Abstract

Aluminum-doped zinc oxide (AZO)/Ag/aluminum-doped zinc oxide (AAA) specimens are prepared by varying O2 and N2 flow rates during the AZO deposition to investigate the gas effects on surface morphology, microstructure, conductivity type and optical and electrical properties. The AZO specimens are found to have decreases in grain size and RMS surface roughness (SRq), and an increase in compressive residual stress when the N2 flow rate increases higher than 2.5 sccm. The addition of O2 can contribute a similar tendency to grain size, SRq and residual stress; the grain size and SRq are always comparatively smaller, while the residual stress is higher than that prepared with N2. The grain size and SRq are obtained to be proportional to the AZO thickness, whereas they are inversely proportional to the compressive residual stress of AZO. Specimen D prepared with (N2: 0, O2: 2.5) sccm and having 60-nm AZO thickness possesses the strongest anti-reflection effect of the AAA structure, and therefore impedes the reflection from the Ag interlayer significantly. P-type conductivity is achieved by introducing the N2 into the AZO layers and (N2: 15, O2: 0) sccm is used to achieved the highest carrier concentration (CC) and mobility (Mb), and thus the lowest resistivity (R) of all specimens in this study. Increasing the O2 flow rate leads to decreases in Mb and CC, but can obtain the highest average transmittance ($\overline {\textrm {T}} $) as (N2: 0, O2: 2.5) sccm is applied. The O2 flow rate becomes the dominant factor for the electrical and optical properties and microstructure as AZO films are deposited in the N2 and O2 mixed atmosphere. (N2: 15, O2: 0) sccm is used to achieve the highest CC and the lowest R of the oxide/metal/oxide specimens reported in the literatures.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
AZO/Ag/AZO transparent conductive films: correlation between the structural, electrical, and optical properties and development of an optical model

Astrid Bingel, Olaf Stenzel, Philipp Naujok, Robert Müller, Svetlana Shestaeva, Martin Steglich, Ulrike Schulz, Norbert Kaiser, and Andreas Tünnermann
Opt. Mater. Express 6(10) 3217-3232 (2016)

Effects of sputtering-deposition inclination angle on the IGZO film microstructures, optical properties and photoluminescence

Tse-Chang Li, Chang-Fu Han, Ta-Hsuan Kuan, and Jen-Fin Lin
Opt. Mater. Express 6(2) 343-366 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett. 6(9), 1880–1886 (2006).
    [Crossref]
  2. H. Yao, G. Zheng, P.-C. Hsu, D. Kong, J. J. Cha, W. Li, Z. W. Seh, M. T. McDowell, K. Yan, and Z. Liang, “Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface,” Nat. Commun. 5(1), 3943 (2014).
    [Crossref]
  3. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
    [Crossref]
  4. V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide,” J. Appl. Phys. 83(10), 5447–5451 (1998).
    [Crossref]
  5. C. Yang, X. Li, Y. Gu, W. Yu, X. Gao, and Y. Zhang, “ZnO based oxide system with continuous bandgap modulation from 3.7 to 4.9 eV,” Appl. Phys. Lett. 93(11), 112114 (2008).
    [Crossref]
  6. G. Valle, P. Hammer, S. H. Pulcinelli, and C. V. Santilli, “Transparent and conductive ZnO: Al thin films prepared by sol-gel dip-coating,” J. Eur. Ceram. Soc. 24(6), 1009–1013 (2004).
    [Crossref]
  7. C. Moditswe, C. M. Muiva, and A. Juma, “Highly conductive and transparent Ga-doped ZnO thin films deposited by chemical spray pyrolysis,” Optik 127(20), 8317–8325 (2016).
    [Crossref]
  8. D. Sun, C. Tan, X. Tian, and Y. Huang, “Comparative Study on ZnO Monolayer Doped with Al, Ga and In Atoms as Transparent Electrodes,” Materials 10(7), 703 (2017).
    [Crossref]
  9. B. Nasr, S. Dasgupta, D. Wang, N. Mechau, R. Kruk, and H. Hahn, “Electrical resistivity of nanocrystalline Al-doped zinc oxide films as a function of Al content and the degree of its segregation at the grain boundaries,” J. Appl. Phys. 108(10), 103721 (2010).
    [Crossref]
  10. F. Selim, M. Weber, D. Solodovnikov, and K. Lynn, “Nature of native defects in ZnO,” Phys. Rev. Lett. 99(8), 085502 (2007).
    [Crossref]
  11. M. D. McCluskey and S. Jokela, “Defects in zno,” J. Appl. Phys. 106(7), 071101 (2009).
    [Crossref]
  12. F. Xiu, Z. Yang, L. Mandalapu, D. Zhao, and J. Liu, “Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy,” Appl. Phys. Lett. 87(25), 252102 (2005).
    [Crossref]
  13. B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, and L. Hammarstrom, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
    [Crossref]
  14. H. Lu, P. Zhou, H. Liu, L. Zhang, Y. Yu, Y. Li, and Z. Wang, “Effects of nitrogen and oxygen partial pressure on the structural and optical properties of ZnO: N thin films prepared by magnetron sputtering,” Mater. Lett. 165, 123–126 (2016).
    [Crossref]
  15. R. J. Drese and M. Wuttig, “Stress evolution during growth in direct-current-sputtered zinc oxide films at various oxygen flows,” J. Appl. Phys. 98(7), 073514 (2005).
    [Crossref]
  16. D. Horwat and A. Billard, “Effects of substrate position and oxygen gas flow rate on the properties of ZnO: Al films prepared by reactive co-sputtering,” Thin Solid Films 515(13), 5444–5448 (2007).
    [Crossref]
  17. K. Bhuvana, J. Elanchezhiyan, N. Gopalakrishnan, and T. Balasubramanian, “Codoped (AlN) and monodoped (Al) ZnO thin films grown by RF sputtering: A comparative study,” Appl. Surf. Sci. 255(5), 2026–2029 (2008).
    [Crossref]
  18. H. C. Knoops, B. W. van de Loo, S. Smit, M. V. Ponomarev, J.-W. Weber, K. Sharma, W. M. Kessels, and M. Creatore, “Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales,” J. Vac. Sci. Technol., A 33(2), 021509 (2015).
    [Crossref]
  19. E. Shkondin, O. Takayama, M. A. Panah, P. Liu, P. V. Larsen, M. D. Mar, F. Jensen, and A. Lavrinenko, “Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials,” Opt. Mater. Express 7(5), 1606–1627 (2017).
    [Crossref]
  20. Y. Liu, Q. Li, and H. Shao, “Optical and photoluminescent properties of Al-doped zinc oxide thin films by pulsed laser deposition,” J. Alloys Compd. 485(1-2), 529–531 (2009).
    [Crossref]
  21. J. Leng, Z. Yu, W. Xue, T. Zhang, Y. Jiang, J. Zhang, and D. Zhang, “Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition,” J. Appl. Phys. 108(7), 073109 (2010).
    [Crossref]
  22. K. Ravichandran, K. Subha, A. Manivasaham, M. Sridharan, T. Arun, and C. Ravidhas, “Fabrication of a novel low-cost triple layer system (TaZO/Ag/TaZO) with an enhanced quality factor for transparent electrode applications,” RSC Adv. 6(68), 63314–63324 (2016).
    [Crossref]
  23. N. Ren, J. Zhu, and S. Ban, “Highly transparent conductive ITO/Ag/ITO trilayer films deposited by RF sputtering at room temperature,” AIP Adv. 7(5), 055009 (2017).
    [Crossref]
  24. A. Dhar and T. Alford, “High quality transparent TiO2/Ag/TiO2 composite electrode films deposited on flexible substrate at room temperature by sputtering,” APL Mater. 1(1), 012102 (2013).
    [Crossref]
  25. G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47(9), 4086–4089 (1976).
    [Crossref]
  26. V. Ţucureanu and D. Munteanu, “Enhanced optical properties of YAG: Ce yellow phosphor by modification with gold nanoparticles,” Ceram. Int. 45(6), 7641–7648 (2019).
    [Crossref]
  27. Q. Shi, K. Zhou, M. Dai, H. Hou, S. Lin, C. Wei, and F. Hu, “Room temperature preparation of high performance AZO films by MF sputtering,” Ceram. Int. 39(2), 1135–1141 (2013).
    [Crossref]
  28. S. Park, J. Chang, H. Ko, T. Minegishi, J. Park, I. Im, M. Ito, D. Oh, M. Cho, and T. Yao, “Lattice deformation of ZnO films with high nitrogen concentration,” Appl. Surf. Sci. 254(23), 7972–7975 (2008).
    [Crossref]
  29. R. Amiruddin, S. Devasia, D. Mohammedali, and M. S. Kumar, “Investigation on PN dual acceptor doped p-type ZnO thin films and subsequent growth of pencil-like nanowires,” Semicond. Sci. Technol. 30(3), 035009 (2015).
    [Crossref]
  30. J.-H. Lee and B.-O. Park, “Transparent conducting ZnO: Al, In and Sn thin films deposited by the sol–gel method,” Thin Solid Films 426(1-2), 94–99 (2003).
    [Crossref]
  31. Y. Tao, S. Ma, H. Chen, J. Meng, L. Hou, Y. Jia, and X. Shang, “Effect of the oxygen partial pressure on the microstructure and optical properties of ZnO: Cu films,” Vacuum 85(7), 744–748 (2011).
    [Crossref]
  32. C. R. Gobbiner, M. A. A. Veedu, and D. Kekuda, “Influence of oxygen flow rate on the structural, optical and electrical properties of ZnO films grown by DC magnetron sputtering,” Appl. Phys. A 122(4), 272 (2016).
    [Crossref]
  33. S. Inguva, R. K. Vijayaraghavan, E. McGlynn, and J.-P. Mosnier, “Highly transparent and reproducible nanocrystalline ZnO and AZO thin films grown by room temperature pulsed-laser deposition on flexible Zeonor plastic substrates,” Mater. Res. Express 2(9), 096401 (2015).
    [Crossref]
  34. A. Moridi, H. Ruan, L. Zhang, and M. Liu, “Residual stresses in thin film systems: Effects of lattice mismatch, thermal mismatch and interface dislocations,” Int. J. Solids Struct. 50(22-23), 3562–3569 (2013).
    [Crossref]
  35. L. Schmidt-Mende and J. L. MacManus-Driscoll, “ZnO–nanostructures, defects, and devices,” Mater. Today 10(5), 40–48 (2007).
    [Crossref]
  36. Y. Hu, Y. Chen, Y. Wu, M. Wang, G. Fang, C. He, and S. Wang, “Structural, defect and optical properties of ZnO films grown under various O2/Ar gas ratios,” Appl. Surf. Sci. 255(22), 9279–9284 (2009).
    [Crossref]
  37. I. Sieber, N. Wanderka, I. Urban, I. Dörfel, E. Schierhorn, F. Fenske, and W. Fuhs, “Electron microscopic characterization of reactively sputtered ZnO films with different Al-doping levels,” Thin Solid Films 330(2), 108–113 (1998).
    [Crossref]
  38. S. Yin, M. M. Shirolkar, J. Li, M. Li, X. Song, X. Dong, and H. Wang, “Influences of defects evolvement on the properties of sputtering deposited ZnO: Al films upon hydrogen annealing,” AIP Adv. 6(6), 065020 (2016).
    [Crossref]
  39. H. Song, F. Tian, Q.-M. Hu, L. Vitos, Y. Wang, J. Shen, and N. Chen, “Local lattice distortion in high-entropy alloys,” Phys. Rev. Mater. 1(2), 023404 (2017).
    [Crossref]
  40. G. Wang, Z. Li, S. Lv, M. Li, C. Shi, J. Liao, and C. Chen, “Optical absorption and photoluminescence of Ag interlayer modulated ZnO film in view of their application in Si solar cells,” Ceram. Int. 42(2), 2813–2820 (2016).
    [Crossref]
  41. T. Yang, Z. Zhang, S. Song, Y. Li, M. Lv, Z. Wu, and S. Han, “Structural, optical and electrical properties of AZO/Cu/AZO tri-layer films prepared by radio frequency magnetron sputtering and ion-beam sputtering,” Vacuum 83(2), 257–260 (2008).
    [Crossref]
  42. W.-S. Liu, Y.-H. Liu, W.-K. Chen, and K.-P. Hsueh, “Transparent conductive Ga-doped MgZnO/Ag/Ga-doped MgZnO sandwich structure with improved conductivity and transmittance,” J. Alloys Compd. 564, 105–113 (2013).
    [Crossref]
  43. S. Mohamed, “Effects of Ag layer and ZnO top layer thicknesses on the physical properties of ZnO/Ag/Zno multilayer system,” J. Phys. Chem. Solids 69(10), 2378–2384 (2008).
    [Crossref]
  44. D. Mardare, M. Tasca, M. Delibas, and G. Rusu, “On the structural properties and optical transmittance of TiO2 rf sputtered thin films,” Appl. Surf. Sci. 156(1-4), 200–206 (2000).
    [Crossref]
  45. K. Iwata, P. Fons, A. Yamada, K. Matsubara, and S. Niki, “Nitrogen-induced defects in ZnO: N grown on sapphire substrate by gas source MBE,” J. Cryst. Growth 209(2-3), 526–531 (2000).
    [Crossref]
  46. M. Lalanne, J. Soon, A. Barnabé, L. Presmanes, I. Pasquet, and P. Tailhades, “Preparation and characterization of the defect–conductivity relationship of Ga-doped ZnO thin films deposited by nonreactive radio-frequency–magnetron sputtering,” J. Mater. Res. 25(12), 2407–2414 (2010).
    [Crossref]
  47. H.-W. Ra, R. Khan, J. Kim, B. Kang, K. Bai, and Y. Im, “Effects of surface modification of the individual ZnO nanowire with oxygen plasma treatment,” Mater. Lett. 63(28), 2516–2519 (2009).
    [Crossref]
  48. Y. S. Jung, Y. S. Park, K. H. Kim, and W.-J. Lee, “Properties of AZO/Ag/AZO multilayer thin film deposited on polyethersulfone substrate,” Trans. on Electr. and Electron. Mater. 14(1), 9–11 (2013).
    [Crossref]
  49. H. Lee, S. Lau, Y. Wang, K. Tse, H. Hng, and B. Tay, “Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique,” J. Cryst. Growth 268(3-4), 596–601 (2004).
    [Crossref]
  50. D. B. Potter, M. J. Powell, I. P. Parkin, and C. J. Carmalt, “Aluminium/gallium, indium/gallium, and aluminium/indium co-doped ZnO thin films deposited via aerosol assisted CVD,” J. Mater. Chem. C 6(3), 588–597 (2018).
    [Crossref]
  51. A. Yamamoto, T. Kido, T. Goto, Y. Chen, and T. Yao, “Bandgap renormalization of ZnO epitaxial thin films,” Solid State Commun. 122(1-2), 29–32 (2002).
    [Crossref]
  52. B. Zhang, B. Yao, Y. Li, Z. Zhang, B. Li, C. Shan, D. Zhao, and D. Shen, “Investigation on the formation mechanism of p-type Li–N dual-doped ZnO,” Appl. Phys. Lett. 97(22), 222101 (2010).
    [Crossref]
  53. J. Lu, Z. Ye, L. Wang, J. Huang, and B. Zhao, “Structural, electrical and optical properties of N-doped ZnO films synthesized by SS-CVD,” Mater. Sci. Semicond. Process. 5(6), 491–496 (2002).
    [Crossref]
  54. L. Pauling, The Nature of the Chemical Bond (Cornell University Press, 1960), Vol. 260.
  55. M. D. Kumar, Y. C. Park, and J. Kim, “Impact of thin metal layer on the optical and electrical properties of indium-doped-tin oxide and aluminum-doped-zinc oxide layers,” Superlattices Microstruct. 82, 499–506 (2015).
    [Crossref]
  56. H.-W. Wu and C.-H. Chu, “Structural and optoelectronic properties of AZO/Mo/AZO thin films prepared by rf magnetron sputtering,” Mater. Lett. 105, 65–67 (2013).
    [Crossref]
  57. J. H. Kim, Y.-J. Moon, S.-K. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Al-doped ZnO/Ag/Al-doped ZnO multilayer films with a high figure of merit,” Ceram. Int. 41(10), 14805–14810 (2015).
    [Crossref]
  58. M. G. Varnamkhasti, H. R. Fallah, M. Mostajaboddavati, and A. Hassanzadeh, “Influence of Ag thickness on electrical, optical and structural properties of nanocrystalline MoO3/Ag/ITO multilayer for optoelectronic applications,” Vacuum 86(9), 1318–1322 (2012).
    [Crossref]
  59. J. H. Kim, J. H. Lee, S.-W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Highly flexible ZnO/Ag/ZnO conducting electrode for organic photonic devices,” Ceram. Int. 41(5), 7146–7150 (2015).
    [Crossref]
  60. J. H. Kim, T.-W. Kang, S.-I. Na, Y.-Z. Yoo, and T.-Y. Seong, “ITO-free inverted organic solar cells fabricated with transparent and low resistance ZnO/Ag/ZnO multilayer electrode,” Curr. Appl. Phys. 15(7), 829–832 (2015).
    [Crossref]
  61. Y.-T. Li, C.-F. Han, and J.-F. Lin, “Characterization of the electrical and optical properties for a-IGZO/Ag/a-IGZO triple-layer thin films with different thickness depositions on a curved glass substrate,” Opt. Mater. Express 9(8), 3414–3431 (2019).
    [Crossref]

2019 (2)

2018 (1)

D. B. Potter, M. J. Powell, I. P. Parkin, and C. J. Carmalt, “Aluminium/gallium, indium/gallium, and aluminium/indium co-doped ZnO thin films deposited via aerosol assisted CVD,” J. Mater. Chem. C 6(3), 588–597 (2018).
[Crossref]

2017 (4)

H. Song, F. Tian, Q.-M. Hu, L. Vitos, Y. Wang, J. Shen, and N. Chen, “Local lattice distortion in high-entropy alloys,” Phys. Rev. Mater. 1(2), 023404 (2017).
[Crossref]

N. Ren, J. Zhu, and S. Ban, “Highly transparent conductive ITO/Ag/ITO trilayer films deposited by RF sputtering at room temperature,” AIP Adv. 7(5), 055009 (2017).
[Crossref]

E. Shkondin, O. Takayama, M. A. Panah, P. Liu, P. V. Larsen, M. D. Mar, F. Jensen, and A. Lavrinenko, “Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials,” Opt. Mater. Express 7(5), 1606–1627 (2017).
[Crossref]

D. Sun, C. Tan, X. Tian, and Y. Huang, “Comparative Study on ZnO Monolayer Doped with Al, Ga and In Atoms as Transparent Electrodes,” Materials 10(7), 703 (2017).
[Crossref]

2016 (6)

C. Moditswe, C. M. Muiva, and A. Juma, “Highly conductive and transparent Ga-doped ZnO thin films deposited by chemical spray pyrolysis,” Optik 127(20), 8317–8325 (2016).
[Crossref]

H. Lu, P. Zhou, H. Liu, L. Zhang, Y. Yu, Y. Li, and Z. Wang, “Effects of nitrogen and oxygen partial pressure on the structural and optical properties of ZnO: N thin films prepared by magnetron sputtering,” Mater. Lett. 165, 123–126 (2016).
[Crossref]

K. Ravichandran, K. Subha, A. Manivasaham, M. Sridharan, T. Arun, and C. Ravidhas, “Fabrication of a novel low-cost triple layer system (TaZO/Ag/TaZO) with an enhanced quality factor for transparent electrode applications,” RSC Adv. 6(68), 63314–63324 (2016).
[Crossref]

C. R. Gobbiner, M. A. A. Veedu, and D. Kekuda, “Influence of oxygen flow rate on the structural, optical and electrical properties of ZnO films grown by DC magnetron sputtering,” Appl. Phys. A 122(4), 272 (2016).
[Crossref]

G. Wang, Z. Li, S. Lv, M. Li, C. Shi, J. Liao, and C. Chen, “Optical absorption and photoluminescence of Ag interlayer modulated ZnO film in view of their application in Si solar cells,” Ceram. Int. 42(2), 2813–2820 (2016).
[Crossref]

S. Yin, M. M. Shirolkar, J. Li, M. Li, X. Song, X. Dong, and H. Wang, “Influences of defects evolvement on the properties of sputtering deposited ZnO: Al films upon hydrogen annealing,” AIP Adv. 6(6), 065020 (2016).
[Crossref]

2015 (7)

J. H. Kim, J. H. Lee, S.-W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Highly flexible ZnO/Ag/ZnO conducting electrode for organic photonic devices,” Ceram. Int. 41(5), 7146–7150 (2015).
[Crossref]

J. H. Kim, T.-W. Kang, S.-I. Na, Y.-Z. Yoo, and T.-Y. Seong, “ITO-free inverted organic solar cells fabricated with transparent and low resistance ZnO/Ag/ZnO multilayer electrode,” Curr. Appl. Phys. 15(7), 829–832 (2015).
[Crossref]

M. D. Kumar, Y. C. Park, and J. Kim, “Impact of thin metal layer on the optical and electrical properties of indium-doped-tin oxide and aluminum-doped-zinc oxide layers,” Superlattices Microstruct. 82, 499–506 (2015).
[Crossref]

J. H. Kim, Y.-J. Moon, S.-K. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Al-doped ZnO/Ag/Al-doped ZnO multilayer films with a high figure of merit,” Ceram. Int. 41(10), 14805–14810 (2015).
[Crossref]

S. Inguva, R. K. Vijayaraghavan, E. McGlynn, and J.-P. Mosnier, “Highly transparent and reproducible nanocrystalline ZnO and AZO thin films grown by room temperature pulsed-laser deposition on flexible Zeonor plastic substrates,” Mater. Res. Express 2(9), 096401 (2015).
[Crossref]

R. Amiruddin, S. Devasia, D. Mohammedali, and M. S. Kumar, “Investigation on PN dual acceptor doped p-type ZnO thin films and subsequent growth of pencil-like nanowires,” Semicond. Sci. Technol. 30(3), 035009 (2015).
[Crossref]

H. C. Knoops, B. W. van de Loo, S. Smit, M. V. Ponomarev, J.-W. Weber, K. Sharma, W. M. Kessels, and M. Creatore, “Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales,” J. Vac. Sci. Technol., A 33(2), 021509 (2015).
[Crossref]

2014 (1)

H. Yao, G. Zheng, P.-C. Hsu, D. Kong, J. J. Cha, W. Li, Z. W. Seh, M. T. McDowell, K. Yan, and Z. Liang, “Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface,” Nat. Commun. 5(1), 3943 (2014).
[Crossref]

2013 (6)

A. Moridi, H. Ruan, L. Zhang, and M. Liu, “Residual stresses in thin film systems: Effects of lattice mismatch, thermal mismatch and interface dislocations,” Int. J. Solids Struct. 50(22-23), 3562–3569 (2013).
[Crossref]

A. Dhar and T. Alford, “High quality transparent TiO2/Ag/TiO2 composite electrode films deposited on flexible substrate at room temperature by sputtering,” APL Mater. 1(1), 012102 (2013).
[Crossref]

Q. Shi, K. Zhou, M. Dai, H. Hou, S. Lin, C. Wei, and F. Hu, “Room temperature preparation of high performance AZO films by MF sputtering,” Ceram. Int. 39(2), 1135–1141 (2013).
[Crossref]

H.-W. Wu and C.-H. Chu, “Structural and optoelectronic properties of AZO/Mo/AZO thin films prepared by rf magnetron sputtering,” Mater. Lett. 105, 65–67 (2013).
[Crossref]

W.-S. Liu, Y.-H. Liu, W.-K. Chen, and K.-P. Hsueh, “Transparent conductive Ga-doped MgZnO/Ag/Ga-doped MgZnO sandwich structure with improved conductivity and transmittance,” J. Alloys Compd. 564, 105–113 (2013).
[Crossref]

Y. S. Jung, Y. S. Park, K. H. Kim, and W.-J. Lee, “Properties of AZO/Ag/AZO multilayer thin film deposited on polyethersulfone substrate,” Trans. on Electr. and Electron. Mater. 14(1), 9–11 (2013).
[Crossref]

2012 (2)

M. G. Varnamkhasti, H. R. Fallah, M. Mostajaboddavati, and A. Hassanzadeh, “Influence of Ag thickness on electrical, optical and structural properties of nanocrystalline MoO3/Ag/ITO multilayer for optoelectronic applications,” Vacuum 86(9), 1318–1322 (2012).
[Crossref]

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, and L. Hammarstrom, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref]

2011 (1)

Y. Tao, S. Ma, H. Chen, J. Meng, L. Hou, Y. Jia, and X. Shang, “Effect of the oxygen partial pressure on the microstructure and optical properties of ZnO: Cu films,” Vacuum 85(7), 744–748 (2011).
[Crossref]

2010 (4)

M. Lalanne, J. Soon, A. Barnabé, L. Presmanes, I. Pasquet, and P. Tailhades, “Preparation and characterization of the defect–conductivity relationship of Ga-doped ZnO thin films deposited by nonreactive radio-frequency–magnetron sputtering,” J. Mater. Res. 25(12), 2407–2414 (2010).
[Crossref]

B. Zhang, B. Yao, Y. Li, Z. Zhang, B. Li, C. Shan, D. Zhao, and D. Shen, “Investigation on the formation mechanism of p-type Li–N dual-doped ZnO,” Appl. Phys. Lett. 97(22), 222101 (2010).
[Crossref]

B. Nasr, S. Dasgupta, D. Wang, N. Mechau, R. Kruk, and H. Hahn, “Electrical resistivity of nanocrystalline Al-doped zinc oxide films as a function of Al content and the degree of its segregation at the grain boundaries,” J. Appl. Phys. 108(10), 103721 (2010).
[Crossref]

J. Leng, Z. Yu, W. Xue, T. Zhang, Y. Jiang, J. Zhang, and D. Zhang, “Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition,” J. Appl. Phys. 108(7), 073109 (2010).
[Crossref]

2009 (4)

Y. Liu, Q. Li, and H. Shao, “Optical and photoluminescent properties of Al-doped zinc oxide thin films by pulsed laser deposition,” J. Alloys Compd. 485(1-2), 529–531 (2009).
[Crossref]

Y. Hu, Y. Chen, Y. Wu, M. Wang, G. Fang, C. He, and S. Wang, “Structural, defect and optical properties of ZnO films grown under various O2/Ar gas ratios,” Appl. Surf. Sci. 255(22), 9279–9284 (2009).
[Crossref]

M. D. McCluskey and S. Jokela, “Defects in zno,” J. Appl. Phys. 106(7), 071101 (2009).
[Crossref]

H.-W. Ra, R. Khan, J. Kim, B. Kang, K. Bai, and Y. Im, “Effects of surface modification of the individual ZnO nanowire with oxygen plasma treatment,” Mater. Lett. 63(28), 2516–2519 (2009).
[Crossref]

2008 (5)

T. Yang, Z. Zhang, S. Song, Y. Li, M. Lv, Z. Wu, and S. Han, “Structural, optical and electrical properties of AZO/Cu/AZO tri-layer films prepared by radio frequency magnetron sputtering and ion-beam sputtering,” Vacuum 83(2), 257–260 (2008).
[Crossref]

S. Mohamed, “Effects of Ag layer and ZnO top layer thicknesses on the physical properties of ZnO/Ag/Zno multilayer system,” J. Phys. Chem. Solids 69(10), 2378–2384 (2008).
[Crossref]

K. Bhuvana, J. Elanchezhiyan, N. Gopalakrishnan, and T. Balasubramanian, “Codoped (AlN) and monodoped (Al) ZnO thin films grown by RF sputtering: A comparative study,” Appl. Surf. Sci. 255(5), 2026–2029 (2008).
[Crossref]

C. Yang, X. Li, Y. Gu, W. Yu, X. Gao, and Y. Zhang, “ZnO based oxide system with continuous bandgap modulation from 3.7 to 4.9 eV,” Appl. Phys. Lett. 93(11), 112114 (2008).
[Crossref]

S. Park, J. Chang, H. Ko, T. Minegishi, J. Park, I. Im, M. Ito, D. Oh, M. Cho, and T. Yao, “Lattice deformation of ZnO films with high nitrogen concentration,” Appl. Surf. Sci. 254(23), 7972–7975 (2008).
[Crossref]

2007 (3)

L. Schmidt-Mende and J. L. MacManus-Driscoll, “ZnO–nanostructures, defects, and devices,” Mater. Today 10(5), 40–48 (2007).
[Crossref]

F. Selim, M. Weber, D. Solodovnikov, and K. Lynn, “Nature of native defects in ZnO,” Phys. Rev. Lett. 99(8), 085502 (2007).
[Crossref]

D. Horwat and A. Billard, “Effects of substrate position and oxygen gas flow rate on the properties of ZnO: Al films prepared by reactive co-sputtering,” Thin Solid Films 515(13), 5444–5448 (2007).
[Crossref]

2006 (1)

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett. 6(9), 1880–1886 (2006).
[Crossref]

2005 (2)

F. Xiu, Z. Yang, L. Mandalapu, D. Zhao, and J. Liu, “Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy,” Appl. Phys. Lett. 87(25), 252102 (2005).
[Crossref]

R. J. Drese and M. Wuttig, “Stress evolution during growth in direct-current-sputtered zinc oxide films at various oxygen flows,” J. Appl. Phys. 98(7), 073514 (2005).
[Crossref]

2004 (3)

G. Valle, P. Hammer, S. H. Pulcinelli, and C. V. Santilli, “Transparent and conductive ZnO: Al thin films prepared by sol-gel dip-coating,” J. Eur. Ceram. Soc. 24(6), 1009–1013 (2004).
[Crossref]

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref]

H. Lee, S. Lau, Y. Wang, K. Tse, H. Hng, and B. Tay, “Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique,” J. Cryst. Growth 268(3-4), 596–601 (2004).
[Crossref]

2003 (1)

J.-H. Lee and B.-O. Park, “Transparent conducting ZnO: Al, In and Sn thin films deposited by the sol–gel method,” Thin Solid Films 426(1-2), 94–99 (2003).
[Crossref]

2002 (2)

J. Lu, Z. Ye, L. Wang, J. Huang, and B. Zhao, “Structural, electrical and optical properties of N-doped ZnO films synthesized by SS-CVD,” Mater. Sci. Semicond. Process. 5(6), 491–496 (2002).
[Crossref]

A. Yamamoto, T. Kido, T. Goto, Y. Chen, and T. Yao, “Bandgap renormalization of ZnO epitaxial thin films,” Solid State Commun. 122(1-2), 29–32 (2002).
[Crossref]

2000 (2)

D. Mardare, M. Tasca, M. Delibas, and G. Rusu, “On the structural properties and optical transmittance of TiO2 rf sputtered thin films,” Appl. Surf. Sci. 156(1-4), 200–206 (2000).
[Crossref]

K. Iwata, P. Fons, A. Yamada, K. Matsubara, and S. Niki, “Nitrogen-induced defects in ZnO: N grown on sapphire substrate by gas source MBE,” J. Cryst. Growth 209(2-3), 526–531 (2000).
[Crossref]

1998 (2)

I. Sieber, N. Wanderka, I. Urban, I. Dörfel, E. Schierhorn, F. Fenske, and W. Fuhs, “Electron microscopic characterization of reactively sputtered ZnO films with different Al-doping levels,” Thin Solid Films 330(2), 108–113 (1998).
[Crossref]

V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide,” J. Appl. Phys. 83(10), 5447–5451 (1998).
[Crossref]

1976 (1)

G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47(9), 4086–4089 (1976).
[Crossref]

Alford, T.

A. Dhar and T. Alford, “High quality transparent TiO2/Ag/TiO2 composite electrode films deposited on flexible substrate at room temperature by sputtering,” APL Mater. 1(1), 012102 (2013).
[Crossref]

Amiruddin, R.

R. Amiruddin, S. Devasia, D. Mohammedali, and M. S. Kumar, “Investigation on PN dual acceptor doped p-type ZnO thin films and subsequent growth of pencil-like nanowires,” Semicond. Sci. Technol. 30(3), 035009 (2015).
[Crossref]

Arun, T.

K. Ravichandran, K. Subha, A. Manivasaham, M. Sridharan, T. Arun, and C. Ravidhas, “Fabrication of a novel low-cost triple layer system (TaZO/Ag/TaZO) with an enhanced quality factor for transparent electrode applications,” RSC Adv. 6(68), 63314–63324 (2016).
[Crossref]

Bai, K.

H.-W. Ra, R. Khan, J. Kim, B. Kang, K. Bai, and Y. Im, “Effects of surface modification of the individual ZnO nanowire with oxygen plasma treatment,” Mater. Lett. 63(28), 2516–2519 (2009).
[Crossref]

Balasubramanian, T.

K. Bhuvana, J. Elanchezhiyan, N. Gopalakrishnan, and T. Balasubramanian, “Codoped (AlN) and monodoped (Al) ZnO thin films grown by RF sputtering: A comparative study,” Appl. Surf. Sci. 255(5), 2026–2029 (2008).
[Crossref]

Ban, S.

N. Ren, J. Zhu, and S. Ban, “Highly transparent conductive ITO/Ag/ITO trilayer films deposited by RF sputtering at room temperature,” AIP Adv. 7(5), 055009 (2017).
[Crossref]

Barnabé, A.

M. Lalanne, J. Soon, A. Barnabé, L. Presmanes, I. Pasquet, and P. Tailhades, “Preparation and characterization of the defect–conductivity relationship of Ga-doped ZnO thin films deposited by nonreactive radio-frequency–magnetron sputtering,” J. Mater. Res. 25(12), 2407–2414 (2010).
[Crossref]

Bhuvana, K.

K. Bhuvana, J. Elanchezhiyan, N. Gopalakrishnan, and T. Balasubramanian, “Codoped (AlN) and monodoped (Al) ZnO thin films grown by RF sputtering: A comparative study,” Appl. Surf. Sci. 255(5), 2026–2029 (2008).
[Crossref]

Billard, A.

D. Horwat and A. Billard, “Effects of substrate position and oxygen gas flow rate on the properties of ZnO: Al films prepared by reactive co-sputtering,” Thin Solid Films 515(13), 5444–5448 (2007).
[Crossref]

Blart, E.

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, and L. Hammarstrom, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref]

Boujtita, M.

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, and L. Hammarstrom, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref]

Cario, L.

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, and L. Hammarstrom, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref]

Carmalt, C. J.

D. B. Potter, M. J. Powell, I. P. Parkin, and C. J. Carmalt, “Aluminium/gallium, indium/gallium, and aluminium/indium co-doped ZnO thin films deposited via aerosol assisted CVD,” J. Mater. Chem. C 6(3), 588–597 (2018).
[Crossref]

Cha, J. J.

H. Yao, G. Zheng, P.-C. Hsu, D. Kong, J. J. Cha, W. Li, Z. W. Seh, M. T. McDowell, K. Yan, and Z. Liang, “Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface,” Nat. Commun. 5(1), 3943 (2014).
[Crossref]

Chang, J.

S. Park, J. Chang, H. Ko, T. Minegishi, J. Park, I. Im, M. Ito, D. Oh, M. Cho, and T. Yao, “Lattice deformation of ZnO films with high nitrogen concentration,” Appl. Surf. Sci. 254(23), 7972–7975 (2008).
[Crossref]

Chavillon, B.

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, and L. Hammarstrom, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref]

Chen, C.

G. Wang, Z. Li, S. Lv, M. Li, C. Shi, J. Liao, and C. Chen, “Optical absorption and photoluminescence of Ag interlayer modulated ZnO film in view of their application in Si solar cells,” Ceram. Int. 42(2), 2813–2820 (2016).
[Crossref]

Chen, H.

Y. Tao, S. Ma, H. Chen, J. Meng, L. Hou, Y. Jia, and X. Shang, “Effect of the oxygen partial pressure on the microstructure and optical properties of ZnO: Cu films,” Vacuum 85(7), 744–748 (2011).
[Crossref]

Chen, N.

H. Song, F. Tian, Q.-M. Hu, L. Vitos, Y. Wang, J. Shen, and N. Chen, “Local lattice distortion in high-entropy alloys,” Phys. Rev. Mater. 1(2), 023404 (2017).
[Crossref]

Chen, W.-K.

W.-S. Liu, Y.-H. Liu, W.-K. Chen, and K.-P. Hsueh, “Transparent conductive Ga-doped MgZnO/Ag/Ga-doped MgZnO sandwich structure with improved conductivity and transmittance,” J. Alloys Compd. 564, 105–113 (2013).
[Crossref]

Chen, Y.

Y. Hu, Y. Chen, Y. Wu, M. Wang, G. Fang, C. He, and S. Wang, “Structural, defect and optical properties of ZnO films grown under various O2/Ar gas ratios,” Appl. Surf. Sci. 255(22), 9279–9284 (2009).
[Crossref]

A. Yamamoto, T. Kido, T. Goto, Y. Chen, and T. Yao, “Bandgap renormalization of ZnO epitaxial thin films,” Solid State Commun. 122(1-2), 29–32 (2002).
[Crossref]

Cheviré, F.

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, and L. Hammarstrom, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref]

Cho, M.

S. Park, J. Chang, H. Ko, T. Minegishi, J. Park, I. Im, M. Ito, D. Oh, M. Cho, and T. Yao, “Lattice deformation of ZnO films with high nitrogen concentration,” Appl. Surf. Sci. 254(23), 7972–7975 (2008).
[Crossref]

Chu, C.-H.

H.-W. Wu and C.-H. Chu, “Structural and optoelectronic properties of AZO/Mo/AZO thin films prepared by rf magnetron sputtering,” Mater. Lett. 105, 65–67 (2013).
[Crossref]

Clarke, D. R.

V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide,” J. Appl. Phys. 83(10), 5447–5451 (1998).
[Crossref]

Creatore, M.

H. C. Knoops, B. W. van de Loo, S. Smit, M. V. Ponomarev, J.-W. Weber, K. Sharma, W. M. Kessels, and M. Creatore, “Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales,” J. Vac. Sci. Technol., A 33(2), 021509 (2015).
[Crossref]

Dai, M.

Q. Shi, K. Zhou, M. Dai, H. Hou, S. Lin, C. Wei, and F. Hu, “Room temperature preparation of high performance AZO films by MF sputtering,” Ceram. Int. 39(2), 1135–1141 (2013).
[Crossref]

Dasgupta, S.

B. Nasr, S. Dasgupta, D. Wang, N. Mechau, R. Kruk, and H. Hahn, “Electrical resistivity of nanocrystalline Al-doped zinc oxide films as a function of Al content and the degree of its segregation at the grain boundaries,” J. Appl. Phys. 108(10), 103721 (2010).
[Crossref]

Delibas, M.

D. Mardare, M. Tasca, M. Delibas, and G. Rusu, “On the structural properties and optical transmittance of TiO2 rf sputtered thin films,” Appl. Surf. Sci. 156(1-4), 200–206 (2000).
[Crossref]

Devasia, S.

R. Amiruddin, S. Devasia, D. Mohammedali, and M. S. Kumar, “Investigation on PN dual acceptor doped p-type ZnO thin films and subsequent growth of pencil-like nanowires,” Semicond. Sci. Technol. 30(3), 035009 (2015).
[Crossref]

Dhar, A.

A. Dhar and T. Alford, “High quality transparent TiO2/Ag/TiO2 composite electrode films deposited on flexible substrate at room temperature by sputtering,” APL Mater. 1(1), 012102 (2013).
[Crossref]

Dong, X.

S. Yin, M. M. Shirolkar, J. Li, M. Li, X. Song, X. Dong, and H. Wang, “Influences of defects evolvement on the properties of sputtering deposited ZnO: Al films upon hydrogen annealing,” AIP Adv. 6(6), 065020 (2016).
[Crossref]

Dörfel, I.

I. Sieber, N. Wanderka, I. Urban, I. Dörfel, E. Schierhorn, F. Fenske, and W. Fuhs, “Electron microscopic characterization of reactively sputtered ZnO films with different Al-doping levels,” Thin Solid Films 330(2), 108–113 (1998).
[Crossref]

Drese, R. J.

R. J. Drese and M. Wuttig, “Stress evolution during growth in direct-current-sputtered zinc oxide films at various oxygen flows,” J. Appl. Phys. 98(7), 073514 (2005).
[Crossref]

Elanchezhiyan, J.

K. Bhuvana, J. Elanchezhiyan, N. Gopalakrishnan, and T. Balasubramanian, “Codoped (AlN) and monodoped (Al) ZnO thin films grown by RF sputtering: A comparative study,” Appl. Surf. Sci. 255(5), 2026–2029 (2008).
[Crossref]

Fallah, H. R.

M. G. Varnamkhasti, H. R. Fallah, M. Mostajaboddavati, and A. Hassanzadeh, “Influence of Ag thickness on electrical, optical and structural properties of nanocrystalline MoO3/Ag/ITO multilayer for optoelectronic applications,” Vacuum 86(9), 1318–1322 (2012).
[Crossref]

Fang, G.

Y. Hu, Y. Chen, Y. Wu, M. Wang, G. Fang, C. He, and S. Wang, “Structural, defect and optical properties of ZnO films grown under various O2/Ar gas ratios,” Appl. Surf. Sci. 255(22), 9279–9284 (2009).
[Crossref]

Fenske, F.

I. Sieber, N. Wanderka, I. Urban, I. Dörfel, E. Schierhorn, F. Fenske, and W. Fuhs, “Electron microscopic characterization of reactively sputtered ZnO films with different Al-doping levels,” Thin Solid Films 330(2), 108–113 (1998).
[Crossref]

Fons, P.

K. Iwata, P. Fons, A. Yamada, K. Matsubara, and S. Niki, “Nitrogen-induced defects in ZnO: N grown on sapphire substrate by gas source MBE,” J. Cryst. Growth 209(2-3), 526–531 (2000).
[Crossref]

Fuhs, W.

I. Sieber, N. Wanderka, I. Urban, I. Dörfel, E. Schierhorn, F. Fenske, and W. Fuhs, “Electron microscopic characterization of reactively sputtered ZnO films with different Al-doping levels,” Thin Solid Films 330(2), 108–113 (1998).
[Crossref]

Gao, X.

C. Yang, X. Li, Y. Gu, W. Yu, X. Gao, and Y. Zhang, “ZnO based oxide system with continuous bandgap modulation from 3.7 to 4.9 eV,” Appl. Phys. Lett. 93(11), 112114 (2008).
[Crossref]

Gobbiner, C. R.

C. R. Gobbiner, M. A. A. Veedu, and D. Kekuda, “Influence of oxygen flow rate on the structural, optical and electrical properties of ZnO films grown by DC magnetron sputtering,” Appl. Phys. A 122(4), 272 (2016).
[Crossref]

Gopalakrishnan, N.

K. Bhuvana, J. Elanchezhiyan, N. Gopalakrishnan, and T. Balasubramanian, “Codoped (AlN) and monodoped (Al) ZnO thin films grown by RF sputtering: A comparative study,” Appl. Surf. Sci. 255(5), 2026–2029 (2008).
[Crossref]

Goto, T.

A. Yamamoto, T. Kido, T. Goto, Y. Chen, and T. Yao, “Bandgap renormalization of ZnO epitaxial thin films,” Solid State Commun. 122(1-2), 29–32 (2002).
[Crossref]

Gu, Y.

C. Yang, X. Li, Y. Gu, W. Yu, X. Gao, and Y. Zhang, “ZnO based oxide system with continuous bandgap modulation from 3.7 to 4.9 eV,” Appl. Phys. Lett. 93(11), 112114 (2008).
[Crossref]

Haacke, G.

G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47(9), 4086–4089 (1976).
[Crossref]

Hahn, H.

B. Nasr, S. Dasgupta, D. Wang, N. Mechau, R. Kruk, and H. Hahn, “Electrical resistivity of nanocrystalline Al-doped zinc oxide films as a function of Al content and the degree of its segregation at the grain boundaries,” J. Appl. Phys. 108(10), 103721 (2010).
[Crossref]

Hammarstrom, L.

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, and L. Hammarstrom, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref]

Hammer, P.

G. Valle, P. Hammer, S. H. Pulcinelli, and C. V. Santilli, “Transparent and conductive ZnO: Al thin films prepared by sol-gel dip-coating,” J. Eur. Ceram. Soc. 24(6), 1009–1013 (2004).
[Crossref]

Han, C.-F.

Han, S.

T. Yang, Z. Zhang, S. Song, Y. Li, M. Lv, Z. Wu, and S. Han, “Structural, optical and electrical properties of AZO/Cu/AZO tri-layer films prepared by radio frequency magnetron sputtering and ion-beam sputtering,” Vacuum 83(2), 257–260 (2008).
[Crossref]

Hassanzadeh, A.

M. G. Varnamkhasti, H. R. Fallah, M. Mostajaboddavati, and A. Hassanzadeh, “Influence of Ag thickness on electrical, optical and structural properties of nanocrystalline MoO3/Ag/ITO multilayer for optoelectronic applications,” Vacuum 86(9), 1318–1322 (2012).
[Crossref]

He, C.

Y. Hu, Y. Chen, Y. Wu, M. Wang, G. Fang, C. He, and S. Wang, “Structural, defect and optical properties of ZnO films grown under various O2/Ar gas ratios,” Appl. Surf. Sci. 255(22), 9279–9284 (2009).
[Crossref]

Hirano, M.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref]

Hng, H.

H. Lee, S. Lau, Y. Wang, K. Tse, H. Hng, and B. Tay, “Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique,” J. Cryst. Growth 268(3-4), 596–601 (2004).
[Crossref]

Horwat, D.

D. Horwat and A. Billard, “Effects of substrate position and oxygen gas flow rate on the properties of ZnO: Al films prepared by reactive co-sputtering,” Thin Solid Films 515(13), 5444–5448 (2007).
[Crossref]

Hosono, H.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref]

Hou, H.

Q. Shi, K. Zhou, M. Dai, H. Hou, S. Lin, C. Wei, and F. Hu, “Room temperature preparation of high performance AZO films by MF sputtering,” Ceram. Int. 39(2), 1135–1141 (2013).
[Crossref]

Hou, L.

Y. Tao, S. Ma, H. Chen, J. Meng, L. Hou, Y. Jia, and X. Shang, “Effect of the oxygen partial pressure on the microstructure and optical properties of ZnO: Cu films,” Vacuum 85(7), 744–748 (2011).
[Crossref]

Hsu, P.-C.

H. Yao, G. Zheng, P.-C. Hsu, D. Kong, J. J. Cha, W. Li, Z. W. Seh, M. T. McDowell, K. Yan, and Z. Liang, “Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface,” Nat. Commun. 5(1), 3943 (2014).
[Crossref]

Hsueh, K.-P.

W.-S. Liu, Y.-H. Liu, W.-K. Chen, and K.-P. Hsueh, “Transparent conductive Ga-doped MgZnO/Ag/Ga-doped MgZnO sandwich structure with improved conductivity and transmittance,” J. Alloys Compd. 564, 105–113 (2013).
[Crossref]

Hu, F.

Q. Shi, K. Zhou, M. Dai, H. Hou, S. Lin, C. Wei, and F. Hu, “Room temperature preparation of high performance AZO films by MF sputtering,” Ceram. Int. 39(2), 1135–1141 (2013).
[Crossref]

Hu, Q.-M.

H. Song, F. Tian, Q.-M. Hu, L. Vitos, Y. Wang, J. Shen, and N. Chen, “Local lattice distortion in high-entropy alloys,” Phys. Rev. Mater. 1(2), 023404 (2017).
[Crossref]

Hu, Y.

Y. Hu, Y. Chen, Y. Wu, M. Wang, G. Fang, C. He, and S. Wang, “Structural, defect and optical properties of ZnO films grown under various O2/Ar gas ratios,” Appl. Surf. Sci. 255(22), 9279–9284 (2009).
[Crossref]

Huang, J.

J. Lu, Z. Ye, L. Wang, J. Huang, and B. Zhao, “Structural, electrical and optical properties of N-doped ZnO films synthesized by SS-CVD,” Mater. Sci. Semicond. Process. 5(6), 491–496 (2002).
[Crossref]

Huang, Y.

D. Sun, C. Tan, X. Tian, and Y. Huang, “Comparative Study on ZnO Monolayer Doped with Al, Ga and In Atoms as Transparent Electrodes,” Materials 10(7), 703 (2017).
[Crossref]

Im, I.

S. Park, J. Chang, H. Ko, T. Minegishi, J. Park, I. Im, M. Ito, D. Oh, M. Cho, and T. Yao, “Lattice deformation of ZnO films with high nitrogen concentration,” Appl. Surf. Sci. 254(23), 7972–7975 (2008).
[Crossref]

Im, Y.

H.-W. Ra, R. Khan, J. Kim, B. Kang, K. Bai, and Y. Im, “Effects of surface modification of the individual ZnO nanowire with oxygen plasma treatment,” Mater. Lett. 63(28), 2516–2519 (2009).
[Crossref]

Inguva, S.

S. Inguva, R. K. Vijayaraghavan, E. McGlynn, and J.-P. Mosnier, “Highly transparent and reproducible nanocrystalline ZnO and AZO thin films grown by room temperature pulsed-laser deposition on flexible Zeonor plastic substrates,” Mater. Res. Express 2(9), 096401 (2015).
[Crossref]

Ito, M.

S. Park, J. Chang, H. Ko, T. Minegishi, J. Park, I. Im, M. Ito, D. Oh, M. Cho, and T. Yao, “Lattice deformation of ZnO films with high nitrogen concentration,” Appl. Surf. Sci. 254(23), 7972–7975 (2008).
[Crossref]

Iwata, K.

K. Iwata, P. Fons, A. Yamada, K. Matsubara, and S. Niki, “Nitrogen-induced defects in ZnO: N grown on sapphire substrate by gas source MBE,” J. Cryst. Growth 209(2-3), 526–531 (2000).
[Crossref]

Jensen, F.

Jia, Y.

Y. Tao, S. Ma, H. Chen, J. Meng, L. Hou, Y. Jia, and X. Shang, “Effect of the oxygen partial pressure on the microstructure and optical properties of ZnO: Cu films,” Vacuum 85(7), 744–748 (2011).
[Crossref]

Jiang, Y.

J. Leng, Z. Yu, W. Xue, T. Zhang, Y. Jiang, J. Zhang, and D. Zhang, “Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition,” J. Appl. Phys. 108(7), 073109 (2010).
[Crossref]

Jokela, S.

M. D. McCluskey and S. Jokela, “Defects in zno,” J. Appl. Phys. 106(7), 071101 (2009).
[Crossref]

Juma, A.

C. Moditswe, C. M. Muiva, and A. Juma, “Highly conductive and transparent Ga-doped ZnO thin films deposited by chemical spray pyrolysis,” Optik 127(20), 8317–8325 (2016).
[Crossref]

Jung, Y. S.

Y. S. Jung, Y. S. Park, K. H. Kim, and W.-J. Lee, “Properties of AZO/Ag/AZO multilayer thin film deposited on polyethersulfone substrate,” Trans. on Electr. and Electron. Mater. 14(1), 9–11 (2013).
[Crossref]

Kamiya, T.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref]

Kang, B.

H.-W. Ra, R. Khan, J. Kim, B. Kang, K. Bai, and Y. Im, “Effects of surface modification of the individual ZnO nanowire with oxygen plasma treatment,” Mater. Lett. 63(28), 2516–2519 (2009).
[Crossref]

Kang, T.-W.

J. H. Kim, T.-W. Kang, S.-I. Na, Y.-Z. Yoo, and T.-Y. Seong, “ITO-free inverted organic solar cells fabricated with transparent and low resistance ZnO/Ag/ZnO multilayer electrode,” Curr. Appl. Phys. 15(7), 829–832 (2015).
[Crossref]

Kekuda, D.

C. R. Gobbiner, M. A. A. Veedu, and D. Kekuda, “Influence of oxygen flow rate on the structural, optical and electrical properties of ZnO films grown by DC magnetron sputtering,” Appl. Phys. A 122(4), 272 (2016).
[Crossref]

Kessels, W. M.

H. C. Knoops, B. W. van de Loo, S. Smit, M. V. Ponomarev, J.-W. Weber, K. Sharma, W. M. Kessels, and M. Creatore, “Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales,” J. Vac. Sci. Technol., A 33(2), 021509 (2015).
[Crossref]

Khan, R.

H.-W. Ra, R. Khan, J. Kim, B. Kang, K. Bai, and Y. Im, “Effects of surface modification of the individual ZnO nanowire with oxygen plasma treatment,” Mater. Lett. 63(28), 2516–2519 (2009).
[Crossref]

Kido, T.

A. Yamamoto, T. Kido, T. Goto, Y. Chen, and T. Yao, “Bandgap renormalization of ZnO epitaxial thin films,” Solid State Commun. 122(1-2), 29–32 (2002).
[Crossref]

Kim, J.

M. D. Kumar, Y. C. Park, and J. Kim, “Impact of thin metal layer on the optical and electrical properties of indium-doped-tin oxide and aluminum-doped-zinc oxide layers,” Superlattices Microstruct. 82, 499–506 (2015).
[Crossref]

H.-W. Ra, R. Khan, J. Kim, B. Kang, K. Bai, and Y. Im, “Effects of surface modification of the individual ZnO nanowire with oxygen plasma treatment,” Mater. Lett. 63(28), 2516–2519 (2009).
[Crossref]

Kim, J. H.

J. H. Kim, Y.-J. Moon, S.-K. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Al-doped ZnO/Ag/Al-doped ZnO multilayer films with a high figure of merit,” Ceram. Int. 41(10), 14805–14810 (2015).
[Crossref]

J. H. Kim, J. H. Lee, S.-W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Highly flexible ZnO/Ag/ZnO conducting electrode for organic photonic devices,” Ceram. Int. 41(5), 7146–7150 (2015).
[Crossref]

J. H. Kim, T.-W. Kang, S.-I. Na, Y.-Z. Yoo, and T.-Y. Seong, “ITO-free inverted organic solar cells fabricated with transparent and low resistance ZnO/Ag/ZnO multilayer electrode,” Curr. Appl. Phys. 15(7), 829–832 (2015).
[Crossref]

Kim, K. H.

Y. S. Jung, Y. S. Park, K. H. Kim, and W.-J. Lee, “Properties of AZO/Ag/AZO multilayer thin film deposited on polyethersulfone substrate,” Trans. on Electr. and Electron. Mater. 14(1), 9–11 (2013).
[Crossref]

Kim, S.-K.

J. H. Kim, Y.-J. Moon, S.-K. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Al-doped ZnO/Ag/Al-doped ZnO multilayer films with a high figure of merit,” Ceram. Int. 41(10), 14805–14810 (2015).
[Crossref]

Kim, S.-W.

J. H. Kim, J. H. Lee, S.-W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Highly flexible ZnO/Ag/ZnO conducting electrode for organic photonic devices,” Ceram. Int. 41(5), 7146–7150 (2015).
[Crossref]

Knoops, H. C.

H. C. Knoops, B. W. van de Loo, S. Smit, M. V. Ponomarev, J.-W. Weber, K. Sharma, W. M. Kessels, and M. Creatore, “Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales,” J. Vac. Sci. Technol., A 33(2), 021509 (2015).
[Crossref]

Ko, H.

S. Park, J. Chang, H. Ko, T. Minegishi, J. Park, I. Im, M. Ito, D. Oh, M. Cho, and T. Yao, “Lattice deformation of ZnO films with high nitrogen concentration,” Appl. Surf. Sci. 254(23), 7972–7975 (2008).
[Crossref]

Kong, D.

H. Yao, G. Zheng, P.-C. Hsu, D. Kong, J. J. Cha, W. Li, Z. W. Seh, M. T. McDowell, K. Yan, and Z. Liang, “Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface,” Nat. Commun. 5(1), 3943 (2014).
[Crossref]

Kruk, R.

B. Nasr, S. Dasgupta, D. Wang, N. Mechau, R. Kruk, and H. Hahn, “Electrical resistivity of nanocrystalline Al-doped zinc oxide films as a function of Al content and the degree of its segregation at the grain boundaries,” J. Appl. Phys. 108(10), 103721 (2010).
[Crossref]

Kumar, M. D.

M. D. Kumar, Y. C. Park, and J. Kim, “Impact of thin metal layer on the optical and electrical properties of indium-doped-tin oxide and aluminum-doped-zinc oxide layers,” Superlattices Microstruct. 82, 499–506 (2015).
[Crossref]

Kumar, M. S.

R. Amiruddin, S. Devasia, D. Mohammedali, and M. S. Kumar, “Investigation on PN dual acceptor doped p-type ZnO thin films and subsequent growth of pencil-like nanowires,” Semicond. Sci. Technol. 30(3), 035009 (2015).
[Crossref]

Lalanne, M.

M. Lalanne, J. Soon, A. Barnabé, L. Presmanes, I. Pasquet, and P. Tailhades, “Preparation and characterization of the defect–conductivity relationship of Ga-doped ZnO thin films deposited by nonreactive radio-frequency–magnetron sputtering,” J. Mater. Res. 25(12), 2407–2414 (2010).
[Crossref]

Larsen, P. V.

Lau, S.

H. Lee, S. Lau, Y. Wang, K. Tse, H. Hng, and B. Tay, “Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique,” J. Cryst. Growth 268(3-4), 596–601 (2004).
[Crossref]

Lavrinenko, A.

Lee, H.

H. Lee, S. Lau, Y. Wang, K. Tse, H. Hng, and B. Tay, “Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique,” J. Cryst. Growth 268(3-4), 596–601 (2004).
[Crossref]

Lee, J. H.

J. H. Kim, J. H. Lee, S.-W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Highly flexible ZnO/Ag/ZnO conducting electrode for organic photonic devices,” Ceram. Int. 41(5), 7146–7150 (2015).
[Crossref]

Lee, J.-H.

J.-H. Lee and B.-O. Park, “Transparent conducting ZnO: Al, In and Sn thin films deposited by the sol–gel method,” Thin Solid Films 426(1-2), 94–99 (2003).
[Crossref]

Lee, W.-J.

Y. S. Jung, Y. S. Park, K. H. Kim, and W.-J. Lee, “Properties of AZO/Ag/AZO multilayer thin film deposited on polyethersulfone substrate,” Trans. on Electr. and Electron. Mater. 14(1), 9–11 (2013).
[Crossref]

Leng, J.

J. Leng, Z. Yu, W. Xue, T. Zhang, Y. Jiang, J. Zhang, and D. Zhang, “Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition,” J. Appl. Phys. 108(7), 073109 (2010).
[Crossref]

Li, B.

B. Zhang, B. Yao, Y. Li, Z. Zhang, B. Li, C. Shan, D. Zhao, and D. Shen, “Investigation on the formation mechanism of p-type Li–N dual-doped ZnO,” Appl. Phys. Lett. 97(22), 222101 (2010).
[Crossref]

Li, J.

S. Yin, M. M. Shirolkar, J. Li, M. Li, X. Song, X. Dong, and H. Wang, “Influences of defects evolvement on the properties of sputtering deposited ZnO: Al films upon hydrogen annealing,” AIP Adv. 6(6), 065020 (2016).
[Crossref]

Li, M.

S. Yin, M. M. Shirolkar, J. Li, M. Li, X. Song, X. Dong, and H. Wang, “Influences of defects evolvement on the properties of sputtering deposited ZnO: Al films upon hydrogen annealing,” AIP Adv. 6(6), 065020 (2016).
[Crossref]

G. Wang, Z. Li, S. Lv, M. Li, C. Shi, J. Liao, and C. Chen, “Optical absorption and photoluminescence of Ag interlayer modulated ZnO film in view of their application in Si solar cells,” Ceram. Int. 42(2), 2813–2820 (2016).
[Crossref]

Li, Q.

Y. Liu, Q. Li, and H. Shao, “Optical and photoluminescent properties of Al-doped zinc oxide thin films by pulsed laser deposition,” J. Alloys Compd. 485(1-2), 529–531 (2009).
[Crossref]

Li, W.

H. Yao, G. Zheng, P.-C. Hsu, D. Kong, J. J. Cha, W. Li, Z. W. Seh, M. T. McDowell, K. Yan, and Z. Liang, “Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface,” Nat. Commun. 5(1), 3943 (2014).
[Crossref]

Li, X.

C. Yang, X. Li, Y. Gu, W. Yu, X. Gao, and Y. Zhang, “ZnO based oxide system with continuous bandgap modulation from 3.7 to 4.9 eV,” Appl. Phys. Lett. 93(11), 112114 (2008).
[Crossref]

Li, Y.

H. Lu, P. Zhou, H. Liu, L. Zhang, Y. Yu, Y. Li, and Z. Wang, “Effects of nitrogen and oxygen partial pressure on the structural and optical properties of ZnO: N thin films prepared by magnetron sputtering,” Mater. Lett. 165, 123–126 (2016).
[Crossref]

B. Zhang, B. Yao, Y. Li, Z. Zhang, B. Li, C. Shan, D. Zhao, and D. Shen, “Investigation on the formation mechanism of p-type Li–N dual-doped ZnO,” Appl. Phys. Lett. 97(22), 222101 (2010).
[Crossref]

T. Yang, Z. Zhang, S. Song, Y. Li, M. Lv, Z. Wu, and S. Han, “Structural, optical and electrical properties of AZO/Cu/AZO tri-layer films prepared by radio frequency magnetron sputtering and ion-beam sputtering,” Vacuum 83(2), 257–260 (2008).
[Crossref]

Li, Y.-T.

Li, Z.

G. Wang, Z. Li, S. Lv, M. Li, C. Shi, J. Liao, and C. Chen, “Optical absorption and photoluminescence of Ag interlayer modulated ZnO film in view of their application in Si solar cells,” Ceram. Int. 42(2), 2813–2820 (2016).
[Crossref]

Liang, Z.

H. Yao, G. Zheng, P.-C. Hsu, D. Kong, J. J. Cha, W. Li, Z. W. Seh, M. T. McDowell, K. Yan, and Z. Liang, “Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface,” Nat. Commun. 5(1), 3943 (2014).
[Crossref]

Liao, J.

G. Wang, Z. Li, S. Lv, M. Li, C. Shi, J. Liao, and C. Chen, “Optical absorption and photoluminescence of Ag interlayer modulated ZnO film in view of their application in Si solar cells,” Ceram. Int. 42(2), 2813–2820 (2016).
[Crossref]

Lin, J.-F.

Lin, S.

Q. Shi, K. Zhou, M. Dai, H. Hou, S. Lin, C. Wei, and F. Hu, “Room temperature preparation of high performance AZO films by MF sputtering,” Ceram. Int. 39(2), 1135–1141 (2013).
[Crossref]

Liu, H.

H. Lu, P. Zhou, H. Liu, L. Zhang, Y. Yu, Y. Li, and Z. Wang, “Effects of nitrogen and oxygen partial pressure on the structural and optical properties of ZnO: N thin films prepared by magnetron sputtering,” Mater. Lett. 165, 123–126 (2016).
[Crossref]

Liu, J.

F. Xiu, Z. Yang, L. Mandalapu, D. Zhao, and J. Liu, “Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy,” Appl. Phys. Lett. 87(25), 252102 (2005).
[Crossref]

Liu, M.

A. Moridi, H. Ruan, L. Zhang, and M. Liu, “Residual stresses in thin film systems: Effects of lattice mismatch, thermal mismatch and interface dislocations,” Int. J. Solids Struct. 50(22-23), 3562–3569 (2013).
[Crossref]

Liu, P.

Liu, W.-S.

W.-S. Liu, Y.-H. Liu, W.-K. Chen, and K.-P. Hsueh, “Transparent conductive Ga-doped MgZnO/Ag/Ga-doped MgZnO sandwich structure with improved conductivity and transmittance,” J. Alloys Compd. 564, 105–113 (2013).
[Crossref]

Liu, X.

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett. 6(9), 1880–1886 (2006).
[Crossref]

Liu, Y.

Y. Liu, Q. Li, and H. Shao, “Optical and photoluminescent properties of Al-doped zinc oxide thin films by pulsed laser deposition,” J. Alloys Compd. 485(1-2), 529–531 (2009).
[Crossref]

Liu, Y.-H.

W.-S. Liu, Y.-H. Liu, W.-K. Chen, and K.-P. Hsueh, “Transparent conductive Ga-doped MgZnO/Ag/Ga-doped MgZnO sandwich structure with improved conductivity and transmittance,” J. Alloys Compd. 564, 105–113 (2013).
[Crossref]

Lu, H.

H. Lu, P. Zhou, H. Liu, L. Zhang, Y. Yu, Y. Li, and Z. Wang, “Effects of nitrogen and oxygen partial pressure on the structural and optical properties of ZnO: N thin films prepared by magnetron sputtering,” Mater. Lett. 165, 123–126 (2016).
[Crossref]

Lu, J.

J. Lu, Z. Ye, L. Wang, J. Huang, and B. Zhao, “Structural, electrical and optical properties of N-doped ZnO films synthesized by SS-CVD,” Mater. Sci. Semicond. Process. 5(6), 491–496 (2002).
[Crossref]

Lv, M.

T. Yang, Z. Zhang, S. Song, Y. Li, M. Lv, Z. Wu, and S. Han, “Structural, optical and electrical properties of AZO/Cu/AZO tri-layer films prepared by radio frequency magnetron sputtering and ion-beam sputtering,” Vacuum 83(2), 257–260 (2008).
[Crossref]

Lv, S.

G. Wang, Z. Li, S. Lv, M. Li, C. Shi, J. Liao, and C. Chen, “Optical absorption and photoluminescence of Ag interlayer modulated ZnO film in view of their application in Si solar cells,” Ceram. Int. 42(2), 2813–2820 (2016).
[Crossref]

Ly, J.

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett. 6(9), 1880–1886 (2006).
[Crossref]

Lynn, K.

F. Selim, M. Weber, D. Solodovnikov, and K. Lynn, “Nature of native defects in ZnO,” Phys. Rev. Lett. 99(8), 085502 (2007).
[Crossref]

Ma, S.

Y. Tao, S. Ma, H. Chen, J. Meng, L. Hou, Y. Jia, and X. Shang, “Effect of the oxygen partial pressure on the microstructure and optical properties of ZnO: Cu films,” Vacuum 85(7), 744–748 (2011).
[Crossref]

MacManus-Driscoll, J. L.

L. Schmidt-Mende and J. L. MacManus-Driscoll, “ZnO–nanostructures, defects, and devices,” Mater. Today 10(5), 40–48 (2007).
[Crossref]

Mandalapu, L.

F. Xiu, Z. Yang, L. Mandalapu, D. Zhao, and J. Liu, “Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy,” Appl. Phys. Lett. 87(25), 252102 (2005).
[Crossref]

Manivasaham, A.

K. Ravichandran, K. Subha, A. Manivasaham, M. Sridharan, T. Arun, and C. Ravidhas, “Fabrication of a novel low-cost triple layer system (TaZO/Ag/TaZO) with an enhanced quality factor for transparent electrode applications,” RSC Adv. 6(68), 63314–63324 (2016).
[Crossref]

Mar, M. D.

Mardare, D.

D. Mardare, M. Tasca, M. Delibas, and G. Rusu, “On the structural properties and optical transmittance of TiO2 rf sputtered thin films,” Appl. Surf. Sci. 156(1-4), 200–206 (2000).
[Crossref]

Matsubara, K.

K. Iwata, P. Fons, A. Yamada, K. Matsubara, and S. Niki, “Nitrogen-induced defects in ZnO: N grown on sapphire substrate by gas source MBE,” J. Cryst. Growth 209(2-3), 526–531 (2000).
[Crossref]

McCluskey, M. D.

M. D. McCluskey and S. Jokela, “Defects in zno,” J. Appl. Phys. 106(7), 071101 (2009).
[Crossref]

McDowell, M. T.

H. Yao, G. Zheng, P.-C. Hsu, D. Kong, J. J. Cha, W. Li, Z. W. Seh, M. T. McDowell, K. Yan, and Z. Liang, “Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface,” Nat. Commun. 5(1), 3943 (2014).
[Crossref]

McGlynn, E.

S. Inguva, R. K. Vijayaraghavan, E. McGlynn, and J.-P. Mosnier, “Highly transparent and reproducible nanocrystalline ZnO and AZO thin films grown by room temperature pulsed-laser deposition on flexible Zeonor plastic substrates,” Mater. Res. Express 2(9), 096401 (2015).
[Crossref]

Mechau, N.

B. Nasr, S. Dasgupta, D. Wang, N. Mechau, R. Kruk, and H. Hahn, “Electrical resistivity of nanocrystalline Al-doped zinc oxide films as a function of Al content and the degree of its segregation at the grain boundaries,” J. Appl. Phys. 108(10), 103721 (2010).
[Crossref]

Meng, J.

Y. Tao, S. Ma, H. Chen, J. Meng, L. Hou, Y. Jia, and X. Shang, “Effect of the oxygen partial pressure on the microstructure and optical properties of ZnO: Cu films,” Vacuum 85(7), 744–748 (2011).
[Crossref]

Minegishi, T.

S. Park, J. Chang, H. Ko, T. Minegishi, J. Park, I. Im, M. Ito, D. Oh, M. Cho, and T. Yao, “Lattice deformation of ZnO films with high nitrogen concentration,” Appl. Surf. Sci. 254(23), 7972–7975 (2008).
[Crossref]

Moditswe, C.

C. Moditswe, C. M. Muiva, and A. Juma, “Highly conductive and transparent Ga-doped ZnO thin films deposited by chemical spray pyrolysis,” Optik 127(20), 8317–8325 (2016).
[Crossref]

Mohamed, S.

S. Mohamed, “Effects of Ag layer and ZnO top layer thicknesses on the physical properties of ZnO/Ag/Zno multilayer system,” J. Phys. Chem. Solids 69(10), 2378–2384 (2008).
[Crossref]

Mohammedali, D.

R. Amiruddin, S. Devasia, D. Mohammedali, and M. S. Kumar, “Investigation on PN dual acceptor doped p-type ZnO thin films and subsequent growth of pencil-like nanowires,” Semicond. Sci. Technol. 30(3), 035009 (2015).
[Crossref]

Moon, Y.-J.

J. H. Kim, Y.-J. Moon, S.-K. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Al-doped ZnO/Ag/Al-doped ZnO multilayer films with a high figure of merit,” Ceram. Int. 41(10), 14805–14810 (2015).
[Crossref]

Moridi, A.

A. Moridi, H. Ruan, L. Zhang, and M. Liu, “Residual stresses in thin film systems: Effects of lattice mismatch, thermal mismatch and interface dislocations,” Int. J. Solids Struct. 50(22-23), 3562–3569 (2013).
[Crossref]

Mosnier, J.-P.

S. Inguva, R. K. Vijayaraghavan, E. McGlynn, and J.-P. Mosnier, “Highly transparent and reproducible nanocrystalline ZnO and AZO thin films grown by room temperature pulsed-laser deposition on flexible Zeonor plastic substrates,” Mater. Res. Express 2(9), 096401 (2015).
[Crossref]

Mostajaboddavati, M.

M. G. Varnamkhasti, H. R. Fallah, M. Mostajaboddavati, and A. Hassanzadeh, “Influence of Ag thickness on electrical, optical and structural properties of nanocrystalline MoO3/Ag/ITO multilayer for optoelectronic applications,” Vacuum 86(9), 1318–1322 (2012).
[Crossref]

Muiva, C. M.

C. Moditswe, C. M. Muiva, and A. Juma, “Highly conductive and transparent Ga-doped ZnO thin films deposited by chemical spray pyrolysis,” Optik 127(20), 8317–8325 (2016).
[Crossref]

Munteanu, D.

V. Ţucureanu and D. Munteanu, “Enhanced optical properties of YAG: Ce yellow phosphor by modification with gold nanoparticles,” Ceram. Int. 45(6), 7641–7648 (2019).
[Crossref]

Na, S.-I.

J. H. Kim, T.-W. Kang, S.-I. Na, Y.-Z. Yoo, and T.-Y. Seong, “ITO-free inverted organic solar cells fabricated with transparent and low resistance ZnO/Ag/ZnO multilayer electrode,” Curr. Appl. Phys. 15(7), 829–832 (2015).
[Crossref]

Nasr, B.

B. Nasr, S. Dasgupta, D. Wang, N. Mechau, R. Kruk, and H. Hahn, “Electrical resistivity of nanocrystalline Al-doped zinc oxide films as a function of Al content and the degree of its segregation at the grain boundaries,” J. Appl. Phys. 108(10), 103721 (2010).
[Crossref]

Niki, S.

K. Iwata, P. Fons, A. Yamada, K. Matsubara, and S. Niki, “Nitrogen-induced defects in ZnO: N grown on sapphire substrate by gas source MBE,” J. Cryst. Growth 209(2-3), 526–531 (2000).
[Crossref]

Nomura, K.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref]

Oh, D.

S. Park, J. Chang, H. Ko, T. Minegishi, J. Park, I. Im, M. Ito, D. Oh, M. Cho, and T. Yao, “Lattice deformation of ZnO films with high nitrogen concentration,” Appl. Surf. Sci. 254(23), 7972–7975 (2008).
[Crossref]

Ohta, H.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref]

Panah, M. A.

Park, B.-O.

J.-H. Lee and B.-O. Park, “Transparent conducting ZnO: Al, In and Sn thin films deposited by the sol–gel method,” Thin Solid Films 426(1-2), 94–99 (2003).
[Crossref]

Park, J.

S. Park, J. Chang, H. Ko, T. Minegishi, J. Park, I. Im, M. Ito, D. Oh, M. Cho, and T. Yao, “Lattice deformation of ZnO films with high nitrogen concentration,” Appl. Surf. Sci. 254(23), 7972–7975 (2008).
[Crossref]

Park, S.

S. Park, J. Chang, H. Ko, T. Minegishi, J. Park, I. Im, M. Ito, D. Oh, M. Cho, and T. Yao, “Lattice deformation of ZnO films with high nitrogen concentration,” Appl. Surf. Sci. 254(23), 7972–7975 (2008).
[Crossref]

Park, Y. C.

M. D. Kumar, Y. C. Park, and J. Kim, “Impact of thin metal layer on the optical and electrical properties of indium-doped-tin oxide and aluminum-doped-zinc oxide layers,” Superlattices Microstruct. 82, 499–506 (2015).
[Crossref]

Park, Y. S.

Y. S. Jung, Y. S. Park, K. H. Kim, and W.-J. Lee, “Properties of AZO/Ag/AZO multilayer thin film deposited on polyethersulfone substrate,” Trans. on Electr. and Electron. Mater. 14(1), 9–11 (2013).
[Crossref]

Parkin, I. P.

D. B. Potter, M. J. Powell, I. P. Parkin, and C. J. Carmalt, “Aluminium/gallium, indium/gallium, and aluminium/indium co-doped ZnO thin films deposited via aerosol assisted CVD,” J. Mater. Chem. C 6(3), 588–597 (2018).
[Crossref]

Pasquet, I.

M. Lalanne, J. Soon, A. Barnabé, L. Presmanes, I. Pasquet, and P. Tailhades, “Preparation and characterization of the defect–conductivity relationship of Ga-doped ZnO thin films deposited by nonreactive radio-frequency–magnetron sputtering,” J. Mater. Res. 25(12), 2407–2414 (2010).
[Crossref]

Pauling, L.

L. Pauling, The Nature of the Chemical Bond (Cornell University Press, 1960), Vol. 260.

Pellegrin, Y.

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, and L. Hammarstrom, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref]

Polikarpov, E.

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett. 6(9), 1880–1886 (2006).
[Crossref]

Ponomarev, M. V.

H. C. Knoops, B. W. van de Loo, S. Smit, M. V. Ponomarev, J.-W. Weber, K. Sharma, W. M. Kessels, and M. Creatore, “Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales,” J. Vac. Sci. Technol., A 33(2), 021509 (2015).
[Crossref]

Potter, D. B.

D. B. Potter, M. J. Powell, I. P. Parkin, and C. J. Carmalt, “Aluminium/gallium, indium/gallium, and aluminium/indium co-doped ZnO thin films deposited via aerosol assisted CVD,” J. Mater. Chem. C 6(3), 588–597 (2018).
[Crossref]

Powell, M. J.

D. B. Potter, M. J. Powell, I. P. Parkin, and C. J. Carmalt, “Aluminium/gallium, indium/gallium, and aluminium/indium co-doped ZnO thin films deposited via aerosol assisted CVD,” J. Mater. Chem. C 6(3), 588–597 (2018).
[Crossref]

Presmanes, L.

M. Lalanne, J. Soon, A. Barnabé, L. Presmanes, I. Pasquet, and P. Tailhades, “Preparation and characterization of the defect–conductivity relationship of Ga-doped ZnO thin films deposited by nonreactive radio-frequency–magnetron sputtering,” J. Mater. Res. 25(12), 2407–2414 (2010).
[Crossref]

Pulcinelli, S. H.

G. Valle, P. Hammer, S. H. Pulcinelli, and C. V. Santilli, “Transparent and conductive ZnO: Al thin films prepared by sol-gel dip-coating,” J. Eur. Ceram. Soc. 24(6), 1009–1013 (2004).
[Crossref]

Ra, H.-W.

H.-W. Ra, R. Khan, J. Kim, B. Kang, K. Bai, and Y. Im, “Effects of surface modification of the individual ZnO nanowire with oxygen plasma treatment,” Mater. Lett. 63(28), 2516–2519 (2009).
[Crossref]

Ravichandran, K.

K. Ravichandran, K. Subha, A. Manivasaham, M. Sridharan, T. Arun, and C. Ravidhas, “Fabrication of a novel low-cost triple layer system (TaZO/Ag/TaZO) with an enhanced quality factor for transparent electrode applications,” RSC Adv. 6(68), 63314–63324 (2016).
[Crossref]

Ravidhas, C.

K. Ravichandran, K. Subha, A. Manivasaham, M. Sridharan, T. Arun, and C. Ravidhas, “Fabrication of a novel low-cost triple layer system (TaZO/Ag/TaZO) with an enhanced quality factor for transparent electrode applications,” RSC Adv. 6(68), 63314–63324 (2016).
[Crossref]

Ren, N.

N. Ren, J. Zhu, and S. Ban, “Highly transparent conductive ITO/Ag/ITO trilayer films deposited by RF sputtering at room temperature,” AIP Adv. 7(5), 055009 (2017).
[Crossref]

Renaud, A.

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, and L. Hammarstrom, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref]

Ruan, H.

A. Moridi, H. Ruan, L. Zhang, and M. Liu, “Residual stresses in thin film systems: Effects of lattice mismatch, thermal mismatch and interface dislocations,” Int. J. Solids Struct. 50(22-23), 3562–3569 (2013).
[Crossref]

Rusu, G.

D. Mardare, M. Tasca, M. Delibas, and G. Rusu, “On the structural properties and optical transmittance of TiO2 rf sputtered thin films,” Appl. Surf. Sci. 156(1-4), 200–206 (2000).
[Crossref]

Ryu, K.

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett. 6(9), 1880–1886 (2006).
[Crossref]

Santilli, C. V.

G. Valle, P. Hammer, S. H. Pulcinelli, and C. V. Santilli, “Transparent and conductive ZnO: Al thin films prepared by sol-gel dip-coating,” J. Eur. Ceram. Soc. 24(6), 1009–1013 (2004).
[Crossref]

Schierhorn, E.

I. Sieber, N. Wanderka, I. Urban, I. Dörfel, E. Schierhorn, F. Fenske, and W. Fuhs, “Electron microscopic characterization of reactively sputtered ZnO films with different Al-doping levels,” Thin Solid Films 330(2), 108–113 (1998).
[Crossref]

Schmidt-Mende, L.

L. Schmidt-Mende and J. L. MacManus-Driscoll, “ZnO–nanostructures, defects, and devices,” Mater. Today 10(5), 40–48 (2007).
[Crossref]

Seh, Z. W.

H. Yao, G. Zheng, P.-C. Hsu, D. Kong, J. J. Cha, W. Li, Z. W. Seh, M. T. McDowell, K. Yan, and Z. Liang, “Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface,” Nat. Commun. 5(1), 3943 (2014).
[Crossref]

Selim, F.

F. Selim, M. Weber, D. Solodovnikov, and K. Lynn, “Nature of native defects in ZnO,” Phys. Rev. Lett. 99(8), 085502 (2007).
[Crossref]

Seong, T.-Y.

J. H. Kim, Y.-J. Moon, S.-K. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Al-doped ZnO/Ag/Al-doped ZnO multilayer films with a high figure of merit,” Ceram. Int. 41(10), 14805–14810 (2015).
[Crossref]

J. H. Kim, J. H. Lee, S.-W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Highly flexible ZnO/Ag/ZnO conducting electrode for organic photonic devices,” Ceram. Int. 41(5), 7146–7150 (2015).
[Crossref]

J. H. Kim, T.-W. Kang, S.-I. Na, Y.-Z. Yoo, and T.-Y. Seong, “ITO-free inverted organic solar cells fabricated with transparent and low resistance ZnO/Ag/ZnO multilayer electrode,” Curr. Appl. Phys. 15(7), 829–832 (2015).
[Crossref]

Shan, C.

B. Zhang, B. Yao, Y. Li, Z. Zhang, B. Li, C. Shan, D. Zhao, and D. Shen, “Investigation on the formation mechanism of p-type Li–N dual-doped ZnO,” Appl. Phys. Lett. 97(22), 222101 (2010).
[Crossref]

Shang, X.

Y. Tao, S. Ma, H. Chen, J. Meng, L. Hou, Y. Jia, and X. Shang, “Effect of the oxygen partial pressure on the microstructure and optical properties of ZnO: Cu films,” Vacuum 85(7), 744–748 (2011).
[Crossref]

Shao, H.

Y. Liu, Q. Li, and H. Shao, “Optical and photoluminescent properties of Al-doped zinc oxide thin films by pulsed laser deposition,” J. Alloys Compd. 485(1-2), 529–531 (2009).
[Crossref]

Sharma, K.

H. C. Knoops, B. W. van de Loo, S. Smit, M. V. Ponomarev, J.-W. Weber, K. Sharma, W. M. Kessels, and M. Creatore, “Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales,” J. Vac. Sci. Technol., A 33(2), 021509 (2015).
[Crossref]

Shen, D.

B. Zhang, B. Yao, Y. Li, Z. Zhang, B. Li, C. Shan, D. Zhao, and D. Shen, “Investigation on the formation mechanism of p-type Li–N dual-doped ZnO,” Appl. Phys. Lett. 97(22), 222101 (2010).
[Crossref]

Shen, J.

H. Song, F. Tian, Q.-M. Hu, L. Vitos, Y. Wang, J. Shen, and N. Chen, “Local lattice distortion in high-entropy alloys,” Phys. Rev. Mater. 1(2), 023404 (2017).
[Crossref]

Shi, C.

G. Wang, Z. Li, S. Lv, M. Li, C. Shi, J. Liao, and C. Chen, “Optical absorption and photoluminescence of Ag interlayer modulated ZnO film in view of their application in Si solar cells,” Ceram. Int. 42(2), 2813–2820 (2016).
[Crossref]

Shi, Q.

Q. Shi, K. Zhou, M. Dai, H. Hou, S. Lin, C. Wei, and F. Hu, “Room temperature preparation of high performance AZO films by MF sputtering,” Ceram. Int. 39(2), 1135–1141 (2013).
[Crossref]

Shirolkar, M. M.

S. Yin, M. M. Shirolkar, J. Li, M. Li, X. Song, X. Dong, and H. Wang, “Influences of defects evolvement on the properties of sputtering deposited ZnO: Al films upon hydrogen annealing,” AIP Adv. 6(6), 065020 (2016).
[Crossref]

Shkondin, E.

Sieber, I.

I. Sieber, N. Wanderka, I. Urban, I. Dörfel, E. Schierhorn, F. Fenske, and W. Fuhs, “Electron microscopic characterization of reactively sputtered ZnO films with different Al-doping levels,” Thin Solid Films 330(2), 108–113 (1998).
[Crossref]

Smeigh, A.

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, and L. Hammarstrom, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref]

Smit, S.

H. C. Knoops, B. W. van de Loo, S. Smit, M. V. Ponomarev, J.-W. Weber, K. Sharma, W. M. Kessels, and M. Creatore, “Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales,” J. Vac. Sci. Technol., A 33(2), 021509 (2015).
[Crossref]

Solodovnikov, D.

F. Selim, M. Weber, D. Solodovnikov, and K. Lynn, “Nature of native defects in ZnO,” Phys. Rev. Lett. 99(8), 085502 (2007).
[Crossref]

Song, H.

H. Song, F. Tian, Q.-M. Hu, L. Vitos, Y. Wang, J. Shen, and N. Chen, “Local lattice distortion in high-entropy alloys,” Phys. Rev. Mater. 1(2), 023404 (2017).
[Crossref]

Song, S.

T. Yang, Z. Zhang, S. Song, Y. Li, M. Lv, Z. Wu, and S. Han, “Structural, optical and electrical properties of AZO/Cu/AZO tri-layer films prepared by radio frequency magnetron sputtering and ion-beam sputtering,” Vacuum 83(2), 257–260 (2008).
[Crossref]

Song, X.

S. Yin, M. M. Shirolkar, J. Li, M. Li, X. Song, X. Dong, and H. Wang, “Influences of defects evolvement on the properties of sputtering deposited ZnO: Al films upon hydrogen annealing,” AIP Adv. 6(6), 065020 (2016).
[Crossref]

Soon, J.

M. Lalanne, J. Soon, A. Barnabé, L. Presmanes, I. Pasquet, and P. Tailhades, “Preparation and characterization of the defect–conductivity relationship of Ga-doped ZnO thin films deposited by nonreactive radio-frequency–magnetron sputtering,” J. Mater. Res. 25(12), 2407–2414 (2010).
[Crossref]

Sridharan, M.

K. Ravichandran, K. Subha, A. Manivasaham, M. Sridharan, T. Arun, and C. Ravidhas, “Fabrication of a novel low-cost triple layer system (TaZO/Ag/TaZO) with an enhanced quality factor for transparent electrode applications,” RSC Adv. 6(68), 63314–63324 (2016).
[Crossref]

Srikant, V.

V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide,” J. Appl. Phys. 83(10), 5447–5451 (1998).
[Crossref]

Subha, K.

K. Ravichandran, K. Subha, A. Manivasaham, M. Sridharan, T. Arun, and C. Ravidhas, “Fabrication of a novel low-cost triple layer system (TaZO/Ag/TaZO) with an enhanced quality factor for transparent electrode applications,” RSC Adv. 6(68), 63314–63324 (2016).
[Crossref]

Sun, D.

D. Sun, C. Tan, X. Tian, and Y. Huang, “Comparative Study on ZnO Monolayer Doped with Al, Ga and In Atoms as Transparent Electrodes,” Materials 10(7), 703 (2017).
[Crossref]

Tailhades, P.

M. Lalanne, J. Soon, A. Barnabé, L. Presmanes, I. Pasquet, and P. Tailhades, “Preparation and characterization of the defect–conductivity relationship of Ga-doped ZnO thin films deposited by nonreactive radio-frequency–magnetron sputtering,” J. Mater. Res. 25(12), 2407–2414 (2010).
[Crossref]

Takagi, A.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref]

Takayama, O.

Tan, C.

D. Sun, C. Tan, X. Tian, and Y. Huang, “Comparative Study on ZnO Monolayer Doped with Al, Ga and In Atoms as Transparent Electrodes,” Materials 10(7), 703 (2017).
[Crossref]

Tao, Y.

Y. Tao, S. Ma, H. Chen, J. Meng, L. Hou, Y. Jia, and X. Shang, “Effect of the oxygen partial pressure on the microstructure and optical properties of ZnO: Cu films,” Vacuum 85(7), 744–748 (2011).
[Crossref]

Tasca, M.

D. Mardare, M. Tasca, M. Delibas, and G. Rusu, “On the structural properties and optical transmittance of TiO2 rf sputtered thin films,” Appl. Surf. Sci. 156(1-4), 200–206 (2000).
[Crossref]

Tay, B.

H. Lee, S. Lau, Y. Wang, K. Tse, H. Hng, and B. Tay, “Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique,” J. Cryst. Growth 268(3-4), 596–601 (2004).
[Crossref]

Tessier, F.

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, and L. Hammarstrom, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref]

Tian, F.

H. Song, F. Tian, Q.-M. Hu, L. Vitos, Y. Wang, J. Shen, and N. Chen, “Local lattice distortion in high-entropy alloys,” Phys. Rev. Mater. 1(2), 023404 (2017).
[Crossref]

Tian, X.

D. Sun, C. Tan, X. Tian, and Y. Huang, “Comparative Study on ZnO Monolayer Doped with Al, Ga and In Atoms as Transparent Electrodes,” Materials 10(7), 703 (2017).
[Crossref]

Tompson, M. E.

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett. 6(9), 1880–1886 (2006).
[Crossref]

Tse, K.

H. Lee, S. Lau, Y. Wang, K. Tse, H. Hng, and B. Tay, “Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique,” J. Cryst. Growth 268(3-4), 596–601 (2004).
[Crossref]

Tucureanu, V.

V. Ţucureanu and D. Munteanu, “Enhanced optical properties of YAG: Ce yellow phosphor by modification with gold nanoparticles,” Ceram. Int. 45(6), 7641–7648 (2019).
[Crossref]

Urban, I.

I. Sieber, N. Wanderka, I. Urban, I. Dörfel, E. Schierhorn, F. Fenske, and W. Fuhs, “Electron microscopic characterization of reactively sputtered ZnO films with different Al-doping levels,” Thin Solid Films 330(2), 108–113 (1998).
[Crossref]

Valle, G.

G. Valle, P. Hammer, S. H. Pulcinelli, and C. V. Santilli, “Transparent and conductive ZnO: Al thin films prepared by sol-gel dip-coating,” J. Eur. Ceram. Soc. 24(6), 1009–1013 (2004).
[Crossref]

van de Loo, B. W.

H. C. Knoops, B. W. van de Loo, S. Smit, M. V. Ponomarev, J.-W. Weber, K. Sharma, W. M. Kessels, and M. Creatore, “Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales,” J. Vac. Sci. Technol., A 33(2), 021509 (2015).
[Crossref]

Varnamkhasti, M. G.

M. G. Varnamkhasti, H. R. Fallah, M. Mostajaboddavati, and A. Hassanzadeh, “Influence of Ag thickness on electrical, optical and structural properties of nanocrystalline MoO3/Ag/ITO multilayer for optoelectronic applications,” Vacuum 86(9), 1318–1322 (2012).
[Crossref]

Veedu, M. A. A.

C. R. Gobbiner, M. A. A. Veedu, and D. Kekuda, “Influence of oxygen flow rate on the structural, optical and electrical properties of ZnO films grown by DC magnetron sputtering,” Appl. Phys. A 122(4), 272 (2016).
[Crossref]

Vijayaraghavan, R. K.

S. Inguva, R. K. Vijayaraghavan, E. McGlynn, and J.-P. Mosnier, “Highly transparent and reproducible nanocrystalline ZnO and AZO thin films grown by room temperature pulsed-laser deposition on flexible Zeonor plastic substrates,” Mater. Res. Express 2(9), 096401 (2015).
[Crossref]

Vitos, L.

H. Song, F. Tian, Q.-M. Hu, L. Vitos, Y. Wang, J. Shen, and N. Chen, “Local lattice distortion in high-entropy alloys,” Phys. Rev. Mater. 1(2), 023404 (2017).
[Crossref]

Wanderka, N.

I. Sieber, N. Wanderka, I. Urban, I. Dörfel, E. Schierhorn, F. Fenske, and W. Fuhs, “Electron microscopic characterization of reactively sputtered ZnO films with different Al-doping levels,” Thin Solid Films 330(2), 108–113 (1998).
[Crossref]

Wang, D.

B. Nasr, S. Dasgupta, D. Wang, N. Mechau, R. Kruk, and H. Hahn, “Electrical resistivity of nanocrystalline Al-doped zinc oxide films as a function of Al content and the degree of its segregation at the grain boundaries,” J. Appl. Phys. 108(10), 103721 (2010).
[Crossref]

Wang, G.

G. Wang, Z. Li, S. Lv, M. Li, C. Shi, J. Liao, and C. Chen, “Optical absorption and photoluminescence of Ag interlayer modulated ZnO film in view of their application in Si solar cells,” Ceram. Int. 42(2), 2813–2820 (2016).
[Crossref]

Wang, H.

S. Yin, M. M. Shirolkar, J. Li, M. Li, X. Song, X. Dong, and H. Wang, “Influences of defects evolvement on the properties of sputtering deposited ZnO: Al films upon hydrogen annealing,” AIP Adv. 6(6), 065020 (2016).
[Crossref]

Wang, L.

J. Lu, Z. Ye, L. Wang, J. Huang, and B. Zhao, “Structural, electrical and optical properties of N-doped ZnO films synthesized by SS-CVD,” Mater. Sci. Semicond. Process. 5(6), 491–496 (2002).
[Crossref]

Wang, M.

Y. Hu, Y. Chen, Y. Wu, M. Wang, G. Fang, C. He, and S. Wang, “Structural, defect and optical properties of ZnO films grown under various O2/Ar gas ratios,” Appl. Surf. Sci. 255(22), 9279–9284 (2009).
[Crossref]

Wang, S.

Y. Hu, Y. Chen, Y. Wu, M. Wang, G. Fang, C. He, and S. Wang, “Structural, defect and optical properties of ZnO films grown under various O2/Ar gas ratios,” Appl. Surf. Sci. 255(22), 9279–9284 (2009).
[Crossref]

Wang, Y.

H. Song, F. Tian, Q.-M. Hu, L. Vitos, Y. Wang, J. Shen, and N. Chen, “Local lattice distortion in high-entropy alloys,” Phys. Rev. Mater. 1(2), 023404 (2017).
[Crossref]

H. Lee, S. Lau, Y. Wang, K. Tse, H. Hng, and B. Tay, “Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique,” J. Cryst. Growth 268(3-4), 596–601 (2004).
[Crossref]

Wang, Z.

H. Lu, P. Zhou, H. Liu, L. Zhang, Y. Yu, Y. Li, and Z. Wang, “Effects of nitrogen and oxygen partial pressure on the structural and optical properties of ZnO: N thin films prepared by magnetron sputtering,” Mater. Lett. 165, 123–126 (2016).
[Crossref]

Weber, J.-W.

H. C. Knoops, B. W. van de Loo, S. Smit, M. V. Ponomarev, J.-W. Weber, K. Sharma, W. M. Kessels, and M. Creatore, “Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales,” J. Vac. Sci. Technol., A 33(2), 021509 (2015).
[Crossref]

Weber, M.

F. Selim, M. Weber, D. Solodovnikov, and K. Lynn, “Nature of native defects in ZnO,” Phys. Rev. Lett. 99(8), 085502 (2007).
[Crossref]

Wei, C.

Q. Shi, K. Zhou, M. Dai, H. Hou, S. Lin, C. Wei, and F. Hu, “Room temperature preparation of high performance AZO films by MF sputtering,” Ceram. Int. 39(2), 1135–1141 (2013).
[Crossref]

Wu, H.-W.

H.-W. Wu and C.-H. Chu, “Structural and optoelectronic properties of AZO/Mo/AZO thin films prepared by rf magnetron sputtering,” Mater. Lett. 105, 65–67 (2013).
[Crossref]

Wu, Y.

Y. Hu, Y. Chen, Y. Wu, M. Wang, G. Fang, C. He, and S. Wang, “Structural, defect and optical properties of ZnO films grown under various O2/Ar gas ratios,” Appl. Surf. Sci. 255(22), 9279–9284 (2009).
[Crossref]

Wu, Z.

T. Yang, Z. Zhang, S. Song, Y. Li, M. Lv, Z. Wu, and S. Han, “Structural, optical and electrical properties of AZO/Cu/AZO tri-layer films prepared by radio frequency magnetron sputtering and ion-beam sputtering,” Vacuum 83(2), 257–260 (2008).
[Crossref]

Wuttig, M.

R. J. Drese and M. Wuttig, “Stress evolution during growth in direct-current-sputtered zinc oxide films at various oxygen flows,” J. Appl. Phys. 98(7), 073514 (2005).
[Crossref]

Xiu, F.

F. Xiu, Z. Yang, L. Mandalapu, D. Zhao, and J. Liu, “Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy,” Appl. Phys. Lett. 87(25), 252102 (2005).
[Crossref]

Xue, W.

J. Leng, Z. Yu, W. Xue, T. Zhang, Y. Jiang, J. Zhang, and D. Zhang, “Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition,” J. Appl. Phys. 108(7), 073109 (2010).
[Crossref]

Yamada, A.

K. Iwata, P. Fons, A. Yamada, K. Matsubara, and S. Niki, “Nitrogen-induced defects in ZnO: N grown on sapphire substrate by gas source MBE,” J. Cryst. Growth 209(2-3), 526–531 (2000).
[Crossref]

Yamamoto, A.

A. Yamamoto, T. Kido, T. Goto, Y. Chen, and T. Yao, “Bandgap renormalization of ZnO epitaxial thin films,” Solid State Commun. 122(1-2), 29–32 (2002).
[Crossref]

Yan, K.

H. Yao, G. Zheng, P.-C. Hsu, D. Kong, J. J. Cha, W. Li, Z. W. Seh, M. T. McDowell, K. Yan, and Z. Liang, “Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface,” Nat. Commun. 5(1), 3943 (2014).
[Crossref]

Yang, C.

C. Yang, X. Li, Y. Gu, W. Yu, X. Gao, and Y. Zhang, “ZnO based oxide system with continuous bandgap modulation from 3.7 to 4.9 eV,” Appl. Phys. Lett. 93(11), 112114 (2008).
[Crossref]

Yang, T.

T. Yang, Z. Zhang, S. Song, Y. Li, M. Lv, Z. Wu, and S. Han, “Structural, optical and electrical properties of AZO/Cu/AZO tri-layer films prepared by radio frequency magnetron sputtering and ion-beam sputtering,” Vacuum 83(2), 257–260 (2008).
[Crossref]

Yang, Z.

F. Xiu, Z. Yang, L. Mandalapu, D. Zhao, and J. Liu, “Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy,” Appl. Phys. Lett. 87(25), 252102 (2005).
[Crossref]

Yao, B.

B. Zhang, B. Yao, Y. Li, Z. Zhang, B. Li, C. Shan, D. Zhao, and D. Shen, “Investigation on the formation mechanism of p-type Li–N dual-doped ZnO,” Appl. Phys. Lett. 97(22), 222101 (2010).
[Crossref]

Yao, H.

H. Yao, G. Zheng, P.-C. Hsu, D. Kong, J. J. Cha, W. Li, Z. W. Seh, M. T. McDowell, K. Yan, and Z. Liang, “Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface,” Nat. Commun. 5(1), 3943 (2014).
[Crossref]

Yao, T.

S. Park, J. Chang, H. Ko, T. Minegishi, J. Park, I. Im, M. Ito, D. Oh, M. Cho, and T. Yao, “Lattice deformation of ZnO films with high nitrogen concentration,” Appl. Surf. Sci. 254(23), 7972–7975 (2008).
[Crossref]

A. Yamamoto, T. Kido, T. Goto, Y. Chen, and T. Yao, “Bandgap renormalization of ZnO epitaxial thin films,” Solid State Commun. 122(1-2), 29–32 (2002).
[Crossref]

Ye, Z.

J. Lu, Z. Ye, L. Wang, J. Huang, and B. Zhao, “Structural, electrical and optical properties of N-doped ZnO films synthesized by SS-CVD,” Mater. Sci. Semicond. Process. 5(6), 491–496 (2002).
[Crossref]

Yin, S.

S. Yin, M. M. Shirolkar, J. Li, M. Li, X. Song, X. Dong, and H. Wang, “Influences of defects evolvement on the properties of sputtering deposited ZnO: Al films upon hydrogen annealing,” AIP Adv. 6(6), 065020 (2016).
[Crossref]

Yoo, Y.-Z.

J. H. Kim, Y.-J. Moon, S.-K. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Al-doped ZnO/Ag/Al-doped ZnO multilayer films with a high figure of merit,” Ceram. Int. 41(10), 14805–14810 (2015).
[Crossref]

J. H. Kim, J. H. Lee, S.-W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Highly flexible ZnO/Ag/ZnO conducting electrode for organic photonic devices,” Ceram. Int. 41(5), 7146–7150 (2015).
[Crossref]

J. H. Kim, T.-W. Kang, S.-I. Na, Y.-Z. Yoo, and T.-Y. Seong, “ITO-free inverted organic solar cells fabricated with transparent and low resistance ZnO/Ag/ZnO multilayer electrode,” Curr. Appl. Phys. 15(7), 829–832 (2015).
[Crossref]

Yu, W.

C. Yang, X. Li, Y. Gu, W. Yu, X. Gao, and Y. Zhang, “ZnO based oxide system with continuous bandgap modulation from 3.7 to 4.9 eV,” Appl. Phys. Lett. 93(11), 112114 (2008).
[Crossref]

Yu, Y.

H. Lu, P. Zhou, H. Liu, L. Zhang, Y. Yu, Y. Li, and Z. Wang, “Effects of nitrogen and oxygen partial pressure on the structural and optical properties of ZnO: N thin films prepared by magnetron sputtering,” Mater. Lett. 165, 123–126 (2016).
[Crossref]

Yu, Z.

J. Leng, Z. Yu, W. Xue, T. Zhang, Y. Jiang, J. Zhang, and D. Zhang, “Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition,” J. Appl. Phys. 108(7), 073109 (2010).
[Crossref]

Zhang, B.

B. Zhang, B. Yao, Y. Li, Z. Zhang, B. Li, C. Shan, D. Zhao, and D. Shen, “Investigation on the formation mechanism of p-type Li–N dual-doped ZnO,” Appl. Phys. Lett. 97(22), 222101 (2010).
[Crossref]

Zhang, D.

J. Leng, Z. Yu, W. Xue, T. Zhang, Y. Jiang, J. Zhang, and D. Zhang, “Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition,” J. Appl. Phys. 108(7), 073109 (2010).
[Crossref]

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett. 6(9), 1880–1886 (2006).
[Crossref]

Zhang, J.

J. Leng, Z. Yu, W. Xue, T. Zhang, Y. Jiang, J. Zhang, and D. Zhang, “Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition,” J. Appl. Phys. 108(7), 073109 (2010).
[Crossref]

Zhang, L.

H. Lu, P. Zhou, H. Liu, L. Zhang, Y. Yu, Y. Li, and Z. Wang, “Effects of nitrogen and oxygen partial pressure on the structural and optical properties of ZnO: N thin films prepared by magnetron sputtering,” Mater. Lett. 165, 123–126 (2016).
[Crossref]

A. Moridi, H. Ruan, L. Zhang, and M. Liu, “Residual stresses in thin film systems: Effects of lattice mismatch, thermal mismatch and interface dislocations,” Int. J. Solids Struct. 50(22-23), 3562–3569 (2013).
[Crossref]

Zhang, T.

J. Leng, Z. Yu, W. Xue, T. Zhang, Y. Jiang, J. Zhang, and D. Zhang, “Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition,” J. Appl. Phys. 108(7), 073109 (2010).
[Crossref]

Zhang, Y.

C. Yang, X. Li, Y. Gu, W. Yu, X. Gao, and Y. Zhang, “ZnO based oxide system with continuous bandgap modulation from 3.7 to 4.9 eV,” Appl. Phys. Lett. 93(11), 112114 (2008).
[Crossref]

Zhang, Z.

B. Zhang, B. Yao, Y. Li, Z. Zhang, B. Li, C. Shan, D. Zhao, and D. Shen, “Investigation on the formation mechanism of p-type Li–N dual-doped ZnO,” Appl. Phys. Lett. 97(22), 222101 (2010).
[Crossref]

T. Yang, Z. Zhang, S. Song, Y. Li, M. Lv, Z. Wu, and S. Han, “Structural, optical and electrical properties of AZO/Cu/AZO tri-layer films prepared by radio frequency magnetron sputtering and ion-beam sputtering,” Vacuum 83(2), 257–260 (2008).
[Crossref]

Zhao, B.

J. Lu, Z. Ye, L. Wang, J. Huang, and B. Zhao, “Structural, electrical and optical properties of N-doped ZnO films synthesized by SS-CVD,” Mater. Sci. Semicond. Process. 5(6), 491–496 (2002).
[Crossref]

Zhao, D.

B. Zhang, B. Yao, Y. Li, Z. Zhang, B. Li, C. Shan, D. Zhao, and D. Shen, “Investigation on the formation mechanism of p-type Li–N dual-doped ZnO,” Appl. Phys. Lett. 97(22), 222101 (2010).
[Crossref]

F. Xiu, Z. Yang, L. Mandalapu, D. Zhao, and J. Liu, “Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy,” Appl. Phys. Lett. 87(25), 252102 (2005).
[Crossref]

Zheng, G.

H. Yao, G. Zheng, P.-C. Hsu, D. Kong, J. J. Cha, W. Li, Z. W. Seh, M. T. McDowell, K. Yan, and Z. Liang, “Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface,” Nat. Commun. 5(1), 3943 (2014).
[Crossref]

Zhou, C.

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett. 6(9), 1880–1886 (2006).
[Crossref]

Zhou, K.

Q. Shi, K. Zhou, M. Dai, H. Hou, S. Lin, C. Wei, and F. Hu, “Room temperature preparation of high performance AZO films by MF sputtering,” Ceram. Int. 39(2), 1135–1141 (2013).
[Crossref]

Zhou, P.

H. Lu, P. Zhou, H. Liu, L. Zhang, Y. Yu, Y. Li, and Z. Wang, “Effects of nitrogen and oxygen partial pressure on the structural and optical properties of ZnO: N thin films prepared by magnetron sputtering,” Mater. Lett. 165, 123–126 (2016).
[Crossref]

Zhu, J.

N. Ren, J. Zhu, and S. Ban, “Highly transparent conductive ITO/Ag/ITO trilayer films deposited by RF sputtering at room temperature,” AIP Adv. 7(5), 055009 (2017).
[Crossref]

AIP Adv. (2)

N. Ren, J. Zhu, and S. Ban, “Highly transparent conductive ITO/Ag/ITO trilayer films deposited by RF sputtering at room temperature,” AIP Adv. 7(5), 055009 (2017).
[Crossref]

S. Yin, M. M. Shirolkar, J. Li, M. Li, X. Song, X. Dong, and H. Wang, “Influences of defects evolvement on the properties of sputtering deposited ZnO: Al films upon hydrogen annealing,” AIP Adv. 6(6), 065020 (2016).
[Crossref]

APL Mater. (1)

A. Dhar and T. Alford, “High quality transparent TiO2/Ag/TiO2 composite electrode films deposited on flexible substrate at room temperature by sputtering,” APL Mater. 1(1), 012102 (2013).
[Crossref]

Appl. Phys. A (1)

C. R. Gobbiner, M. A. A. Veedu, and D. Kekuda, “Influence of oxygen flow rate on the structural, optical and electrical properties of ZnO films grown by DC magnetron sputtering,” Appl. Phys. A 122(4), 272 (2016).
[Crossref]

Appl. Phys. Lett. (3)

C. Yang, X. Li, Y. Gu, W. Yu, X. Gao, and Y. Zhang, “ZnO based oxide system with continuous bandgap modulation from 3.7 to 4.9 eV,” Appl. Phys. Lett. 93(11), 112114 (2008).
[Crossref]

F. Xiu, Z. Yang, L. Mandalapu, D. Zhao, and J. Liu, “Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy,” Appl. Phys. Lett. 87(25), 252102 (2005).
[Crossref]

B. Zhang, B. Yao, Y. Li, Z. Zhang, B. Li, C. Shan, D. Zhao, and D. Shen, “Investigation on the formation mechanism of p-type Li–N dual-doped ZnO,” Appl. Phys. Lett. 97(22), 222101 (2010).
[Crossref]

Appl. Surf. Sci. (4)

D. Mardare, M. Tasca, M. Delibas, and G. Rusu, “On the structural properties and optical transmittance of TiO2 rf sputtered thin films,” Appl. Surf. Sci. 156(1-4), 200–206 (2000).
[Crossref]

K. Bhuvana, J. Elanchezhiyan, N. Gopalakrishnan, and T. Balasubramanian, “Codoped (AlN) and monodoped (Al) ZnO thin films grown by RF sputtering: A comparative study,” Appl. Surf. Sci. 255(5), 2026–2029 (2008).
[Crossref]

Y. Hu, Y. Chen, Y. Wu, M. Wang, G. Fang, C. He, and S. Wang, “Structural, defect and optical properties of ZnO films grown under various O2/Ar gas ratios,” Appl. Surf. Sci. 255(22), 9279–9284 (2009).
[Crossref]

S. Park, J. Chang, H. Ko, T. Minegishi, J. Park, I. Im, M. Ito, D. Oh, M. Cho, and T. Yao, “Lattice deformation of ZnO films with high nitrogen concentration,” Appl. Surf. Sci. 254(23), 7972–7975 (2008).
[Crossref]

Ceram. Int. (5)

V. Ţucureanu and D. Munteanu, “Enhanced optical properties of YAG: Ce yellow phosphor by modification with gold nanoparticles,” Ceram. Int. 45(6), 7641–7648 (2019).
[Crossref]

Q. Shi, K. Zhou, M. Dai, H. Hou, S. Lin, C. Wei, and F. Hu, “Room temperature preparation of high performance AZO films by MF sputtering,” Ceram. Int. 39(2), 1135–1141 (2013).
[Crossref]

G. Wang, Z. Li, S. Lv, M. Li, C. Shi, J. Liao, and C. Chen, “Optical absorption and photoluminescence of Ag interlayer modulated ZnO film in view of their application in Si solar cells,” Ceram. Int. 42(2), 2813–2820 (2016).
[Crossref]

J. H. Kim, Y.-J. Moon, S.-K. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Al-doped ZnO/Ag/Al-doped ZnO multilayer films with a high figure of merit,” Ceram. Int. 41(10), 14805–14810 (2015).
[Crossref]

J. H. Kim, J. H. Lee, S.-W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Highly flexible ZnO/Ag/ZnO conducting electrode for organic photonic devices,” Ceram. Int. 41(5), 7146–7150 (2015).
[Crossref]

Curr. Appl. Phys. (1)

J. H. Kim, T.-W. Kang, S.-I. Na, Y.-Z. Yoo, and T.-Y. Seong, “ITO-free inverted organic solar cells fabricated with transparent and low resistance ZnO/Ag/ZnO multilayer electrode,” Curr. Appl. Phys. 15(7), 829–832 (2015).
[Crossref]

Int. J. Solids Struct. (1)

A. Moridi, H. Ruan, L. Zhang, and M. Liu, “Residual stresses in thin film systems: Effects of lattice mismatch, thermal mismatch and interface dislocations,” Int. J. Solids Struct. 50(22-23), 3562–3569 (2013).
[Crossref]

J. Alloys Compd. (2)

Y. Liu, Q. Li, and H. Shao, “Optical and photoluminescent properties of Al-doped zinc oxide thin films by pulsed laser deposition,” J. Alloys Compd. 485(1-2), 529–531 (2009).
[Crossref]

W.-S. Liu, Y.-H. Liu, W.-K. Chen, and K.-P. Hsueh, “Transparent conductive Ga-doped MgZnO/Ag/Ga-doped MgZnO sandwich structure with improved conductivity and transmittance,” J. Alloys Compd. 564, 105–113 (2013).
[Crossref]

J. Am. Chem. Soc. (1)

B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, and L. Hammarstrom, “P-type nitrogen-doped ZnO nanoparticles stable under ambient conditions,” J. Am. Chem. Soc. 134(1), 464–470 (2012).
[Crossref]

J. Appl. Phys. (6)

R. J. Drese and M. Wuttig, “Stress evolution during growth in direct-current-sputtered zinc oxide films at various oxygen flows,” J. Appl. Phys. 98(7), 073514 (2005).
[Crossref]

J. Leng, Z. Yu, W. Xue, T. Zhang, Y. Jiang, J. Zhang, and D. Zhang, “Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition,” J. Appl. Phys. 108(7), 073109 (2010).
[Crossref]

V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide,” J. Appl. Phys. 83(10), 5447–5451 (1998).
[Crossref]

B. Nasr, S. Dasgupta, D. Wang, N. Mechau, R. Kruk, and H. Hahn, “Electrical resistivity of nanocrystalline Al-doped zinc oxide films as a function of Al content and the degree of its segregation at the grain boundaries,” J. Appl. Phys. 108(10), 103721 (2010).
[Crossref]

G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47(9), 4086–4089 (1976).
[Crossref]

M. D. McCluskey and S. Jokela, “Defects in zno,” J. Appl. Phys. 106(7), 071101 (2009).
[Crossref]

J. Cryst. Growth (2)

H. Lee, S. Lau, Y. Wang, K. Tse, H. Hng, and B. Tay, “Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique,” J. Cryst. Growth 268(3-4), 596–601 (2004).
[Crossref]

K. Iwata, P. Fons, A. Yamada, K. Matsubara, and S. Niki, “Nitrogen-induced defects in ZnO: N grown on sapphire substrate by gas source MBE,” J. Cryst. Growth 209(2-3), 526–531 (2000).
[Crossref]

J. Eur. Ceram. Soc. (1)

G. Valle, P. Hammer, S. H. Pulcinelli, and C. V. Santilli, “Transparent and conductive ZnO: Al thin films prepared by sol-gel dip-coating,” J. Eur. Ceram. Soc. 24(6), 1009–1013 (2004).
[Crossref]

J. Mater. Chem. C (1)

D. B. Potter, M. J. Powell, I. P. Parkin, and C. J. Carmalt, “Aluminium/gallium, indium/gallium, and aluminium/indium co-doped ZnO thin films deposited via aerosol assisted CVD,” J. Mater. Chem. C 6(3), 588–597 (2018).
[Crossref]

J. Mater. Res. (1)

M. Lalanne, J. Soon, A. Barnabé, L. Presmanes, I. Pasquet, and P. Tailhades, “Preparation and characterization of the defect–conductivity relationship of Ga-doped ZnO thin films deposited by nonreactive radio-frequency–magnetron sputtering,” J. Mater. Res. 25(12), 2407–2414 (2010).
[Crossref]

J. Phys. Chem. Solids (1)

S. Mohamed, “Effects of Ag layer and ZnO top layer thicknesses on the physical properties of ZnO/Ag/Zno multilayer system,” J. Phys. Chem. Solids 69(10), 2378–2384 (2008).
[Crossref]

J. Vac. Sci. Technol., A (1)

H. C. Knoops, B. W. van de Loo, S. Smit, M. V. Ponomarev, J.-W. Weber, K. Sharma, W. M. Kessels, and M. Creatore, “Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales,” J. Vac. Sci. Technol., A 33(2), 021509 (2015).
[Crossref]

Mater. Lett. (3)

H. Lu, P. Zhou, H. Liu, L. Zhang, Y. Yu, Y. Li, and Z. Wang, “Effects of nitrogen and oxygen partial pressure on the structural and optical properties of ZnO: N thin films prepared by magnetron sputtering,” Mater. Lett. 165, 123–126 (2016).
[Crossref]

H.-W. Ra, R. Khan, J. Kim, B. Kang, K. Bai, and Y. Im, “Effects of surface modification of the individual ZnO nanowire with oxygen plasma treatment,” Mater. Lett. 63(28), 2516–2519 (2009).
[Crossref]

H.-W. Wu and C.-H. Chu, “Structural and optoelectronic properties of AZO/Mo/AZO thin films prepared by rf magnetron sputtering,” Mater. Lett. 105, 65–67 (2013).
[Crossref]

Mater. Res. Express (1)

S. Inguva, R. K. Vijayaraghavan, E. McGlynn, and J.-P. Mosnier, “Highly transparent and reproducible nanocrystalline ZnO and AZO thin films grown by room temperature pulsed-laser deposition on flexible Zeonor plastic substrates,” Mater. Res. Express 2(9), 096401 (2015).
[Crossref]

Mater. Sci. Semicond. Process. (1)

J. Lu, Z. Ye, L. Wang, J. Huang, and B. Zhao, “Structural, electrical and optical properties of N-doped ZnO films synthesized by SS-CVD,” Mater. Sci. Semicond. Process. 5(6), 491–496 (2002).
[Crossref]

Mater. Today (1)

L. Schmidt-Mende and J. L. MacManus-Driscoll, “ZnO–nanostructures, defects, and devices,” Mater. Today 10(5), 40–48 (2007).
[Crossref]

Materials (1)

D. Sun, C. Tan, X. Tian, and Y. Huang, “Comparative Study on ZnO Monolayer Doped with Al, Ga and In Atoms as Transparent Electrodes,” Materials 10(7), 703 (2017).
[Crossref]

Nano Lett. (1)

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett. 6(9), 1880–1886 (2006).
[Crossref]

Nat. Commun. (1)

H. Yao, G. Zheng, P.-C. Hsu, D. Kong, J. J. Cha, W. Li, Z. W. Seh, M. T. McDowell, K. Yan, and Z. Liang, “Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface,” Nat. Commun. 5(1), 3943 (2014).
[Crossref]

Nature (1)

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488–492 (2004).
[Crossref]

Opt. Mater. Express (2)

Optik (1)

C. Moditswe, C. M. Muiva, and A. Juma, “Highly conductive and transparent Ga-doped ZnO thin films deposited by chemical spray pyrolysis,” Optik 127(20), 8317–8325 (2016).
[Crossref]

Phys. Rev. Lett. (1)

F. Selim, M. Weber, D. Solodovnikov, and K. Lynn, “Nature of native defects in ZnO,” Phys. Rev. Lett. 99(8), 085502 (2007).
[Crossref]

Phys. Rev. Mater. (1)

H. Song, F. Tian, Q.-M. Hu, L. Vitos, Y. Wang, J. Shen, and N. Chen, “Local lattice distortion in high-entropy alloys,” Phys. Rev. Mater. 1(2), 023404 (2017).
[Crossref]

RSC Adv. (1)

K. Ravichandran, K. Subha, A. Manivasaham, M. Sridharan, T. Arun, and C. Ravidhas, “Fabrication of a novel low-cost triple layer system (TaZO/Ag/TaZO) with an enhanced quality factor for transparent electrode applications,” RSC Adv. 6(68), 63314–63324 (2016).
[Crossref]

Semicond. Sci. Technol. (1)

R. Amiruddin, S. Devasia, D. Mohammedali, and M. S. Kumar, “Investigation on PN dual acceptor doped p-type ZnO thin films and subsequent growth of pencil-like nanowires,” Semicond. Sci. Technol. 30(3), 035009 (2015).
[Crossref]

Solid State Commun. (1)

A. Yamamoto, T. Kido, T. Goto, Y. Chen, and T. Yao, “Bandgap renormalization of ZnO epitaxial thin films,” Solid State Commun. 122(1-2), 29–32 (2002).
[Crossref]

Superlattices Microstruct. (1)

M. D. Kumar, Y. C. Park, and J. Kim, “Impact of thin metal layer on the optical and electrical properties of indium-doped-tin oxide and aluminum-doped-zinc oxide layers,” Superlattices Microstruct. 82, 499–506 (2015).
[Crossref]

Thin Solid Films (3)

J.-H. Lee and B.-O. Park, “Transparent conducting ZnO: Al, In and Sn thin films deposited by the sol–gel method,” Thin Solid Films 426(1-2), 94–99 (2003).
[Crossref]

I. Sieber, N. Wanderka, I. Urban, I. Dörfel, E. Schierhorn, F. Fenske, and W. Fuhs, “Electron microscopic characterization of reactively sputtered ZnO films with different Al-doping levels,” Thin Solid Films 330(2), 108–113 (1998).
[Crossref]

D. Horwat and A. Billard, “Effects of substrate position and oxygen gas flow rate on the properties of ZnO: Al films prepared by reactive co-sputtering,” Thin Solid Films 515(13), 5444–5448 (2007).
[Crossref]

Trans. on Electr. and Electron. Mater. (1)

Y. S. Jung, Y. S. Park, K. H. Kim, and W.-J. Lee, “Properties of AZO/Ag/AZO multilayer thin film deposited on polyethersulfone substrate,” Trans. on Electr. and Electron. Mater. 14(1), 9–11 (2013).
[Crossref]

Vacuum (3)

T. Yang, Z. Zhang, S. Song, Y. Li, M. Lv, Z. Wu, and S. Han, “Structural, optical and electrical properties of AZO/Cu/AZO tri-layer films prepared by radio frequency magnetron sputtering and ion-beam sputtering,” Vacuum 83(2), 257–260 (2008).
[Crossref]

M. G. Varnamkhasti, H. R. Fallah, M. Mostajaboddavati, and A. Hassanzadeh, “Influence of Ag thickness on electrical, optical and structural properties of nanocrystalline MoO3/Ag/ITO multilayer for optoelectronic applications,” Vacuum 86(9), 1318–1322 (2012).
[Crossref]

Y. Tao, S. Ma, H. Chen, J. Meng, L. Hou, Y. Jia, and X. Shang, “Effect of the oxygen partial pressure on the microstructure and optical properties of ZnO: Cu films,” Vacuum 85(7), 744–748 (2011).
[Crossref]

Other (1)

L. Pauling, The Nature of the Chemical Bond (Cornell University Press, 1960), Vol. 260.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. XRD patterns for the AZO/Ag/AZO triple layer specimens A-G.
Fig. 2.
Fig. 2. The grain size, RMS surface roughness, and compressive residual stress for the AZO/Ag/AZO thin films expressed as a function of the AZO thickness.
Fig. 3.
Fig. 3. TEM images and SAED patterns for the AZO layer in the AZO/glass specimens. (N2, O2) flow rates are: (a) (15, 0) sccm; (b) (0, 15) sccm; (c) (12.5, 2.5) sccm.
Fig. 4.
Fig. 4. (a) Transmittance, (b) reflectance, and (c) absorptance spectrum for triple layer AZO/Ag/AZO specimens with code A-G.
Fig. 5.
Fig. 5. The transmittance and reflectance of AZO/Ag/AZO thin films as a function of AZO thickness.
Fig. 6.
Fig. 6. The absorptance coefficient of triple layer specimens A-G as a function of bandgap energy.
Fig. 7.
Fig. 7. The deconvolution of O1s profile for specimen A.
Fig. 8.
Fig. 8. Carrier mobility, carrier concentration, and resistivity for triple layer specimens as a function of (a) N2 flow rate; (b) O2 flow rate; and (C) N2 and O2 mixed gas flow rate.
Fig. 9.
Fig. 9. Oxygen vacancy ratio as a function of carrier concentration.
Fig. 10.
Fig. 10. Optical bandgap as a function of carrier concentration.

Tables (5)

Tables Icon

Table 1. The gas flow rates for the depositions of AZO layers for the AZO/Ag/AZO thin films.

Tables Icon

Table 2. The microstructural parameters of the AZO layers for AZO/Ag/AZO triple layer specimens.

Tables Icon

Table 3. Electrical properties, FOM, and optical bandgap of specimens A-G.

Tables Icon

Table 4. Relative area ratios of O1s.

Tables Icon

Table 5. Comparisons of the electrical properties for specimen C in this study and for the reported literatures.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

D = 0.9 λ β cos ( θ )
σ film = 2 c 13 2 c 33 ( c 11 + c 12 ) 2 c 13 ε film
ε film = c film c bulk c bulk
d h k l = [ 4 ( h 2 + h k + k 2 ) 3 a 2 + l 2 c film 2 ] 1 2
α = 1 t ln ( 1 T ¯ )
( α h ν ) 2 = C ( h ν E g )
ZnO O l + Z n l + O v + 2 e
Δ E BM = h 2 8 π 2 m ( 3 π 2 nP ) 3 / 2
FOM = T 10 R sh

Metrics