Abstract

La3+ is used as an index modifier to tune the refractive index of Er3+ doped Y2O3 transparent ceramics without reducing the coherence lifetime of Er3+ 4I13/24I15/2 transition. La3+ and Er3+ are incorporated into Y2O3 through a solution-phase nanoparticle synthesis and nanoparticles are sintered into transparent ceramics by hot isostatic press. The maximum La3+ doping concentration is about 10%, which increases the refractive index of Y2O3 by 0.009 (Δn/n = 0.48%). La3+ doping doesn’t reduce Er3+ optical coherence lifetime. The homogeneous linewidth of Er3+(20 ppm) 4I13/24I15/2 transition in La3+ doped Y2O3 ceramics is about 10 kHz at 2 K and 0.65 T, which is close to the reported homogeneous linewidth in Er3+ doped Y2O3 ceramics and single crystals. Such La3+ Er3+ co-doped Y2O3 ceramics are proper materials to fabricate optical waveguides for quantum memory applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Synthesis and luminescence characterization of cerium doped Lu2O3-Y2O3-La2O3 solid solution transparent ceramics

Qiu-Hong Yang, Hong-Xu Zhou, Jun Xu, and Liang-Bi Su
Opt. Express 16(16) 12290-12295 (2008)

Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics

Xiangfu Wang, Qing Liu, Peiqing Cai, Jing Wang, Lin Qin, ThiQuynh Vu, and Hyo Jin Seo
Opt. Express 24(16) 17792-17804 (2016)

Improvement of optical properties and suppression of second phase exsolution by doping fluorides in Y3Al5O12 transparent ceramics

Jintai Fan, Siyuan Chen, Benxue Jiang, Liangjie Pan, Yang Zhang, Xiaojian Mao, Xinqiang Yuan, Rihong Li, Xiongwei Jiang, and Long Zhang
Opt. Mater. Express 4(9) 1800-1806 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. de Riedmatten and M. Afzelius, “Quantum light storage in solid state atomic ensembles,” https://arxiv.org/abs/1502.00307 [quant-ph] (2015).
  2. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
    [Crossref]
  3. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
    [Crossref]
  4. T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, “Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals,” Nat. Commun. 6(1), 8206 (2015).
    [Crossref]
  5. W. Tittel, M. Afzelius, T. Chaneliére, R. L. Cone, S. Kröll, S. A. Moiseev, and M. Sellars, “Photon-echo quantum memory in solid state systems,” Laser Photonics Rev. 4(2), 244–267 (2010).
    [Crossref]
  6. C. Thiel, T. Bottger, and R. Cone, “Rare-earth-doped materials for applications in quantum information storage and signal processing,” J. Lumin. 131(3), 353–361 (2011).
    [Crossref]
  7. A. Ferrier, C. W. Thiel, B. Tumino, M. O. Ramirez, L. E. Bausá, R. L. Cone, A. Ikesue, and P. Goldner, “Narrow Inhomogeneous and homogeneous optical linewidths in a rare earth doped transparent ceramic,” Phys. Rev. B 87(4), 041102 (2013).
    [Crossref]
  8. N. Kunkel, A. Ferrier, C. W. Thiel, M. O. Ramírez, L. E. Bausá, R. L. Cone, A. Ikesue, and P. Goldner, “Rare-earth doped transparent ceramics for spectral filtering and quantum information processing,” APL Mater. 3(9), 096103 (2015).
    [Crossref]
  9. N. Kunkel, J. Bartholomew, S. Welinski, A. Ferrier, A. Ikesue, and P. Goldner, “Dephasing mechanisms of optical transitions in rare-earth-doped transparent ceramics,” Phys. Rev. B 94(18), 184301 (2016).
    [Crossref]
  10. N. Kunkel, J. Bartholomew, L. Binet, A. Ikesue, and P. Goldner, “High-resolution optical line width measurements as a material characterization tool,” J. Phys. Chem. C 120(25), 13725–13731 (2016).
    [Crossref]
  11. K. Nathalie and G. Philippe, “Recent advances in rare earth doped inorganic crystalline materials for quantum information processing,” Z. Anorg. Allg. Chem. 644(2), 66–76 (2018).
    [Crossref]
  12. H. Zhang, J. Yang, S. Gray, J. A. Brown, T. D. Ketcham, D. E. Baker, A. Carapella, R. W. Davis, J. G. Arroyo, and D. A. Nolan, “Transparent Er3+-doped Y2O3 ceramics with long optical coherence lifetime,” ACS Omega 2(7), 3739–3744 (2017).
    [Crossref]
  13. J. Yang, H. Zhang, S. Gray, T. D. Ketcham, and D. A. Nolan, “Er3+ doped Y2O3 transparent ceramic for quantum memory applications,” Proc. SPIE 10771, 1077109 (2018).
    [Crossref]
  14. O. Fabrichnaya, M. Zinkevich, and F. Aldinger, “Thermodynamic assessment of the systems La2O3-Al2O3 and La2O3-Y2O3,” Int. J. Mater. Res. 97(11), 1495–1501 (2006).
    [Crossref]
  15. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Cryst. 32(5), 751–767 (1976).
    [Crossref]
  16. T. Böttger, C. W. Thiel, R. L. Cone, and Y. Sun, “Controlled compositional disorder in Er3+:Y2SiO5 provides a wide-bandwidth spectral hole burning material at 1.5 µm,” Phys. Rev. B 77(15), 155125 (2008).
    [Crossref]
  17. N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13(19), 567–568 (1964).
    [Crossref]
  18. C. W. Thiel, W. R. Babbitt, and R. L. Cone, “Optical decoherence studies of yttrium oxyorthosilicate Y2SiO5 codoped with Er3+ and Eu3+ for optical signal processing and quantum information applications at 1.5 microns,” Phys. Rev. B 85(17), 174302 (2012).
    [Crossref]
  19. S. Welinski, C. W. Thiel, J. Dajczgewand, A. Ferrier, R. L. Cone, R. M. Macfarlane, T. Chanelière, A. Louchet-Chauvet, and P. Goldner, “Effects of disorder on optical and electron spin linewidths in Er3+, Sc3+:Y2SiO5,” Opt. Mater. 63, 69–75 (2017).
    [Crossref]

2018 (2)

K. Nathalie and G. Philippe, “Recent advances in rare earth doped inorganic crystalline materials for quantum information processing,” Z. Anorg. Allg. Chem. 644(2), 66–76 (2018).
[Crossref]

J. Yang, H. Zhang, S. Gray, T. D. Ketcham, and D. A. Nolan, “Er3+ doped Y2O3 transparent ceramic for quantum memory applications,” Proc. SPIE 10771, 1077109 (2018).
[Crossref]

2017 (2)

H. Zhang, J. Yang, S. Gray, J. A. Brown, T. D. Ketcham, D. E. Baker, A. Carapella, R. W. Davis, J. G. Arroyo, and D. A. Nolan, “Transparent Er3+-doped Y2O3 ceramics with long optical coherence lifetime,” ACS Omega 2(7), 3739–3744 (2017).
[Crossref]

S. Welinski, C. W. Thiel, J. Dajczgewand, A. Ferrier, R. L. Cone, R. M. Macfarlane, T. Chanelière, A. Louchet-Chauvet, and P. Goldner, “Effects of disorder on optical and electron spin linewidths in Er3+, Sc3+:Y2SiO5,” Opt. Mater. 63, 69–75 (2017).
[Crossref]

2016 (2)

N. Kunkel, J. Bartholomew, S. Welinski, A. Ferrier, A. Ikesue, and P. Goldner, “Dephasing mechanisms of optical transitions in rare-earth-doped transparent ceramics,” Phys. Rev. B 94(18), 184301 (2016).
[Crossref]

N. Kunkel, J. Bartholomew, L. Binet, A. Ikesue, and P. Goldner, “High-resolution optical line width measurements as a material characterization tool,” J. Phys. Chem. C 120(25), 13725–13731 (2016).
[Crossref]

2015 (2)

T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, “Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals,” Nat. Commun. 6(1), 8206 (2015).
[Crossref]

N. Kunkel, A. Ferrier, C. W. Thiel, M. O. Ramírez, L. E. Bausá, R. L. Cone, A. Ikesue, and P. Goldner, “Rare-earth doped transparent ceramics for spectral filtering and quantum information processing,” APL Mater. 3(9), 096103 (2015).
[Crossref]

2013 (1)

A. Ferrier, C. W. Thiel, B. Tumino, M. O. Ramirez, L. E. Bausá, R. L. Cone, A. Ikesue, and P. Goldner, “Narrow Inhomogeneous and homogeneous optical linewidths in a rare earth doped transparent ceramic,” Phys. Rev. B 87(4), 041102 (2013).
[Crossref]

2012 (1)

C. W. Thiel, W. R. Babbitt, and R. L. Cone, “Optical decoherence studies of yttrium oxyorthosilicate Y2SiO5 codoped with Er3+ and Eu3+ for optical signal processing and quantum information applications at 1.5 microns,” Phys. Rev. B 85(17), 174302 (2012).
[Crossref]

2011 (1)

C. Thiel, T. Bottger, and R. Cone, “Rare-earth-doped materials for applications in quantum information storage and signal processing,” J. Lumin. 131(3), 353–361 (2011).
[Crossref]

2010 (1)

W. Tittel, M. Afzelius, T. Chaneliére, R. L. Cone, S. Kröll, S. A. Moiseev, and M. Sellars, “Photon-echo quantum memory in solid state systems,” Laser Photonics Rev. 4(2), 244–267 (2010).
[Crossref]

2009 (1)

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
[Crossref]

2008 (1)

T. Böttger, C. W. Thiel, R. L. Cone, and Y. Sun, “Controlled compositional disorder in Er3+:Y2SiO5 provides a wide-bandwidth spectral hole burning material at 1.5 µm,” Phys. Rev. B 77(15), 155125 (2008).
[Crossref]

2006 (1)

O. Fabrichnaya, M. Zinkevich, and F. Aldinger, “Thermodynamic assessment of the systems La2O3-Al2O3 and La2O3-Y2O3,” Int. J. Mater. Res. 97(11), 1495–1501 (2006).
[Crossref]

2005 (1)

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[Crossref]

1976 (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Cryst. 32(5), 751–767 (1976).
[Crossref]

1964 (1)

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13(19), 567–568 (1964).
[Crossref]

Abella, I. D.

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13(19), 567–568 (1964).
[Crossref]

Afzelius, M.

W. Tittel, M. Afzelius, T. Chaneliére, R. L. Cone, S. Kröll, S. A. Moiseev, and M. Sellars, “Photon-echo quantum memory in solid state systems,” Laser Photonics Rev. 4(2), 244–267 (2010).
[Crossref]

H. de Riedmatten and M. Afzelius, “Quantum light storage in solid state atomic ensembles,” https://arxiv.org/abs/1502.00307 [quant-ph] (2015).

Aldinger, F.

O. Fabrichnaya, M. Zinkevich, and F. Aldinger, “Thermodynamic assessment of the systems La2O3-Al2O3 and La2O3-Y2O3,” Int. J. Mater. Res. 97(11), 1495–1501 (2006).
[Crossref]

Arroyo, J. G.

H. Zhang, J. Yang, S. Gray, J. A. Brown, T. D. Ketcham, D. E. Baker, A. Carapella, R. W. Davis, J. G. Arroyo, and D. A. Nolan, “Transparent Er3+-doped Y2O3 ceramics with long optical coherence lifetime,” ACS Omega 2(7), 3739–3744 (2017).
[Crossref]

Babbitt, W. R.

C. W. Thiel, W. R. Babbitt, and R. L. Cone, “Optical decoherence studies of yttrium oxyorthosilicate Y2SiO5 codoped with Er3+ and Eu3+ for optical signal processing and quantum information applications at 1.5 microns,” Phys. Rev. B 85(17), 174302 (2012).
[Crossref]

Baker, D. E.

H. Zhang, J. Yang, S. Gray, J. A. Brown, T. D. Ketcham, D. E. Baker, A. Carapella, R. W. Davis, J. G. Arroyo, and D. A. Nolan, “Transparent Er3+-doped Y2O3 ceramics with long optical coherence lifetime,” ACS Omega 2(7), 3739–3744 (2017).
[Crossref]

Bartholomew, J.

N. Kunkel, J. Bartholomew, S. Welinski, A. Ferrier, A. Ikesue, and P. Goldner, “Dephasing mechanisms of optical transitions in rare-earth-doped transparent ceramics,” Phys. Rev. B 94(18), 184301 (2016).
[Crossref]

N. Kunkel, J. Bartholomew, L. Binet, A. Ikesue, and P. Goldner, “High-resolution optical line width measurements as a material characterization tool,” J. Phys. Chem. C 120(25), 13725–13731 (2016).
[Crossref]

Bausá, L. E.

N. Kunkel, A. Ferrier, C. W. Thiel, M. O. Ramírez, L. E. Bausá, R. L. Cone, A. Ikesue, and P. Goldner, “Rare-earth doped transparent ceramics for spectral filtering and quantum information processing,” APL Mater. 3(9), 096103 (2015).
[Crossref]

A. Ferrier, C. W. Thiel, B. Tumino, M. O. Ramirez, L. E. Bausá, R. L. Cone, A. Ikesue, and P. Goldner, “Narrow Inhomogeneous and homogeneous optical linewidths in a rare earth doped transparent ceramic,” Phys. Rev. B 87(4), 041102 (2013).
[Crossref]

Binet, L.

N. Kunkel, J. Bartholomew, L. Binet, A. Ikesue, and P. Goldner, “High-resolution optical line width measurements as a material characterization tool,” J. Phys. Chem. C 120(25), 13725–13731 (2016).
[Crossref]

Bottger, T.

C. Thiel, T. Bottger, and R. Cone, “Rare-earth-doped materials for applications in quantum information storage and signal processing,” J. Lumin. 131(3), 353–361 (2011).
[Crossref]

Böttger, T.

T. Böttger, C. W. Thiel, R. L. Cone, and Y. Sun, “Controlled compositional disorder in Er3+:Y2SiO5 provides a wide-bandwidth spectral hole burning material at 1.5 µm,” Phys. Rev. B 77(15), 155125 (2008).
[Crossref]

Brown, J. A.

H. Zhang, J. Yang, S. Gray, J. A. Brown, T. D. Ketcham, D. E. Baker, A. Carapella, R. W. Davis, J. G. Arroyo, and D. A. Nolan, “Transparent Er3+-doped Y2O3 ceramics with long optical coherence lifetime,” ACS Omega 2(7), 3739–3744 (2017).
[Crossref]

Carapella, A.

H. Zhang, J. Yang, S. Gray, J. A. Brown, T. D. Ketcham, D. E. Baker, A. Carapella, R. W. Davis, J. G. Arroyo, and D. A. Nolan, “Transparent Er3+-doped Y2O3 ceramics with long optical coherence lifetime,” ACS Omega 2(7), 3739–3744 (2017).
[Crossref]

Chaneliére, T.

W. Tittel, M. Afzelius, T. Chaneliére, R. L. Cone, S. Kröll, S. A. Moiseev, and M. Sellars, “Photon-echo quantum memory in solid state systems,” Laser Photonics Rev. 4(2), 244–267 (2010).
[Crossref]

Chanelière, T.

S. Welinski, C. W. Thiel, J. Dajczgewand, A. Ferrier, R. L. Cone, R. M. Macfarlane, T. Chanelière, A. Louchet-Chauvet, and P. Goldner, “Effects of disorder on optical and electron spin linewidths in Er3+, Sc3+:Y2SiO5,” Opt. Mater. 63, 69–75 (2017).
[Crossref]

Cone, R.

C. Thiel, T. Bottger, and R. Cone, “Rare-earth-doped materials for applications in quantum information storage and signal processing,” J. Lumin. 131(3), 353–361 (2011).
[Crossref]

Cone, R. L.

S. Welinski, C. W. Thiel, J. Dajczgewand, A. Ferrier, R. L. Cone, R. M. Macfarlane, T. Chanelière, A. Louchet-Chauvet, and P. Goldner, “Effects of disorder on optical and electron spin linewidths in Er3+, Sc3+:Y2SiO5,” Opt. Mater. 63, 69–75 (2017).
[Crossref]

N. Kunkel, A. Ferrier, C. W. Thiel, M. O. Ramírez, L. E. Bausá, R. L. Cone, A. Ikesue, and P. Goldner, “Rare-earth doped transparent ceramics for spectral filtering and quantum information processing,” APL Mater. 3(9), 096103 (2015).
[Crossref]

A. Ferrier, C. W. Thiel, B. Tumino, M. O. Ramirez, L. E. Bausá, R. L. Cone, A. Ikesue, and P. Goldner, “Narrow Inhomogeneous and homogeneous optical linewidths in a rare earth doped transparent ceramic,” Phys. Rev. B 87(4), 041102 (2013).
[Crossref]

C. W. Thiel, W. R. Babbitt, and R. L. Cone, “Optical decoherence studies of yttrium oxyorthosilicate Y2SiO5 codoped with Er3+ and Eu3+ for optical signal processing and quantum information applications at 1.5 microns,” Phys. Rev. B 85(17), 174302 (2012).
[Crossref]

W. Tittel, M. Afzelius, T. Chaneliére, R. L. Cone, S. Kröll, S. A. Moiseev, and M. Sellars, “Photon-echo quantum memory in solid state systems,” Laser Photonics Rev. 4(2), 244–267 (2010).
[Crossref]

T. Böttger, C. W. Thiel, R. L. Cone, and Y. Sun, “Controlled compositional disorder in Er3+:Y2SiO5 provides a wide-bandwidth spectral hole burning material at 1.5 µm,” Phys. Rev. B 77(15), 155125 (2008).
[Crossref]

Dajczgewand, J.

S. Welinski, C. W. Thiel, J. Dajczgewand, A. Ferrier, R. L. Cone, R. M. Macfarlane, T. Chanelière, A. Louchet-Chauvet, and P. Goldner, “Effects of disorder on optical and electron spin linewidths in Er3+, Sc3+:Y2SiO5,” Opt. Mater. 63, 69–75 (2017).
[Crossref]

Davis, R. W.

H. Zhang, J. Yang, S. Gray, J. A. Brown, T. D. Ketcham, D. E. Baker, A. Carapella, R. W. Davis, J. G. Arroyo, and D. A. Nolan, “Transparent Er3+-doped Y2O3 ceramics with long optical coherence lifetime,” ACS Omega 2(7), 3739–3744 (2017).
[Crossref]

de Riedmatten, H.

H. de Riedmatten and M. Afzelius, “Quantum light storage in solid state atomic ensembles,” https://arxiv.org/abs/1502.00307 [quant-ph] (2015).

Fabrichnaya, O.

O. Fabrichnaya, M. Zinkevich, and F. Aldinger, “Thermodynamic assessment of the systems La2O3-Al2O3 and La2O3-Y2O3,” Int. J. Mater. Res. 97(11), 1495–1501 (2006).
[Crossref]

Faraon, A.

T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, “Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals,” Nat. Commun. 6(1), 8206 (2015).
[Crossref]

Ferrier, A.

S. Welinski, C. W. Thiel, J. Dajczgewand, A. Ferrier, R. L. Cone, R. M. Macfarlane, T. Chanelière, A. Louchet-Chauvet, and P. Goldner, “Effects of disorder on optical and electron spin linewidths in Er3+, Sc3+:Y2SiO5,” Opt. Mater. 63, 69–75 (2017).
[Crossref]

N. Kunkel, J. Bartholomew, S. Welinski, A. Ferrier, A. Ikesue, and P. Goldner, “Dephasing mechanisms of optical transitions in rare-earth-doped transparent ceramics,” Phys. Rev. B 94(18), 184301 (2016).
[Crossref]

N. Kunkel, A. Ferrier, C. W. Thiel, M. O. Ramírez, L. E. Bausá, R. L. Cone, A. Ikesue, and P. Goldner, “Rare-earth doped transparent ceramics for spectral filtering and quantum information processing,” APL Mater. 3(9), 096103 (2015).
[Crossref]

A. Ferrier, C. W. Thiel, B. Tumino, M. O. Ramirez, L. E. Bausá, R. L. Cone, A. Ikesue, and P. Goldner, “Narrow Inhomogeneous and homogeneous optical linewidths in a rare earth doped transparent ceramic,” Phys. Rev. B 87(4), 041102 (2013).
[Crossref]

Fraval, E.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[Crossref]

Goldner, P.

S. Welinski, C. W. Thiel, J. Dajczgewand, A. Ferrier, R. L. Cone, R. M. Macfarlane, T. Chanelière, A. Louchet-Chauvet, and P. Goldner, “Effects of disorder on optical and electron spin linewidths in Er3+, Sc3+:Y2SiO5,” Opt. Mater. 63, 69–75 (2017).
[Crossref]

N. Kunkel, J. Bartholomew, S. Welinski, A. Ferrier, A. Ikesue, and P. Goldner, “Dephasing mechanisms of optical transitions in rare-earth-doped transparent ceramics,” Phys. Rev. B 94(18), 184301 (2016).
[Crossref]

N. Kunkel, J. Bartholomew, L. Binet, A. Ikesue, and P. Goldner, “High-resolution optical line width measurements as a material characterization tool,” J. Phys. Chem. C 120(25), 13725–13731 (2016).
[Crossref]

N. Kunkel, A. Ferrier, C. W. Thiel, M. O. Ramírez, L. E. Bausá, R. L. Cone, A. Ikesue, and P. Goldner, “Rare-earth doped transparent ceramics for spectral filtering and quantum information processing,” APL Mater. 3(9), 096103 (2015).
[Crossref]

A. Ferrier, C. W. Thiel, B. Tumino, M. O. Ramirez, L. E. Bausá, R. L. Cone, A. Ikesue, and P. Goldner, “Narrow Inhomogeneous and homogeneous optical linewidths in a rare earth doped transparent ceramic,” Phys. Rev. B 87(4), 041102 (2013).
[Crossref]

Gray, S.

J. Yang, H. Zhang, S. Gray, T. D. Ketcham, and D. A. Nolan, “Er3+ doped Y2O3 transparent ceramic for quantum memory applications,” Proc. SPIE 10771, 1077109 (2018).
[Crossref]

H. Zhang, J. Yang, S. Gray, J. A. Brown, T. D. Ketcham, D. E. Baker, A. Carapella, R. W. Davis, J. G. Arroyo, and D. A. Nolan, “Transparent Er3+-doped Y2O3 ceramics with long optical coherence lifetime,” ACS Omega 2(7), 3739–3744 (2017).
[Crossref]

Hartmann, S. R.

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13(19), 567–568 (1964).
[Crossref]

Ikesue, A.

N. Kunkel, J. Bartholomew, L. Binet, A. Ikesue, and P. Goldner, “High-resolution optical line width measurements as a material characterization tool,” J. Phys. Chem. C 120(25), 13725–13731 (2016).
[Crossref]

N. Kunkel, J. Bartholomew, S. Welinski, A. Ferrier, A. Ikesue, and P. Goldner, “Dephasing mechanisms of optical transitions in rare-earth-doped transparent ceramics,” Phys. Rev. B 94(18), 184301 (2016).
[Crossref]

N. Kunkel, A. Ferrier, C. W. Thiel, M. O. Ramírez, L. E. Bausá, R. L. Cone, A. Ikesue, and P. Goldner, “Rare-earth doped transparent ceramics for spectral filtering and quantum information processing,” APL Mater. 3(9), 096103 (2015).
[Crossref]

A. Ferrier, C. W. Thiel, B. Tumino, M. O. Ramirez, L. E. Bausá, R. L. Cone, A. Ikesue, and P. Goldner, “Narrow Inhomogeneous and homogeneous optical linewidths in a rare earth doped transparent ceramic,” Phys. Rev. B 87(4), 041102 (2013).
[Crossref]

Ketcham, T. D.

J. Yang, H. Zhang, S. Gray, T. D. Ketcham, and D. A. Nolan, “Er3+ doped Y2O3 transparent ceramic for quantum memory applications,” Proc. SPIE 10771, 1077109 (2018).
[Crossref]

H. Zhang, J. Yang, S. Gray, J. A. Brown, T. D. Ketcham, D. E. Baker, A. Carapella, R. W. Davis, J. G. Arroyo, and D. A. Nolan, “Transparent Er3+-doped Y2O3 ceramics with long optical coherence lifetime,” ACS Omega 2(7), 3739–3744 (2017).
[Crossref]

Kindem, J. M.

T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, “Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals,” Nat. Commun. 6(1), 8206 (2015).
[Crossref]

Kröll, S.

W. Tittel, M. Afzelius, T. Chaneliére, R. L. Cone, S. Kröll, S. A. Moiseev, and M. Sellars, “Photon-echo quantum memory in solid state systems,” Laser Photonics Rev. 4(2), 244–267 (2010).
[Crossref]

Kunkel, N.

N. Kunkel, J. Bartholomew, L. Binet, A. Ikesue, and P. Goldner, “High-resolution optical line width measurements as a material characterization tool,” J. Phys. Chem. C 120(25), 13725–13731 (2016).
[Crossref]

N. Kunkel, J. Bartholomew, S. Welinski, A. Ferrier, A. Ikesue, and P. Goldner, “Dephasing mechanisms of optical transitions in rare-earth-doped transparent ceramics,” Phys. Rev. B 94(18), 184301 (2016).
[Crossref]

N. Kunkel, A. Ferrier, C. W. Thiel, M. O. Ramírez, L. E. Bausá, R. L. Cone, A. Ikesue, and P. Goldner, “Rare-earth doped transparent ceramics for spectral filtering and quantum information processing,” APL Mater. 3(9), 096103 (2015).
[Crossref]

Kurnit, N. A.

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13(19), 567–568 (1964).
[Crossref]

Longdell, J. J.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[Crossref]

Louchet-Chauvet, A.

S. Welinski, C. W. Thiel, J. Dajczgewand, A. Ferrier, R. L. Cone, R. M. Macfarlane, T. Chanelière, A. Louchet-Chauvet, and P. Goldner, “Effects of disorder on optical and electron spin linewidths in Er3+, Sc3+:Y2SiO5,” Opt. Mater. 63, 69–75 (2017).
[Crossref]

Lvovsky, A. I.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
[Crossref]

Macfarlane, R. M.

S. Welinski, C. W. Thiel, J. Dajczgewand, A. Ferrier, R. L. Cone, R. M. Macfarlane, T. Chanelière, A. Louchet-Chauvet, and P. Goldner, “Effects of disorder on optical and electron spin linewidths in Er3+, Sc3+:Y2SiO5,” Opt. Mater. 63, 69–75 (2017).
[Crossref]

Manson, N. B.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[Crossref]

Miyazono, E.

T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, “Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals,” Nat. Commun. 6(1), 8206 (2015).
[Crossref]

Moiseev, S. A.

W. Tittel, M. Afzelius, T. Chaneliére, R. L. Cone, S. Kröll, S. A. Moiseev, and M. Sellars, “Photon-echo quantum memory in solid state systems,” Laser Photonics Rev. 4(2), 244–267 (2010).
[Crossref]

Nathalie, K.

K. Nathalie and G. Philippe, “Recent advances in rare earth doped inorganic crystalline materials for quantum information processing,” Z. Anorg. Allg. Chem. 644(2), 66–76 (2018).
[Crossref]

Nolan, D. A.

J. Yang, H. Zhang, S. Gray, T. D. Ketcham, and D. A. Nolan, “Er3+ doped Y2O3 transparent ceramic for quantum memory applications,” Proc. SPIE 10771, 1077109 (2018).
[Crossref]

H. Zhang, J. Yang, S. Gray, J. A. Brown, T. D. Ketcham, D. E. Baker, A. Carapella, R. W. Davis, J. G. Arroyo, and D. A. Nolan, “Transparent Er3+-doped Y2O3 ceramics with long optical coherence lifetime,” ACS Omega 2(7), 3739–3744 (2017).
[Crossref]

Philippe, G.

K. Nathalie and G. Philippe, “Recent advances in rare earth doped inorganic crystalline materials for quantum information processing,” Z. Anorg. Allg. Chem. 644(2), 66–76 (2018).
[Crossref]

Ramirez, M. O.

A. Ferrier, C. W. Thiel, B. Tumino, M. O. Ramirez, L. E. Bausá, R. L. Cone, A. Ikesue, and P. Goldner, “Narrow Inhomogeneous and homogeneous optical linewidths in a rare earth doped transparent ceramic,” Phys. Rev. B 87(4), 041102 (2013).
[Crossref]

Ramírez, M. O.

N. Kunkel, A. Ferrier, C. W. Thiel, M. O. Ramírez, L. E. Bausá, R. L. Cone, A. Ikesue, and P. Goldner, “Rare-earth doped transparent ceramics for spectral filtering and quantum information processing,” APL Mater. 3(9), 096103 (2015).
[Crossref]

Sanders, B. C.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
[Crossref]

Sellars, M.

W. Tittel, M. Afzelius, T. Chaneliére, R. L. Cone, S. Kröll, S. A. Moiseev, and M. Sellars, “Photon-echo quantum memory in solid state systems,” Laser Photonics Rev. 4(2), 244–267 (2010).
[Crossref]

Sellars, M. J.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[Crossref]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Cryst. 32(5), 751–767 (1976).
[Crossref]

Sun, Y.

T. Böttger, C. W. Thiel, R. L. Cone, and Y. Sun, “Controlled compositional disorder in Er3+:Y2SiO5 provides a wide-bandwidth spectral hole burning material at 1.5 µm,” Phys. Rev. B 77(15), 155125 (2008).
[Crossref]

Thiel, C.

C. Thiel, T. Bottger, and R. Cone, “Rare-earth-doped materials for applications in quantum information storage and signal processing,” J. Lumin. 131(3), 353–361 (2011).
[Crossref]

Thiel, C. W.

S. Welinski, C. W. Thiel, J. Dajczgewand, A. Ferrier, R. L. Cone, R. M. Macfarlane, T. Chanelière, A. Louchet-Chauvet, and P. Goldner, “Effects of disorder on optical and electron spin linewidths in Er3+, Sc3+:Y2SiO5,” Opt. Mater. 63, 69–75 (2017).
[Crossref]

N. Kunkel, A. Ferrier, C. W. Thiel, M. O. Ramírez, L. E. Bausá, R. L. Cone, A. Ikesue, and P. Goldner, “Rare-earth doped transparent ceramics for spectral filtering and quantum information processing,” APL Mater. 3(9), 096103 (2015).
[Crossref]

A. Ferrier, C. W. Thiel, B. Tumino, M. O. Ramirez, L. E. Bausá, R. L. Cone, A. Ikesue, and P. Goldner, “Narrow Inhomogeneous and homogeneous optical linewidths in a rare earth doped transparent ceramic,” Phys. Rev. B 87(4), 041102 (2013).
[Crossref]

C. W. Thiel, W. R. Babbitt, and R. L. Cone, “Optical decoherence studies of yttrium oxyorthosilicate Y2SiO5 codoped with Er3+ and Eu3+ for optical signal processing and quantum information applications at 1.5 microns,” Phys. Rev. B 85(17), 174302 (2012).
[Crossref]

T. Böttger, C. W. Thiel, R. L. Cone, and Y. Sun, “Controlled compositional disorder in Er3+:Y2SiO5 provides a wide-bandwidth spectral hole burning material at 1.5 µm,” Phys. Rev. B 77(15), 155125 (2008).
[Crossref]

Tittel, W.

W. Tittel, M. Afzelius, T. Chaneliére, R. L. Cone, S. Kröll, S. A. Moiseev, and M. Sellars, “Photon-echo quantum memory in solid state systems,” Laser Photonics Rev. 4(2), 244–267 (2010).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
[Crossref]

Tumino, B.

A. Ferrier, C. W. Thiel, B. Tumino, M. O. Ramirez, L. E. Bausá, R. L. Cone, A. Ikesue, and P. Goldner, “Narrow Inhomogeneous and homogeneous optical linewidths in a rare earth doped transparent ceramic,” Phys. Rev. B 87(4), 041102 (2013).
[Crossref]

Welinski, S.

S. Welinski, C. W. Thiel, J. Dajczgewand, A. Ferrier, R. L. Cone, R. M. Macfarlane, T. Chanelière, A. Louchet-Chauvet, and P. Goldner, “Effects of disorder on optical and electron spin linewidths in Er3+, Sc3+:Y2SiO5,” Opt. Mater. 63, 69–75 (2017).
[Crossref]

N. Kunkel, J. Bartholomew, S. Welinski, A. Ferrier, A. Ikesue, and P. Goldner, “Dephasing mechanisms of optical transitions in rare-earth-doped transparent ceramics,” Phys. Rev. B 94(18), 184301 (2016).
[Crossref]

Yang, J.

J. Yang, H. Zhang, S. Gray, T. D. Ketcham, and D. A. Nolan, “Er3+ doped Y2O3 transparent ceramic for quantum memory applications,” Proc. SPIE 10771, 1077109 (2018).
[Crossref]

H. Zhang, J. Yang, S. Gray, J. A. Brown, T. D. Ketcham, D. E. Baker, A. Carapella, R. W. Davis, J. G. Arroyo, and D. A. Nolan, “Transparent Er3+-doped Y2O3 ceramics with long optical coherence lifetime,” ACS Omega 2(7), 3739–3744 (2017).
[Crossref]

Zhang, H.

J. Yang, H. Zhang, S. Gray, T. D. Ketcham, and D. A. Nolan, “Er3+ doped Y2O3 transparent ceramic for quantum memory applications,” Proc. SPIE 10771, 1077109 (2018).
[Crossref]

H. Zhang, J. Yang, S. Gray, J. A. Brown, T. D. Ketcham, D. E. Baker, A. Carapella, R. W. Davis, J. G. Arroyo, and D. A. Nolan, “Transparent Er3+-doped Y2O3 ceramics with long optical coherence lifetime,” ACS Omega 2(7), 3739–3744 (2017).
[Crossref]

Zhong, T.

T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, “Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals,” Nat. Commun. 6(1), 8206 (2015).
[Crossref]

Zinkevich, M.

O. Fabrichnaya, M. Zinkevich, and F. Aldinger, “Thermodynamic assessment of the systems La2O3-Al2O3 and La2O3-Y2O3,” Int. J. Mater. Res. 97(11), 1495–1501 (2006).
[Crossref]

ACS Omega (1)

H. Zhang, J. Yang, S. Gray, J. A. Brown, T. D. Ketcham, D. E. Baker, A. Carapella, R. W. Davis, J. G. Arroyo, and D. A. Nolan, “Transparent Er3+-doped Y2O3 ceramics with long optical coherence lifetime,” ACS Omega 2(7), 3739–3744 (2017).
[Crossref]

Acta Cryst. (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Cryst. 32(5), 751–767 (1976).
[Crossref]

APL Mater. (1)

N. Kunkel, A. Ferrier, C. W. Thiel, M. O. Ramírez, L. E. Bausá, R. L. Cone, A. Ikesue, and P. Goldner, “Rare-earth doped transparent ceramics for spectral filtering and quantum information processing,” APL Mater. 3(9), 096103 (2015).
[Crossref]

Int. J. Mater. Res. (1)

O. Fabrichnaya, M. Zinkevich, and F. Aldinger, “Thermodynamic assessment of the systems La2O3-Al2O3 and La2O3-Y2O3,” Int. J. Mater. Res. 97(11), 1495–1501 (2006).
[Crossref]

J. Lumin. (1)

C. Thiel, T. Bottger, and R. Cone, “Rare-earth-doped materials for applications in quantum information storage and signal processing,” J. Lumin. 131(3), 353–361 (2011).
[Crossref]

J. Phys. Chem. C (1)

N. Kunkel, J. Bartholomew, L. Binet, A. Ikesue, and P. Goldner, “High-resolution optical line width measurements as a material characterization tool,” J. Phys. Chem. C 120(25), 13725–13731 (2016).
[Crossref]

Laser Photonics Rev. (1)

W. Tittel, M. Afzelius, T. Chaneliére, R. L. Cone, S. Kröll, S. A. Moiseev, and M. Sellars, “Photon-echo quantum memory in solid state systems,” Laser Photonics Rev. 4(2), 244–267 (2010).
[Crossref]

Nat. Commun. (1)

T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, “Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals,” Nat. Commun. 6(1), 8206 (2015).
[Crossref]

Nat. Photonics (1)

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3(12), 706–714 (2009).
[Crossref]

Opt. Mater. (1)

S. Welinski, C. W. Thiel, J. Dajczgewand, A. Ferrier, R. L. Cone, R. M. Macfarlane, T. Chanelière, A. Louchet-Chauvet, and P. Goldner, “Effects of disorder on optical and electron spin linewidths in Er3+, Sc3+:Y2SiO5,” Opt. Mater. 63, 69–75 (2017).
[Crossref]

Phys. Rev. B (4)

C. W. Thiel, W. R. Babbitt, and R. L. Cone, “Optical decoherence studies of yttrium oxyorthosilicate Y2SiO5 codoped with Er3+ and Eu3+ for optical signal processing and quantum information applications at 1.5 microns,” Phys. Rev. B 85(17), 174302 (2012).
[Crossref]

A. Ferrier, C. W. Thiel, B. Tumino, M. O. Ramirez, L. E. Bausá, R. L. Cone, A. Ikesue, and P. Goldner, “Narrow Inhomogeneous and homogeneous optical linewidths in a rare earth doped transparent ceramic,” Phys. Rev. B 87(4), 041102 (2013).
[Crossref]

N. Kunkel, J. Bartholomew, S. Welinski, A. Ferrier, A. Ikesue, and P. Goldner, “Dephasing mechanisms of optical transitions in rare-earth-doped transparent ceramics,” Phys. Rev. B 94(18), 184301 (2016).
[Crossref]

T. Böttger, C. W. Thiel, R. L. Cone, and Y. Sun, “Controlled compositional disorder in Er3+:Y2SiO5 provides a wide-bandwidth spectral hole burning material at 1.5 µm,” Phys. Rev. B 77(15), 155125 (2008).
[Crossref]

Phys. Rev. Lett. (2)

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13(19), 567–568 (1964).
[Crossref]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[Crossref]

Proc. SPIE (1)

J. Yang, H. Zhang, S. Gray, T. D. Ketcham, and D. A. Nolan, “Er3+ doped Y2O3 transparent ceramic for quantum memory applications,” Proc. SPIE 10771, 1077109 (2018).
[Crossref]

Z. Anorg. Allg. Chem. (1)

K. Nathalie and G. Philippe, “Recent advances in rare earth doped inorganic crystalline materials for quantum information processing,” Z. Anorg. Allg. Chem. 644(2), 66–76 (2018).
[Crossref]

Other (1)

H. de Riedmatten and M. Afzelius, “Quantum light storage in solid state atomic ensembles,” https://arxiv.org/abs/1502.00307 [quant-ph] (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. a) Scanning electron microscopy images of La3+(2%), Er3+(20 ppm) co-doped Y2O3 NPs. b) Powder X-ray diffraction pattern of La3+(10%), Er3+(20 ppm) co-doped Y2O3 nanoparticles. The red stick pattern corresponds to PDF 00-041-1105 (cubic Y2O3). c) Unit cell parameters of Y2O3 nanoparticles doped with different concentrations of La3+. The unit cell parameters are calculated by Rietveld refinement of XRD patterns.
Fig. 2.
Fig. 2. a) Axial optical transmission through the thickness (1.6 mm) of a La3+(2%), Er3+(20 ppm) co-doped Y2O3 ceramic sample. A dip at about 850 nm is due to detector switch. b) Optical refractive index of Y2O3 transparent ceramics doped with different concentrations of La3+.
Fig. 3.
Fig. 3. Electron back scattering diffraction (EBSD) images of grains in Er3+(20 ppm)-Y2O3 transparent ceramics doped with different concentrations of La3+. The ceramics are prepared by the same thermal process. The black dots at grain boundaries are where EBSD couldn’t identify crystal orientations. a) Y2O3; the average grain area is 1072 µm2. b) 1% La3+ doping; the average grain area is 398 µm2. c) 4% La3+ doping; the average grain area is 1 µm2. The average grain area is calculated by > 1500 grains. The scale bar is 100 µm in Fig. 3(a) and Fig. 3(b), 10 µm in Fig. 3(c).
Fig. 4.
Fig. 4. a) Inhomogeneous linewidth ${\Gamma _{inh}}$ of Er3+(20 ppm)-Y2O3 transparent ceramics co-doped with different concentrations of La3+, measured at 1.7 K and zero magnetic field. b) Temperature dependence of the homogeneous linewidth ${\Gamma _h}$ (B = 0.65 T) of Er3+(20 ppm)-Y2O3 transparent ceramics co-doped with different concentrations of La3+.

Metrics