, L. Ottaviano, E. Semenova, D. Vukovic, L. K. Oxenløwe, and K. Yvind, “Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing,” Laser Photonics Rev. 12(12), 1800111 (2018).
[Crossref]

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

Mater. Res. Bull. (1)

P. Němec, M. Olivier, E. Baudet, A. Kalendová, P. Benda, and V. Nazabal, “Optical properties of (GeSe2)100-x(Sb2Se3)x glasses in near-and middle-infrared spectral regions,” Mater. Res. Bull. 51, 176–179 (2014).
[Crossref]

Nat. Commun. (1)

K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, and D. T. H. Tan, “Pushing the limits of CMOS optical parametric amplifiers with USRN: Si7N3 above the two-photon absorption edge,” Nat. Commun. 8(1), 13878 (2017).
[Crossref]

Nat. Photonics (4)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[Crossref]

Opt. Commun. (1)

T. Kuriakose, E. Baudet, T. Halenkovič, M. R. M. Elsawy, P. Němec, V. Nazabal, G. Renversez, and M. Chauvet, “Measurement of ultrafast optical kerr effect of Ge-Sb-Se chalcogenide slab waveguide by the beam self-trapping technique,” Opt. Commun. 403, 352–357 (2017).
[Crossref]

Opt. Express (7)

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007).
[Crossref]

W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing is sub-micron silicon waveguide,” Opt. Express 16(21), 16735–16745 (2008).
[Crossref]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[Crossref]

J. Wang, Q. Sun, and J. Sun, “All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing,” Opt. Express 17(15), 12555–12563 (2009).
[Crossref]

S. Dai, F. Chen, Y. Xu, Z. Xu, X. Shen, T. Xu, R. Wang, and W. Ji, “Mid-infrared optical nonlinearities of chalcogenide glasses in Ge-Sb-Se ternary system,” Opt. Express 23(2), 1300–1307 (2015).
[Crossref]

K. Dolgaleva, P. Sarrafi, P. Kultavewuti, K. M. Awan, N. Feher, J. S. Aitchison, L. Qian, M. Volatier, R. Arès, and V. Aimez, “Tunable four-wave mixing in AlGaAs nanowires,” Opt. Express 23(17), 22477–22493 (2015).
[Crossref]

A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, J. Lemaitre, I. Hardy, F. Faijan, B. Bureau, V. Nazabal, and J. Charrier, “Optical characterization at 7.7 µm of an intergrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared,” Opt. Express 24(20), 23109–23117 (2016).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Photonics Res. (1)

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Sci. Rep. (1)

J. W. Choi, Z. Han, B. Sohn, G. F. R. Chen, C. Smith, L. C. Kimerling, K. A. Richardson, A. M. Agrawal, and D. T. H. Tan, “Nonlinear characterization of GeSbS chalcogenide glass waveguide,” Sci. Rep. 6(1), 39234 (2016).
[Crossref]

Other (3)

T. Tamir, Guided-wave Optoelectronics26, (Springer, 1988), Chap. 6.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1989).

J. L. Adam and X. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Woodhead Publishing Limited, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) Schematic and (b) SEM micrograph of the cross-sectional structure of a GeSbSe-based ridge waveguide. (c) Theoretical field distribution of the fundamental TE-mode of the GeSbSe waveguide with a width of 600 nm and height of 400 nm. (d) Effective nonlinear area as a function of the width and the height of the GeSbSe waveguide.
Fig. 2.
Fig. 2. Schematic of the ChG-ridge waveguide fabrication process.
Fig. 3.
Fig. 3. (a) Representation of “S” waveguides with different lengths and (b) corresponding propagation losses measured at wavelength of 1550 nm for GeSbSe ridge waveguides.
Fig. 4.
Fig. 4. Experimental setup used for the characterization of self-phase modulation in GeSbSe ridge waveguide. OSA: optical spectrum analyzer.
Fig. 5.
Fig. 5. Symmetric spectral broadening due to self-phase modulation within a 1.1 cm long GeSbSe ridge waveguide for different input peak power within the waveguide. The solid line represents the experiment and the dotted line is the theory.
Fig. 6.
Fig. 6. The calculated material dispersion of the GeSbSe (Se6) glass (dashed black line) and the simulated group velocity dispersion of the GeSbSe waveguide with a width of 600 nm and height of 400 nm (solid red line).
Fig. 7.
Fig. 7. Nonlinear phase shift versus coupled pump power. The blue line represents the maximum phase shift corresponding to the average ${n_2}$ ($3.2 \times {10^{ - 18}}\; {m^2}/W$) for 7 spectra and the red stars represent the maximum phase shift of each spectrum at a given pump power.
Fig. 8.
Fig. 8. Characterization setup used for the FWM experiments. OBF: optical band-pass filters, PC: polarization controllers, VOA: variable optical attenuator, EDFA: erbium-doped fiber amplifier.
Fig. 9.
Fig. 9. (a) Optical output spectrum measured for a 1.1 cm long GeSbSe ridge waveguide (cross-sectional dimension:$\; 400 \times 600\; n{m^2}$) with a coupled input pump power of $28\; mW$. (b) Measured output FWM conversion efficiency as a function of coupled input pump power for the waveguide of interest, the blue curve corresponds to the theoretical results and the red stars correspond to the experimental results. The phase mismatch was determined for a signal and a pump shifted by 1 nm. The last experimental point corresponds to the damaging point where the power density damaged optically the waveguide.
Fig. 10.
Fig. 10. Measured FWM conversion efficiency as a function of pump-signal wavelength detuning $({\Delta \lambda = {\lambda_s} - {\lambda_p}} )$in GeSbSe ridge waveguide (cross-sectional dimension: $400 \times 600\; n{m^2}$).

Tables (1)

Tables Icon

Table 1. Summary of nonlinear characteristics reported for chalcogenide waveguides.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A e f f , N L = Z 0 2 n c o r e 2 | D t o t { E × H } . e z d x d y | 2 D c o r e | E | 4 d x d y
η F W M = P i , o u t p u t P s , i n p u t
η F W M = ( P p γ L e f f ) 2 sin c 2 ( K L e f f 2 )

Metrics