Abstract

A method to fabricate GaAs microcavities using only a soft mask with an electrolithographic pattern in an inductively coupled plasma etching is presented. A careful characterization of the fabrication process pinpointing the main routes for a smooth device sidewall is discussed. Using the final recipe, optomechanical microdisk resonators are fabricated. The results show very high optical quality factors of Qopt > 2 × 105, among the largest already reported for dry-etching devices. The final devices are also shown to present high mechanical quality factors and an optomechanical vacuum coupling constant of g0 = 2π × 13.6 kHz enabling self-sustainable mechanical oscillations for an optical input power above 1 mW.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High frequency optomechanical disk resonators in III–V ternary semiconductors

Biswarup Guha, Silvia Mariani, Aristide Lemaître, Sylvain Combrié, Giuseppe Leo, and Ivan Favero
Opt. Express 25(20) 24639-24649 (2017)

Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment

Matthew Borselli, Thomas J. Johnson, and Oskar Painter
Opt. Express 13(5) 1515-1530 (2005)

High yield fabrication of low threshold single-mode GaAs/AlGaAs semiconductor ring lasers using metallic etch masks

Neilanjan Dutta, Janusz A. Murakowski, Shouyuan Shi, and Dennis W. Prather
Opt. Express 18(11) 11242-11249 (2010)

References

  • View by:
  • |
  • |
  • |

  1. B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
    [Crossref]
  2. M. Karpov, M. H. P. Pfeiffer, J. Liu, A. Lukashchuk, and T. J. Kippenberg, “Photonic chip-based soliton frequency combs covering the biological imaging window,” Nat. Commun. 9(1), 1146 (2018).
    [Crossref]
  3. M. Gräfe, R. Heilmann, M. Lebugle, D. Guzman-Silva, A. Perez-Leija, and A. Szameit, “Integrated photonic quantum walks,” J. Opt. 18(10), 103002 (2016).
    [Crossref]
  4. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14(25), 12388 (2006).
    [Crossref]
  5. A. Mohanty, M. Zhang, A. Dutt, S. Ramelow, P. Nussenzveig, and M. Lipson, “Quantum interference between transverse spatial waveguide modes,” Nat. Commun. 8(1), 14010 (2017).
    [Crossref]
  6. X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
    [Crossref]
  7. J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
    [Crossref]
  8. A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13(5), 055025 (2011).
    [Crossref]
  9. C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
    [Crossref]
  10. K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10(5), 346–352 (2016).
    [Crossref]
  11. G. S. Wiederhecker, P. Dainese, and T. P. Mayer Alegre, “Brillouin optomechanics in nanophotonic structures,” APL Photonics 4(7), 071101 (2019).
    [Crossref]
  12. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
    [Crossref]
  13. R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Nonclassical correlations between single photons and phonons from a mechanical oscillator,” Nature 530(7590), 313–316 (2016).
    [Crossref]
  14. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
    [Crossref]
  15. D. Navarro-Urrios, N. E. Capuj, M. F. Colombano, P. D. García, M. Sledzinska, F. Alzina, A. Griol, A. Martínez, and C. M. Sotomayor-Torres, “Nonlinear dynamics and chaos in an optomechanical beam,” Nat. Commun. 8(1), 14965 (2017).
    [Crossref]
  16. A. H. Safavi-Naeini, D. Van Thourhout, R. Baets, and R. Van Laer, “Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics,” Optica 6(2), 213 (2019).
    [Crossref]
  17. B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nat. Photonics 13(10), 664–677 (2019).
    [Crossref]
  18. L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High Frequency GaAs Nano-Optomechanical Disk Resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
    [Crossref]
  19. W. C. Jiang, X. Lu, J. Zhang, and Q. Lin, “High-frequency silicon optomechanical oscillator with an ultralow threshold,” Opt. Express 20(14), 15991–15996 (2012).
    [Crossref]
  20. X. Sun, X. Zhang, and H. X. Tang, “High-Q silicon optomechanical microdisk resonators at gigahertz frequencies,” Appl. Phys. Lett. 100(17), 173116 (2012).
    [Crossref]
  21. A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. J. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
    [Crossref]
  22. J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3(1), 1196 (2012).
    [Crossref]
  23. M. Metcalfe, “Applications of cavity optomechanics,” Appl. Phys. Rev. 1(3), 031105 (2014).
    [Crossref]
  24. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
    [Crossref]
  25. R. Benevides, F. G. Santos, G. O. Luiz, G. S. Wiederhecker, and T. P. Mayer Alegre, “Ultrahigh-Q optomechanical crystal cavities fabricated in a CMOS foundry,” Sci. Rep. 7(1), 2491 (2017).
    [Crossref]
  26. F. G. Santos, Y. Espinel, G. de Oliveira Luiz, R. Benevides, G. Wiederhecker, and T. P. Alegre, “Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator,” Opt. Express 25(2), 508–1001 (2017).
    [Crossref]
  27. G. Luiz, R. Benevides, F. Santos, Y. Espinel, T. Mayer Alegre, and G. Wiederhecker, “Efficient anchor loss suppression in coupled near-field optomechanical resonators,” Opt. Express 25(25), 31347–31361 (2017).
    [Crossref]
  28. C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
    [Crossref]
  29. J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, and S. Stobbe, “High-Q optomechanical GaAs nanomembranes,” Appl. Phys. Lett. 99(24), 243102 (2011).
    [Crossref]
  30. K. Usami, A. Naesby, T. Bagci, B. Melholt Nielsen, J. Liu, S. Stobbe, P. Lodahl, and E. S. Polzik, “Optical cavity cooling of mechanical modes of a semiconductor nanomembrane,” Nat. Phys. 8(2), 168–172 (2012).
    [Crossref]
  31. B. Guha, S. Mariani, A. Lemaître, S. Combrié, G. Leo, and I. Favero, “High frequency optomechanical disk resonators in III-V ternary semiconductors,” Opt. Express 25(20), 24639–24649 (2017).
    [Crossref]
  32. K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica 1(6), 414 (2014).
    [Crossref]
  33. R. W. Dixon, “Photoelastic Properties of Selected Materials and Their Relevance for Applications to Acoustic Light Modulators and Scanners,” J. Appl. Phys. 38(13), 5149–5153 (1967).
    [Crossref]
  34. C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22(12), 14072 (2014).
    [Crossref]
  35. W. Yang, S. A. Gerke, K. W. Ng, Y. Rao, C. Chase, and C. J. Chang-Hasnain, “Laser optomechanics,” Sci. Rep. 5(1), 13700 (2015).
    [Crossref]
  36. D. Princepe, G. S. Wiederhecker, I. Favero, and N. C. Frateschi, “Self-Sustained Laser Pulsation in Active Optomechanical Devices,” IEEE Photonics J. 10(3), 1–10 (2018).
    [Crossref]
  37. X. Xi, J. Ma, and X. Sun, “Carrier-mediated cavity optomechanics in a semiconductor laser,” Phys. Rev. A 99(5), 053837 (2019).
    [Crossref]
  38. B. Guha, F. Marsault, F. Cadiz, L. Morgenroth, V. Ulin, V. Berkovitz, A. Lemaître, C. Gomez, A. Amo, S. Combrié, B. Gérard, G. Leo, and I. Favero, “Surface-enhanced gallium arsenide photonic resonator with a quality factor of six million,” Optica 4(2), 218–221 (2017).
    [Crossref]
  39. Y. W. Chen, B. S. Ooi, G. I. Ng, K. Radhakrishnan, and C. L. Tan, “Dry via hole etching of GaAs using high-density Cl2/Ar plasma,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 18(5), 2509 (2000).
    [Crossref]
  40. K. Liu, X.-M. Ren, Y.-Q. Huang, S.-W. Cai, X.-F. Duan, Q. Wang, C. Kang, J.-S. Li, Q.-T. Chen, and J.-R. Fei, “Inductively coupled plasma etching of GaAs in Cl2/Ar, Cl2/Ar/O2 chemistries with photoresist mask,” Appl. Surf. Sci. 356, 776–779 (2015).
    [Crossref]
  41. A. Matsutani, F. Ishiwari, Y. Shoji, T. Kajitani, T. Uehara, M. Nakagawa, and T. Fukushima, “Chlorine-based inductively coupled plasma etching of GaAs wafer using tripodal paraffinic triptycene as an etching resist mask,” Jpn. J. Appl. Phys. 55(6S1), 06GL01 (2016).
    [Crossref]
  42. A. Faraon, “Locally controlled photonic crystal devices with coupled quantum dots: physics and applications,” Ph.D. thesis, Stanford University (2009).
  43. K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, “Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots,” Appl. Phys. Lett. 86(15), 151106 (2005).
    [Crossref]
  44. S. Buckley, M. Radulaski, J. L. Zhang, J. Petykiewicz, K. Biermann, and J. Vučković, “Nonlinear frequency conversion using high-quality modes in GaAs nanobeam cavities,” Opt. Lett. 39(19), 5673 (2014).
    [Crossref]
  45. K. Rivoire, S. Buckley, and J. Vučković, “Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion,” Opt. Express 19(22), 22198 (2011).
    [Crossref]
  46. M. J. Madou, “Fundamentals of Microfabrication: The Science of Miniaturization,” Fundamentals of Microfabrication: The Science of Miniaturization p. 49 (2002).
  47. R. Kirchner, V. A. Guzenko, I. Vartiainen, N. Chidambaram, and H. Schift, “ZEP520A - A resist for electron-beam grayscale lithography and thermal reflow,” Microelectron. Eng. 153, 71–76 (2016).
    [Crossref]
  48. S. Pfirrmann, A. Voigt, A. Kolander, G. Grützner, O. Lohse, I. Harder, and V. A. Guzenko, “Towards a novel positive tone resist mr-PosEBR for high resolution electron-beam lithography,” Microelectron. Eng. 155, 67–73 (2016).
    [Crossref]
  49. A. Schleunitz, V. A. Guzenko, M. Messerschmidt, H. Atasoy, R. Kirchner, and H. Schift, “Novel 3D micro- and nanofabrication method using thermally activated selective topography equilibration (TASTE) of polymers,” Nano Convergence 1(1), 7 (2014).
    [Crossref]
  50. A. Baca and C. I. Ashby, Fabrication of GaAs devices (IET, 2009), 2nd ed.
  51. M. N. Mudholkar, G. Sai Saravanan, K. Mahadeva Bhat, C. Sridhar, H. P. Vyas, and R. Muralidharan, “Etching of 200 µm deep GaAs via holes with near vertical wall profile using photoresist mask with inductively coupled plasma,” Proceedings of the 14th International Workshop on the Physics of Semiconductor Devices, IWPSD pp. 466–468 (2007).
  52. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. J. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
    [Crossref]
  53. L. Midolo, T. Pregnolato, G. Kirsanske, and S. Stobbe, “Soft-mask fabrication of gallium arsenide nanomembranes for integrated quantum photonics,” Nanotechnology 26(48), 484002 (2015).
    [Crossref]
  54. M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Express 18(22), 23236 (2010).
    [Crossref]
  55. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for gaas and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
    [Crossref]
  56. R. Benevides, N. C. Carvalho, M. Ménard, N. C. Frateschi, G. S. Wiederhecker, and T. P. M. Alegre, “Overcoming optical spring effect with thermo-opto-mechanical coupling in GaAs microdisks,” in “Latin America Optics and Photonics Conference,” (Optical Society of America, Lima, 2018), OSA Technical Digest, p. W4D.4.
  57. K. Børkje, A. Nunnenkamp, J. D. Teufel, and S. M. Girvin, “Signatures of Nonlinear Cavity Optomechanics in the Weak Coupling Regime,” Phys. Rev. Lett. 111(5), 053603 (2013).
    [Crossref]
  58. A. G. Krause, J. T. Hill, M. Ludwig, A. H. Safavi-naeini, J. Chan, F. Marquardt, and O. Painter, “Nonlinear radiation pressure dynamics in an optomechanical crystal,” Phys. Rev. Lett. 115(23), 233601 (2015).
    [Crossref]
  59. M. A. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of Micromechanical Oscillators Using Light,” Phys. Rev. Lett. 109(23), 233906 (2012).
    [Crossref]
  60. G.-J. Qiao, H.-X. Gao, H.-D. Liu, and X. X. Yi, “Quantum synchronization of two mechanical oscillators in coupled optomechanical systems with Kerr nonlinearity,” Sci. Rep. 8(1), 15614 (2018).
    [Crossref]

2019 (4)

G. S. Wiederhecker, P. Dainese, and T. P. Mayer Alegre, “Brillouin optomechanics in nanophotonic structures,” APL Photonics 4(7), 071101 (2019).
[Crossref]

A. H. Safavi-Naeini, D. Van Thourhout, R. Baets, and R. Van Laer, “Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics,” Optica 6(2), 213 (2019).
[Crossref]

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nat. Photonics 13(10), 664–677 (2019).
[Crossref]

X. Xi, J. Ma, and X. Sun, “Carrier-mediated cavity optomechanics in a semiconductor laser,” Phys. Rev. A 99(5), 053837 (2019).
[Crossref]

2018 (7)

G.-J. Qiao, H.-X. Gao, H.-D. Liu, and X. X. Yi, “Quantum synchronization of two mechanical oscillators in coupled optomechanical systems with Kerr nonlinearity,” Sci. Rep. 8(1), 15614 (2018).
[Crossref]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref]

M. Karpov, M. H. P. Pfeiffer, J. Liu, A. Lukashchuk, and T. J. Kippenberg, “Photonic chip-based soliton frequency combs covering the biological imaging window,” Nat. Commun. 9(1), 1146 (2018).
[Crossref]

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]

D. Princepe, G. S. Wiederhecker, I. Favero, and N. C. Frateschi, “Self-Sustained Laser Pulsation in Active Optomechanical Devices,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

2017 (7)

B. Guha, S. Mariani, A. Lemaître, S. Combrié, G. Leo, and I. Favero, “High frequency optomechanical disk resonators in III-V ternary semiconductors,” Opt. Express 25(20), 24639–24649 (2017).
[Crossref]

R. Benevides, F. G. Santos, G. O. Luiz, G. S. Wiederhecker, and T. P. Mayer Alegre, “Ultrahigh-Q optomechanical crystal cavities fabricated in a CMOS foundry,” Sci. Rep. 7(1), 2491 (2017).
[Crossref]

F. G. Santos, Y. Espinel, G. de Oliveira Luiz, R. Benevides, G. Wiederhecker, and T. P. Alegre, “Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator,” Opt. Express 25(2), 508–1001 (2017).
[Crossref]

G. Luiz, R. Benevides, F. Santos, Y. Espinel, T. Mayer Alegre, and G. Wiederhecker, “Efficient anchor loss suppression in coupled near-field optomechanical resonators,” Opt. Express 25(25), 31347–31361 (2017).
[Crossref]

A. Mohanty, M. Zhang, A. Dutt, S. Ramelow, P. Nussenzveig, and M. Lipson, “Quantum interference between transverse spatial waveguide modes,” Nat. Commun. 8(1), 14010 (2017).
[Crossref]

D. Navarro-Urrios, N. E. Capuj, M. F. Colombano, P. D. García, M. Sledzinska, F. Alzina, A. Griol, A. Martínez, and C. M. Sotomayor-Torres, “Nonlinear dynamics and chaos in an optomechanical beam,” Nat. Commun. 8(1), 14965 (2017).
[Crossref]

B. Guha, F. Marsault, F. Cadiz, L. Morgenroth, V. Ulin, V. Berkovitz, A. Lemaître, C. Gomez, A. Amo, S. Combrié, B. Gérard, G. Leo, and I. Favero, “Surface-enhanced gallium arsenide photonic resonator with a quality factor of six million,” Optica 4(2), 218–221 (2017).
[Crossref]

2016 (6)

A. Matsutani, F. Ishiwari, Y. Shoji, T. Kajitani, T. Uehara, M. Nakagawa, and T. Fukushima, “Chlorine-based inductively coupled plasma etching of GaAs wafer using tripodal paraffinic triptycene as an etching resist mask,” Jpn. J. Appl. Phys. 55(6S1), 06GL01 (2016).
[Crossref]

R. Kirchner, V. A. Guzenko, I. Vartiainen, N. Chidambaram, and H. Schift, “ZEP520A - A resist for electron-beam grayscale lithography and thermal reflow,” Microelectron. Eng. 153, 71–76 (2016).
[Crossref]

S. Pfirrmann, A. Voigt, A. Kolander, G. Grützner, O. Lohse, I. Harder, and V. A. Guzenko, “Towards a novel positive tone resist mr-PosEBR for high resolution electron-beam lithography,” Microelectron. Eng. 155, 67–73 (2016).
[Crossref]

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Nonclassical correlations between single photons and phonons from a mechanical oscillator,” Nature 530(7590), 313–316 (2016).
[Crossref]

K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10(5), 346–352 (2016).
[Crossref]

M. Gräfe, R. Heilmann, M. Lebugle, D. Guzman-Silva, A. Perez-Leija, and A. Szameit, “Integrated photonic quantum walks,” J. Opt. 18(10), 103002 (2016).
[Crossref]

2015 (4)

W. Yang, S. A. Gerke, K. W. Ng, Y. Rao, C. Chase, and C. J. Chang-Hasnain, “Laser optomechanics,” Sci. Rep. 5(1), 13700 (2015).
[Crossref]

L. Midolo, T. Pregnolato, G. Kirsanske, and S. Stobbe, “Soft-mask fabrication of gallium arsenide nanomembranes for integrated quantum photonics,” Nanotechnology 26(48), 484002 (2015).
[Crossref]

K. Liu, X.-M. Ren, Y.-Q. Huang, S.-W. Cai, X.-F. Duan, Q. Wang, C. Kang, J.-S. Li, Q.-T. Chen, and J.-R. Fei, “Inductively coupled plasma etching of GaAs in Cl2/Ar, Cl2/Ar/O2 chemistries with photoresist mask,” Appl. Surf. Sci. 356, 776–779 (2015).
[Crossref]

A. G. Krause, J. T. Hill, M. Ludwig, A. H. Safavi-naeini, J. Chan, F. Marquardt, and O. Painter, “Nonlinear radiation pressure dynamics in an optomechanical crystal,” Phys. Rev. Lett. 115(23), 233601 (2015).
[Crossref]

2014 (6)

S. Buckley, M. Radulaski, J. L. Zhang, J. Petykiewicz, K. Biermann, and J. Vučković, “Nonlinear frequency conversion using high-quality modes in GaAs nanobeam cavities,” Opt. Lett. 39(19), 5673 (2014).
[Crossref]

A. Schleunitz, V. A. Guzenko, M. Messerschmidt, H. Atasoy, R. Kirchner, and H. Schift, “Novel 3D micro- and nanofabrication method using thermally activated selective topography equilibration (TASTE) of polymers,” Nano Convergence 1(1), 7 (2014).
[Crossref]

C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22(12), 14072 (2014).
[Crossref]

K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica 1(6), 414 (2014).
[Crossref]

M. Metcalfe, “Applications of cavity optomechanics,” Appl. Phys. Rev. 1(3), 031105 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

2013 (1)

K. Børkje, A. Nunnenkamp, J. D. Teufel, and S. M. Girvin, “Signatures of Nonlinear Cavity Optomechanics in the Weak Coupling Regime,” Phys. Rev. Lett. 111(5), 053603 (2013).
[Crossref]

2012 (8)

M. A. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of Micromechanical Oscillators Using Light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. J. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

K. Usami, A. Naesby, T. Bagci, B. Melholt Nielsen, J. Liu, S. Stobbe, P. Lodahl, and E. S. Polzik, “Optical cavity cooling of mechanical modes of a semiconductor nanomembrane,” Nat. Phys. 8(2), 168–172 (2012).
[Crossref]

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
[Crossref]

W. C. Jiang, X. Lu, J. Zhang, and Q. Lin, “High-frequency silicon optomechanical oscillator with an ultralow threshold,” Opt. Express 20(14), 15991–15996 (2012).
[Crossref]

X. Sun, X. Zhang, and H. X. Tang, “High-Q silicon optomechanical microdisk resonators at gigahertz frequencies,” Appl. Phys. Lett. 100(17), 173116 (2012).
[Crossref]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. J. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3(1), 1196 (2012).
[Crossref]

2011 (4)

J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, and S. Stobbe, “High-Q optomechanical GaAs nanomembranes,” Appl. Phys. Lett. 99(24), 243102 (2011).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref]

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13(5), 055025 (2011).
[Crossref]

K. Rivoire, S. Buckley, and J. Vučković, “Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion,” Opt. Express 19(22), 22198 (2011).
[Crossref]

2010 (2)

M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Express 18(22), 23236 (2010).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High Frequency GaAs Nano-Optomechanical Disk Resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref]

2009 (1)

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref]

2006 (1)

2005 (1)

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, “Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots,” Appl. Phys. Lett. 86(15), 151106 (2005).
[Crossref]

2003 (1)

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for gaas and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

2000 (1)

Y. W. Chen, B. S. Ooi, G. I. Ng, K. Radhakrishnan, and C. L. Tan, “Dry via hole etching of GaAs using high-density Cl2/Ar plasma,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 18(5), 2509 (2000).
[Crossref]

1967 (1)

R. W. Dixon, “Photoelastic Properties of Selected Materials and Their Relevance for Applications to Acoustic Light Modulators and Scanners,” J. Appl. Phys. 38(13), 5149–5153 (1967).
[Crossref]

Acín, A.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref]

Alegre, T. P.

Alegre, T. P. M.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref]

R. Benevides, N. C. Carvalho, M. Ménard, N. C. Frateschi, G. S. Wiederhecker, and T. P. M. Alegre, “Overcoming optical spring effect with thermo-opto-mechanical coupling in GaAs microdisks,” in “Latin America Optics and Photonics Conference,” (Optical Society of America, Lima, 2018), OSA Technical Digest, p. W4D.4.

Alzina, F.

D. Navarro-Urrios, N. E. Capuj, M. F. Colombano, P. D. García, M. Sledzinska, F. Alzina, A. Griol, A. Martínez, and C. M. Sotomayor-Torres, “Nonlinear dynamics and chaos in an optomechanical beam,” Nat. Commun. 8(1), 14965 (2017).
[Crossref]

Amo, A.

Anant, V.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Nonclassical correlations between single photons and phonons from a mechanical oscillator,” Nature 530(7590), 313–316 (2016).
[Crossref]

Andronico, A.

Anetsberger, G.

Ashby, C. I.

A. Baca and C. I. Ashby, Fabrication of GaAs devices (IET, 2009), 2nd ed.

Aspelmeyer, M.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Nonclassical correlations between single photons and phonons from a mechanical oscillator,” Nature 530(7590), 313–316 (2016).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref]

Atasoy, H.

A. Schleunitz, V. A. Guzenko, M. Messerschmidt, H. Atasoy, R. Kirchner, and H. Schift, “Novel 3D micro- and nanofabrication method using thermally activated selective topography equilibration (TASTE) of polymers,” Nano Convergence 1(1), 7 (2014).
[Crossref]

Augusiak, R.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref]

Baca, A.

A. Baca and C. I. Ashby, Fabrication of GaAs devices (IET, 2009), 2nd ed.

Bacco, D.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref]

Baets, R.

Bagci, T.

K. Usami, A. Naesby, T. Bagci, B. Melholt Nielsen, J. Liu, S. Stobbe, P. Lodahl, and E. S. Polzik, “Optical cavity cooling of mechanical modes of a semiconductor nanomembrane,” Nat. Phys. 8(2), 168–172 (2012).
[Crossref]

J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, and S. Stobbe, “High-Q optomechanical GaAs nanomembranes,” Appl. Phys. Lett. 99(24), 243102 (2011).
[Crossref]

Bahl, G.

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nat. Photonics 13(10), 664–677 (2019).
[Crossref]

Bajcsy, M.

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13(5), 055025 (2011).
[Crossref]

Baker, C.

C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22(12), 14072 (2014).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High Frequency GaAs Nano-Optomechanical Disk Resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref]

Balram, K. C.

K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10(5), 346–352 (2016).
[Crossref]

K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica 1(6), 414 (2014).
[Crossref]

Barclay, P. E.

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, “Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots,” Appl. Phys. Lett. 86(15), 151106 (2005).
[Crossref]

Barnard, A.

M. A. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of Micromechanical Oscillators Using Light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref]

Becouarn, L.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for gaas and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Benevides, R.

R. Benevides, F. G. Santos, G. O. Luiz, G. S. Wiederhecker, and T. P. Mayer Alegre, “Ultrahigh-Q optomechanical crystal cavities fabricated in a CMOS foundry,” Sci. Rep. 7(1), 2491 (2017).
[Crossref]

F. G. Santos, Y. Espinel, G. de Oliveira Luiz, R. Benevides, G. Wiederhecker, and T. P. Alegre, “Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator,” Opt. Express 25(2), 508–1001 (2017).
[Crossref]

G. Luiz, R. Benevides, F. Santos, Y. Espinel, T. Mayer Alegre, and G. Wiederhecker, “Efficient anchor loss suppression in coupled near-field optomechanical resonators,” Opt. Express 25(25), 31347–31361 (2017).
[Crossref]

R. Benevides, N. C. Carvalho, M. Ménard, N. C. Frateschi, G. S. Wiederhecker, and T. P. M. Alegre, “Overcoming optical spring effect with thermo-opto-mechanical coupling in GaAs microdisks,” in “Latin America Optics and Photonics Conference,” (Optical Society of America, Lima, 2018), OSA Technical Digest, p. W4D.4.

Berkovitz, V.

Biermann, K.

Blasius, T. D.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. J. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Bonneau, D.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref]

Børkje, K.

K. Børkje, A. Nunnenkamp, J. D. Teufel, and S. M. Girvin, “Signatures of Nonlinear Cavity Optomechanics in the Weak Coupling Regime,” Phys. Rev. Lett. 111(5), 053603 (2013).
[Crossref]

Borselli, M.

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, “Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots,” Appl. Phys. Lett. 86(15), 151106 (2005).
[Crossref]

Buckley, S.

Cadiz, F.

Cai, S.-W.

K. Liu, X.-M. Ren, Y.-Q. Huang, S.-W. Cai, X.-F. Duan, Q. Wang, C. Kang, J.-S. Li, Q.-T. Chen, and J.-R. Fei, “Inductively coupled plasma etching of GaAs in Cl2/Ar, Cl2/Ar/O2 chemistries with photoresist mask,” Appl. Surf. Sci. 356, 776–779 (2015).
[Crossref]

Camacho, R. M.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref]

Capuj, N. E.

D. Navarro-Urrios, N. E. Capuj, M. F. Colombano, P. D. García, M. Sledzinska, F. Alzina, A. Griol, A. Martínez, and C. M. Sotomayor-Torres, “Nonlinear dynamics and chaos in an optomechanical beam,” Nat. Commun. 8(1), 14965 (2017).
[Crossref]

Carvalho, N. C.

R. Benevides, N. C. Carvalho, M. Ménard, N. C. Frateschi, G. S. Wiederhecker, and T. P. M. Alegre, “Overcoming optical spring effect with thermo-opto-mechanical coupling in GaAs microdisks,” in “Latin America Optics and Photonics Conference,” (Optical Society of America, Lima, 2018), OSA Technical Digest, p. W4D.4.

Chan, J.

A. G. Krause, J. T. Hill, M. Ludwig, A. H. Safavi-naeini, J. Chan, F. Marquardt, and O. Painter, “Nonlinear radiation pressure dynamics in an optomechanical crystal,” Phys. Rev. Lett. 115(23), 233601 (2015).
[Crossref]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3(1), 1196 (2012).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref]

Chang-Hasnain, C. J.

W. Yang, S. A. Gerke, K. W. Ng, Y. Rao, C. Chase, and C. J. Chang-Hasnain, “Laser optomechanics,” Sci. Rep. 5(1), 13700 (2015).
[Crossref]

Chase, C.

W. Yang, S. A. Gerke, K. W. Ng, Y. Rao, C. Chase, and C. J. Chang-Hasnain, “Laser optomechanics,” Sci. Rep. 5(1), 13700 (2015).
[Crossref]

Chen, Q.-T.

K. Liu, X.-M. Ren, Y.-Q. Huang, S.-W. Cai, X.-F. Duan, Q. Wang, C. Kang, J.-S. Li, Q.-T. Chen, and J.-R. Fei, “Inductively coupled plasma etching of GaAs in Cl2/Ar, Cl2/Ar/O2 chemistries with photoresist mask,” Appl. Surf. Sci. 356, 776–779 (2015).
[Crossref]

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. J. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Chen, Y. W.

Y. W. Chen, B. S. Ooi, G. I. Ng, K. Radhakrishnan, and C. L. Tan, “Dry via hole etching of GaAs using high-density Cl2/Ar plasma,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 18(5), 2509 (2000).
[Crossref]

Chidambaram, N.

R. Kirchner, V. A. Guzenko, I. Vartiainen, N. Chidambaram, and H. Schift, “ZEP520A - A resist for electron-beam grayscale lithography and thermal reflow,” Microelectron. Eng. 153, 71–76 (2016).
[Crossref]

Colombano, M. F.

D. Navarro-Urrios, N. E. Capuj, M. F. Colombano, P. D. García, M. Sledzinska, F. Alzina, A. Griol, A. Martínez, and C. M. Sotomayor-Torres, “Nonlinear dynamics and chaos in an optomechanical beam,” Nat. Commun. 8(1), 14965 (2017).
[Crossref]

Combrié, S.

Dainese, P.

G. S. Wiederhecker, P. Dainese, and T. P. Mayer Alegre, “Brillouin optomechanics in nanophotonic structures,” APL Photonics 4(7), 071101 (2019).
[Crossref]

Davanço, M.

Davanço, M. I.

K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10(5), 346–352 (2016).
[Crossref]

de Oliveira Luiz, G.

Deleglise, S.

Ding, L.

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High Frequency GaAs Nano-Optomechanical Disk Resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref]

Ding, Y.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref]

Dixon, R. W.

R. W. Dixon, “Photoelastic Properties of Selected Materials and Their Relevance for Applications to Acoustic Light Modulators and Scanners,” J. Appl. Phys. 38(13), 5149–5153 (1967).
[Crossref]

Duan, X.-F.

K. Liu, X.-M. Ren, Y.-Q. Huang, S.-W. Cai, X.-F. Duan, Q. Wang, C. Kang, J.-S. Li, Q.-T. Chen, and J.-R. Fei, “Inductively coupled plasma etching of GaAs in Cl2/Ar, Cl2/Ar/O2 chemistries with photoresist mask,” Appl. Surf. Sci. 356, 776–779 (2015).
[Crossref]

Ducci, S.

C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22(12), 14072 (2014).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High Frequency GaAs Nano-Optomechanical Disk Resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref]

Dutt, A.

A. Mohanty, M. Zhang, A. Dutt, S. Ramelow, P. Nussenzveig, and M. Lipson, “Quantum interference between transverse spatial waveguide modes,” Nat. Commun. 8(1), 14010 (2017).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nat. Photonics 13(10), 664–677 (2019).
[Crossref]

Eichenfield, M.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref]

Englund, D.

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13(5), 055025 (2011).
[Crossref]

Espinel, Y.

Eyres, L. A.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for gaas and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Faraon, A.

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13(5), 055025 (2011).
[Crossref]

A. Faraon, “Locally controlled photonic crystal devices with coupled quantum dots: physics and applications,” Ph.D. thesis, Stanford University (2009).

Favero, I.

Fei, J.-R.

K. Liu, X.-M. Ren, Y.-Q. Huang, S.-W. Cai, X.-F. Duan, Q. Wang, C. Kang, J.-S. Li, Q.-T. Chen, and J.-R. Fei, “Inductively coupled plasma etching of GaAs in Cl2/Ar, Cl2/Ar/O2 chemistries with photoresist mask,” Appl. Surf. Sci. 356, 776–779 (2015).
[Crossref]

Fejer, M. M.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for gaas and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Fong, K. Y.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
[Crossref]

Foster, M. A.

Frateschi, N. C.

D. Princepe, G. S. Wiederhecker, I. Favero, and N. C. Frateschi, “Self-Sustained Laser Pulsation in Active Optomechanical Devices,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

R. Benevides, N. C. Carvalho, M. Ménard, N. C. Frateschi, G. S. Wiederhecker, and T. P. M. Alegre, “Overcoming optical spring effect with thermo-opto-mechanical coupling in GaAs microdisks,” in “Latin America Optics and Photonics Conference,” (Optical Society of America, Lima, 2018), OSA Technical Digest, p. W4D.4.

Fukushima, T.

A. Matsutani, F. Ishiwari, Y. Shoji, T. Kajitani, T. Uehara, M. Nakagawa, and T. Fukushima, “Chlorine-based inductively coupled plasma etching of GaAs wafer using tripodal paraffinic triptycene as an etching resist mask,” Jpn. J. Appl. Phys. 55(6S1), 06GL01 (2016).
[Crossref]

Gaeta, A. L.

Gao, H.-X.

G.-J. Qiao, H.-X. Gao, H.-D. Liu, and X. X. Yi, “Quantum synchronization of two mechanical oscillators in coupled optomechanical systems with Kerr nonlinearity,” Sci. Rep. 8(1), 15614 (2018).
[Crossref]

García, P. D.

D. Navarro-Urrios, N. E. Capuj, M. F. Colombano, P. D. García, M. Sledzinska, F. Alzina, A. Griol, A. Martínez, and C. M. Sotomayor-Torres, “Nonlinear dynamics and chaos in an optomechanical beam,” Nat. Commun. 8(1), 14965 (2017).
[Crossref]

Gerard, B.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for gaas and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Gérard, B.

Gerke, S. A.

W. Yang, S. A. Gerke, K. W. Ng, Y. Rao, C. Chase, and C. J. Chang-Hasnain, “Laser optomechanics,” Sci. Rep. 5(1), 13700 (2015).
[Crossref]

Girvin, S. M.

K. Børkje, A. Nunnenkamp, J. D. Teufel, and S. M. Girvin, “Signatures of Nonlinear Cavity Optomechanics in the Weak Coupling Regime,” Phys. Rev. Lett. 111(5), 053603 (2013).
[Crossref]

Gomez, C.

Gong, Q.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref]

Gorodetsky, M. L.

Gräfe, M.

M. Gräfe, R. Heilmann, M. Lebugle, D. Guzman-Silva, A. Perez-Leija, and A. Szameit, “Integrated photonic quantum walks,” J. Opt. 18(10), 103002 (2016).
[Crossref]

Griol, A.

D. Navarro-Urrios, N. E. Capuj, M. F. Colombano, P. D. García, M. Sledzinska, F. Alzina, A. Griol, A. Martínez, and C. M. Sotomayor-Torres, “Nonlinear dynamics and chaos in an optomechanical beam,” Nat. Commun. 8(1), 14965 (2017).
[Crossref]

Gröblacher, S.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Nonclassical correlations between single photons and phonons from a mechanical oscillator,” Nature 530(7590), 313–316 (2016).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref]

Grützner, G.

S. Pfirrmann, A. Voigt, A. Kolander, G. Grützner, O. Lohse, I. Harder, and V. A. Guzenko, “Towards a novel positive tone resist mr-PosEBR for high resolution electron-beam lithography,” Microelectron. Eng. 155, 67–73 (2016).
[Crossref]

Guha, B.

Guzenko, V. A.

S. Pfirrmann, A. Voigt, A. Kolander, G. Grützner, O. Lohse, I. Harder, and V. A. Guzenko, “Towards a novel positive tone resist mr-PosEBR for high resolution electron-beam lithography,” Microelectron. Eng. 155, 67–73 (2016).
[Crossref]

R. Kirchner, V. A. Guzenko, I. Vartiainen, N. Chidambaram, and H. Schift, “ZEP520A - A resist for electron-beam grayscale lithography and thermal reflow,” Microelectron. Eng. 153, 71–76 (2016).
[Crossref]

A. Schleunitz, V. A. Guzenko, M. Messerschmidt, H. Atasoy, R. Kirchner, and H. Schift, “Novel 3D micro- and nanofabrication method using thermally activated selective topography equilibration (TASTE) of polymers,” Nano Convergence 1(1), 7 (2014).
[Crossref]

Guzman-Silva, D.

M. Gräfe, R. Heilmann, M. Lebugle, D. Guzman-Silva, A. Perez-Leija, and A. Szameit, “Integrated photonic quantum walks,” J. Opt. 18(10), 103002 (2016).
[Crossref]

Harder, I.

S. Pfirrmann, A. Voigt, A. Kolander, G. Grützner, O. Lohse, I. Harder, and V. A. Guzenko, “Towards a novel positive tone resist mr-PosEBR for high resolution electron-beam lithography,” Microelectron. Eng. 155, 67–73 (2016).
[Crossref]

Harris, J. S.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for gaas and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Hease, W.

Heilmann, R.

M. Gräfe, R. Heilmann, M. Lebugle, D. Guzman-Silva, A. Perez-Leija, and A. Szameit, “Integrated photonic quantum walks,” J. Opt. 18(10), 103002 (2016).
[Crossref]

Hill, J. T.

A. G. Krause, J. T. Hill, M. Ludwig, A. H. Safavi-naeini, J. Chan, F. Marquardt, and O. Painter, “Nonlinear radiation pressure dynamics in an optomechanical crystal,” Phys. Rev. Lett. 115(23), 233601 (2015).
[Crossref]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3(1), 1196 (2012).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref]

Hong, S.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Nonclassical correlations between single photons and phonons from a mechanical oscillator,” Nature 530(7590), 313–316 (2016).
[Crossref]

Huang, Y.-Q.

K. Liu, X.-M. Ren, Y.-Q. Huang, S.-W. Cai, X.-F. Duan, Q. Wang, C. Kang, J.-S. Li, Q.-T. Chen, and J.-R. Fei, “Inductively coupled plasma etching of GaAs in Cl2/Ar, Cl2/Ar/O2 chemistries with photoresist mask,” Appl. Surf. Sci. 356, 776–779 (2015).
[Crossref]

Ishiwari, F.

A. Matsutani, F. Ishiwari, Y. Shoji, T. Kajitani, T. Uehara, M. Nakagawa, and T. Fukushima, “Chlorine-based inductively coupled plasma etching of GaAs wafer using tripodal paraffinic triptycene as an etching resist mask,” Jpn. J. Appl. Phys. 55(6S1), 06GL01 (2016).
[Crossref]

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. J. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Ji, X.

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref]

Jiang, W. C.

Johnson, T. J.

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, “Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots,” Appl. Phys. Lett. 86(15), 151106 (2005).
[Crossref]

Kajitani, T.

A. Matsutani, F. Ishiwari, Y. Shoji, T. Kajitani, T. Uehara, M. Nakagawa, and T. Fukushima, “Chlorine-based inductively coupled plasma etching of GaAs wafer using tripodal paraffinic triptycene as an etching resist mask,” Jpn. J. Appl. Phys. 55(6S1), 06GL01 (2016).
[Crossref]

Kang, C.

K. Liu, X.-M. Ren, Y.-Q. Huang, S.-W. Cai, X.-F. Duan, Q. Wang, C. Kang, J.-S. Li, Q.-T. Chen, and J.-R. Fei, “Inductively coupled plasma etching of GaAs in Cl2/Ar, Cl2/Ar/O2 chemistries with photoresist mask,” Appl. Surf. Sci. 356, 776–779 (2015).
[Crossref]

Karpov, M.

M. Karpov, M. H. P. Pfeiffer, J. Liu, A. Lukashchuk, and T. J. Kippenberg, “Photonic chip-based soliton frequency combs covering the biological imaging window,” Nat. Commun. 9(1), 1146 (2018).
[Crossref]

Kim, E.

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13(5), 055025 (2011).
[Crossref]

Kippenberg, T. J.

M. Karpov, M. H. P. Pfeiffer, J. Liu, A. Lukashchuk, and T. J. Kippenberg, “Photonic chip-based soliton frequency combs covering the biological imaging window,” Nat. Commun. 9(1), 1146 (2018).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Express 18(22), 23236 (2010).
[Crossref]

Kirchner, R.

R. Kirchner, V. A. Guzenko, I. Vartiainen, N. Chidambaram, and H. Schift, “ZEP520A - A resist for electron-beam grayscale lithography and thermal reflow,” Microelectron. Eng. 153, 71–76 (2016).
[Crossref]

A. Schleunitz, V. A. Guzenko, M. Messerschmidt, H. Atasoy, R. Kirchner, and H. Schift, “Novel 3D micro- and nanofabrication method using thermally activated selective topography equilibration (TASTE) of polymers,” Nano Convergence 1(1), 7 (2014).
[Crossref]

Kirsanske, G.

L. Midolo, T. Pregnolato, G. Kirsanske, and S. Stobbe, “Soft-mask fabrication of gallium arsenide nanomembranes for integrated quantum photonics,” Nanotechnology 26(48), 484002 (2015).
[Crossref]

Kling, L.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

Kolander, A.

S. Pfirrmann, A. Voigt, A. Kolander, G. Grützner, O. Lohse, I. Harder, and V. A. Guzenko, “Towards a novel positive tone resist mr-PosEBR for high resolution electron-beam lithography,” Microelectron. Eng. 155, 67–73 (2016).
[Crossref]

Krause, A.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref]

Krause, A. G.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Nonclassical correlations between single photons and phonons from a mechanical oscillator,” Nature 530(7590), 313–316 (2016).
[Crossref]

A. G. Krause, J. T. Hill, M. Ludwig, A. H. Safavi-naeini, J. Chan, F. Marquardt, and O. Painter, “Nonlinear radiation pressure dynamics in an optomechanical crystal,” Phys. Rev. Lett. 115(23), 233601 (2015).
[Crossref]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. J. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Krishna, S.

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, “Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots,” Appl. Phys. Lett. 86(15), 151106 (2005).
[Crossref]

Kumar, P.

Kuo, P. S.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for gaas and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Laing, A.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref]

Lallier, E.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for gaas and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Lebugle, M.

M. Gräfe, R. Heilmann, M. Lebugle, D. Guzman-Silva, A. Perez-Leija, and A. Szameit, “Integrated photonic quantum walks,” J. Opt. 18(10), 103002 (2016).
[Crossref]

Lee, H.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. J. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Lee, K. F.

Lemaitre, A.

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High Frequency GaAs Nano-Optomechanical Disk Resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref]

Lemaître, A.

Leo, G.

Levi, O.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for gaas and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Li, J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. J. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Li, J.-S.

K. Liu, X.-M. Ren, Y.-Q. Huang, S.-W. Cai, X.-F. Duan, Q. Wang, C. Kang, J.-S. Li, Q.-T. Chen, and J.-R. Fei, “Inductively coupled plasma etching of GaAs in Cl2/Ar, Cl2/Ar/O2 chemistries with photoresist mask,” Appl. Surf. Sci. 356, 776–779 (2015).
[Crossref]

Lim, J. Y.

Lin, Q.

W. C. Jiang, X. Lu, J. Zhang, and Q. Lin, “High-frequency silicon optomechanical oscillator with an ultralow threshold,” Opt. Express 20(14), 15991–15996 (2012).
[Crossref]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. J. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Lipson, M.

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]

A. Mohanty, M. Zhang, A. Dutt, S. Ramelow, P. Nussenzveig, and M. Lipson, “Quantum interference between transverse spatial waveguide modes,” Nat. Commun. 8(1), 14010 (2017).
[Crossref]

M. A. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of Micromechanical Oscillators Using Light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref]

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14(25), 12388 (2006).
[Crossref]

Liu, H.-D.

G.-J. Qiao, H.-X. Gao, H.-D. Liu, and X. X. Yi, “Quantum synchronization of two mechanical oscillators in coupled optomechanical systems with Kerr nonlinearity,” Sci. Rep. 8(1), 15614 (2018).
[Crossref]

Liu, J.

M. Karpov, M. H. P. Pfeiffer, J. Liu, A. Lukashchuk, and T. J. Kippenberg, “Photonic chip-based soliton frequency combs covering the biological imaging window,” Nat. Commun. 9(1), 1146 (2018).
[Crossref]

K. Usami, A. Naesby, T. Bagci, B. Melholt Nielsen, J. Liu, S. Stobbe, P. Lodahl, and E. S. Polzik, “Optical cavity cooling of mechanical modes of a semiconductor nanomembrane,” Nat. Phys. 8(2), 168–172 (2012).
[Crossref]

J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, and S. Stobbe, “High-Q optomechanical GaAs nanomembranes,” Appl. Phys. Lett. 99(24), 243102 (2011).
[Crossref]

Liu, K.

K. Liu, X.-M. Ren, Y.-Q. Huang, S.-W. Cai, X.-F. Duan, Q. Wang, C. Kang, J.-S. Li, Q.-T. Chen, and J.-R. Fei, “Inductively coupled plasma etching of GaAs in Cl2/Ar, Cl2/Ar/O2 chemistries with photoresist mask,” Appl. Surf. Sci. 356, 776–779 (2015).
[Crossref]

Lodahl, P.

K. Usami, A. Naesby, T. Bagci, B. Melholt Nielsen, J. Liu, S. Stobbe, P. Lodahl, and E. S. Polzik, “Optical cavity cooling of mechanical modes of a semiconductor nanomembrane,” Nat. Phys. 8(2), 168–172 (2012).
[Crossref]

J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, and S. Stobbe, “High-Q optomechanical GaAs nanomembranes,” Appl. Phys. Lett. 99(24), 243102 (2011).
[Crossref]

Lohse, O.

S. Pfirrmann, A. Voigt, A. Kolander, G. Grützner, O. Lohse, I. Harder, and V. A. Guzenko, “Towards a novel positive tone resist mr-PosEBR for high resolution electron-beam lithography,” Microelectron. Eng. 155, 67–73 (2016).
[Crossref]

Loke, T.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

Loncar, M.

Lu, X.

Ludwig, M.

A. G. Krause, J. T. Hill, M. Ludwig, A. H. Safavi-naeini, J. Chan, F. Marquardt, and O. Painter, “Nonlinear radiation pressure dynamics in an optomechanical crystal,” Phys. Rev. Lett. 115(23), 233601 (2015).
[Crossref]

Luiz, G.

Luiz, G. O.

R. Benevides, F. G. Santos, G. O. Luiz, G. S. Wiederhecker, and T. P. Mayer Alegre, “Ultrahigh-Q optomechanical crystal cavities fabricated in a CMOS foundry,” Sci. Rep. 7(1), 2491 (2017).
[Crossref]

Lukashchuk, A.

M. Karpov, M. H. P. Pfeiffer, J. Liu, A. Lukashchuk, and T. J. Kippenberg, “Photonic chip-based soliton frequency combs covering the biological imaging window,” Nat. Commun. 9(1), 1146 (2018).
[Crossref]

Ma, J.

X. Xi, J. Ma, and X. Sun, “Carrier-mediated cavity optomechanics in a semiconductor laser,” Phys. Rev. A 99(5), 053837 (2019).
[Crossref]

Madou, M. J.

M. J. Madou, “Fundamentals of Microfabrication: The Science of Miniaturization,” Fundamentals of Microfabrication: The Science of Miniaturization p. 49 (2002).

Mahadeva Bhat, K.

M. N. Mudholkar, G. Sai Saravanan, K. Mahadeva Bhat, C. Sridhar, H. P. Vyas, and R. Muralidharan, “Etching of 200 µm deep GaAs via holes with near vertical wall profile using photoresist mask with inductively coupled plasma,” Proceedings of the 14th International Workshop on the Physics of Semiconductor Devices, IWPSD pp. 466–468 (2007).

Majumdar, A.

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13(5), 055025 (2011).
[Crossref]

Mancinska, L.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref]

Manipatruni, S.

M. A. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of Micromechanical Oscillators Using Light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref]

Mariani, S.

Marquardt, F.

A. G. Krause, J. T. Hill, M. Ludwig, A. H. Safavi-naeini, J. Chan, F. Marquardt, and O. Painter, “Nonlinear radiation pressure dynamics in an optomechanical crystal,” Phys. Rev. Lett. 115(23), 233601 (2015).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Marsault, F.

Marshall, G. D.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

Martínez, A.

D. Navarro-Urrios, N. E. Capuj, M. F. Colombano, P. D. García, M. Sledzinska, F. Alzina, A. Griol, A. Martínez, and C. M. Sotomayor-Torres, “Nonlinear dynamics and chaos in an optomechanical beam,” Nat. Commun. 8(1), 14965 (2017).
[Crossref]

Matsutani, A.

A. Matsutani, F. Ishiwari, Y. Shoji, T. Kajitani, T. Uehara, M. Nakagawa, and T. Fukushima, “Chlorine-based inductively coupled plasma etching of GaAs wafer using tripodal paraffinic triptycene as an etching resist mask,” Jpn. J. Appl. Phys. 55(6S1), 06GL01 (2016).
[Crossref]

Matthews, J. C. F.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

Mayer Alegre, T.

Mayer Alegre, T. P.

G. S. Wiederhecker, P. Dainese, and T. P. Mayer Alegre, “Brillouin optomechanics in nanophotonic structures,” APL Photonics 4(7), 071101 (2019).
[Crossref]

R. Benevides, F. G. Santos, G. O. Luiz, G. S. Wiederhecker, and T. P. Mayer Alegre, “Ultrahigh-Q optomechanical crystal cavities fabricated in a CMOS foundry,” Sci. Rep. 7(1), 2491 (2017).
[Crossref]

McEuen, P.

M. A. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of Micromechanical Oscillators Using Light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref]

Melholt Nielsen, B.

K. Usami, A. Naesby, T. Bagci, B. Melholt Nielsen, J. Liu, S. Stobbe, P. Lodahl, and E. S. Polzik, “Optical cavity cooling of mechanical modes of a semiconductor nanomembrane,” Nat. Phys. 8(2), 168–172 (2012).
[Crossref]

Ménard, M.

R. Benevides, N. C. Carvalho, M. Ménard, N. C. Frateschi, G. S. Wiederhecker, and T. P. M. Alegre, “Overcoming optical spring effect with thermo-opto-mechanical coupling in GaAs microdisks,” in “Latin America Optics and Photonics Conference,” (Optical Society of America, Lima, 2018), OSA Technical Digest, p. W4D.4.

Messerschmidt, M.

A. Schleunitz, V. A. Guzenko, M. Messerschmidt, H. Atasoy, R. Kirchner, and H. Schift, “Novel 3D micro- and nanofabrication method using thermally activated selective topography equilibration (TASTE) of polymers,” Nano Convergence 1(1), 7 (2014).
[Crossref]

Metcalfe, M.

M. Metcalfe, “Applications of cavity optomechanics,” Appl. Phys. Rev. 1(3), 031105 (2014).
[Crossref]

Midolo, L.

L. Midolo, T. Pregnolato, G. Kirsanske, and S. Stobbe, “Soft-mask fabrication of gallium arsenide nanomembranes for integrated quantum photonics,” Nanotechnology 26(48), 484002 (2015).
[Crossref]

Mohanty, A.

A. Mohanty, M. Zhang, A. Dutt, S. Ramelow, P. Nussenzveig, and M. Lipson, “Quantum interference between transverse spatial waveguide modes,” Nat. Commun. 8(1), 14010 (2017).
[Crossref]

Morgenroth, L.

Mudholkar, M. N.

M. N. Mudholkar, G. Sai Saravanan, K. Mahadeva Bhat, C. Sridhar, H. P. Vyas, and R. Muralidharan, “Etching of 200 µm deep GaAs via holes with near vertical wall profile using photoresist mask with inductively coupled plasma,” Proceedings of the 14th International Workshop on the Physics of Semiconductor Devices, IWPSD pp. 466–468 (2007).

Muralidharan, R.

M. N. Mudholkar, G. Sai Saravanan, K. Mahadeva Bhat, C. Sridhar, H. P. Vyas, and R. Muralidharan, “Etching of 200 µm deep GaAs via holes with near vertical wall profile using photoresist mask with inductively coupled plasma,” Proceedings of the 14th International Workshop on the Physics of Semiconductor Devices, IWPSD pp. 466–468 (2007).

Naesby, A.

K. Usami, A. Naesby, T. Bagci, B. Melholt Nielsen, J. Liu, S. Stobbe, P. Lodahl, and E. S. Polzik, “Optical cavity cooling of mechanical modes of a semiconductor nanomembrane,” Nat. Phys. 8(2), 168–172 (2012).
[Crossref]

J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, and S. Stobbe, “High-Q optomechanical GaAs nanomembranes,” Appl. Phys. Lett. 99(24), 243102 (2011).
[Crossref]

Nakagawa, M.

A. Matsutani, F. Ishiwari, Y. Shoji, T. Kajitani, T. Uehara, M. Nakagawa, and T. Fukushima, “Chlorine-based inductively coupled plasma etching of GaAs wafer using tripodal paraffinic triptycene as an etching resist mask,” Jpn. J. Appl. Phys. 55(6S1), 06GL01 (2016).
[Crossref]

Navarro-Urrios, D.

D. Navarro-Urrios, N. E. Capuj, M. F. Colombano, P. D. García, M. Sledzinska, F. Alzina, A. Griol, A. Martínez, and C. M. Sotomayor-Torres, “Nonlinear dynamics and chaos in an optomechanical beam,” Nat. Commun. 8(1), 14965 (2017).
[Crossref]

Ng, G. I.

Y. W. Chen, B. S. Ooi, G. I. Ng, K. Radhakrishnan, and C. L. Tan, “Dry via hole etching of GaAs using high-density Cl2/Ar plasma,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 18(5), 2509 (2000).
[Crossref]

Ng, K. W.

W. Yang, S. A. Gerke, K. W. Ng, Y. Rao, C. Chase, and C. J. Chang-Hasnain, “Laser optomechanics,” Sci. Rep. 5(1), 13700 (2015).
[Crossref]

Nguyen, D.-T.

Norte, R. A.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Nonclassical correlations between single photons and phonons from a mechanical oscillator,” Nature 530(7590), 313–316 (2016).
[Crossref]

Nunnenkamp, A.

K. Børkje, A. Nunnenkamp, J. D. Teufel, and S. M. Girvin, “Signatures of Nonlinear Cavity Optomechanics in the Weak Coupling Regime,” Phys. Rev. Lett. 111(5), 053603 (2013).
[Crossref]

Nussenzveig, P.

A. Mohanty, M. Zhang, A. Dutt, S. Ramelow, P. Nussenzveig, and M. Lipson, “Quantum interference between transverse spatial waveguide modes,” Nat. Commun. 8(1), 14010 (2017).
[Crossref]

O’Brien, J. L.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref]

O’Gara, S.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

Okawachi, Y.

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref]

Ooi, B. S.

Y. W. Chen, B. S. Ooi, G. I. Ng, K. Radhakrishnan, and C. L. Tan, “Dry via hole etching of GaAs using high-density Cl2/Ar plasma,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 18(5), 2509 (2000).
[Crossref]

Oxenløwe, L. K.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref]

Paesani, S.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref]

Painter, O.

A. G. Krause, J. T. Hill, M. Ludwig, A. H. Safavi-naeini, J. Chan, F. Marquardt, and O. Painter, “Nonlinear radiation pressure dynamics in an optomechanical crystal,” Phys. Rev. Lett. 115(23), 233601 (2015).
[Crossref]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3(1), 1196 (2012).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref]

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, “Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots,” Appl. Phys. Lett. 86(15), 151106 (2005).
[Crossref]

Painter, O. J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. J. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. J. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Perez-Leija, A.

M. Gräfe, R. Heilmann, M. Lebugle, D. Guzman-Silva, A. Perez-Leija, and A. Szameit, “Integrated photonic quantum walks,” J. Opt. 18(10), 103002 (2016).
[Crossref]

Pernice, W. H. P.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
[Crossref]

Petykiewicz, J.

Pfeiffer, M. H. P.

M. Karpov, M. H. P. Pfeiffer, J. Liu, A. Lukashchuk, and T. J. Kippenberg, “Photonic chip-based soliton frequency combs covering the biological imaging window,” Nat. Commun. 9(1), 1146 (2018).
[Crossref]

Pfirrmann, S.

S. Pfirrmann, A. Voigt, A. Kolander, G. Grützner, O. Lohse, I. Harder, and V. A. Guzenko, “Towards a novel positive tone resist mr-PosEBR for high resolution electron-beam lithography,” Microelectron. Eng. 155, 67–73 (2016).
[Crossref]

Pinguet, T. J.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for gaas and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Polzik, E. S.

K. Usami, A. Naesby, T. Bagci, B. Melholt Nielsen, J. Liu, S. Stobbe, P. Lodahl, and E. S. Polzik, “Optical cavity cooling of mechanical modes of a semiconductor nanomembrane,” Nat. Phys. 8(2), 168–172 (2012).
[Crossref]

J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, and S. Stobbe, “High-Q optomechanical GaAs nanomembranes,” Appl. Phys. Lett. 99(24), 243102 (2011).
[Crossref]

Poulton, C. G.

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nat. Photonics 13(10), 664–677 (2019).
[Crossref]

Pregnolato, T.

L. Midolo, T. Pregnolato, G. Kirsanske, and S. Stobbe, “Soft-mask fabrication of gallium arsenide nanomembranes for integrated quantum photonics,” Nanotechnology 26(48), 484002 (2015).
[Crossref]

Princepe, D.

D. Princepe, G. S. Wiederhecker, I. Favero, and N. C. Frateschi, “Self-Sustained Laser Pulsation in Active Optomechanical Devices,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

Qiang, X.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

Qiao, G.-J.

G.-J. Qiao, H.-X. Gao, H.-D. Liu, and X. X. Yi, “Quantum synchronization of two mechanical oscillators in coupled optomechanical systems with Kerr nonlinearity,” Sci. Rep. 8(1), 15614 (2018).
[Crossref]

Radhakrishnan, K.

Y. W. Chen, B. S. Ooi, G. I. Ng, K. Radhakrishnan, and C. L. Tan, “Dry via hole etching of GaAs using high-density Cl2/Ar plasma,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 18(5), 2509 (2000).
[Crossref]

Radulaski, M.

Rakich, P. T.

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nat. Photonics 13(10), 664–677 (2019).
[Crossref]

Ralph, T. C.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

Ramelow, S.

A. Mohanty, M. Zhang, A. Dutt, S. Ramelow, P. Nussenzveig, and M. Lipson, “Quantum interference between transverse spatial waveguide modes,” Nat. Commun. 8(1), 14010 (2017).
[Crossref]

Rao, Y.

W. Yang, S. A. Gerke, K. W. Ng, Y. Rao, C. Chase, and C. J. Chang-Hasnain, “Laser optomechanics,” Sci. Rep. 5(1), 13700 (2015).
[Crossref]

Ren, X.-M.

K. Liu, X.-M. Ren, Y.-Q. Huang, S.-W. Cai, X.-F. Duan, Q. Wang, C. Kang, J.-S. Li, Q.-T. Chen, and J.-R. Fei, “Inductively coupled plasma etching of GaAs in Cl2/Ar, Cl2/Ar/O2 chemistries with photoresist mask,” Appl. Surf. Sci. 356, 776–779 (2015).
[Crossref]

Riedinger, R.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Nonclassical correlations between single photons and phonons from a mechanical oscillator,” Nature 530(7590), 313–316 (2016).
[Crossref]

Rivoire, K.

Rottwitt, K.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, D. Van Thourhout, R. Baets, and R. Van Laer, “Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics,” Optica 6(2), 213 (2019).
[Crossref]

A. G. Krause, J. T. Hill, M. Ludwig, A. H. Safavi-naeini, J. Chan, F. Marquardt, and O. Painter, “Nonlinear radiation pressure dynamics in an optomechanical crystal,” Phys. Rev. Lett. 115(23), 233601 (2015).
[Crossref]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3(1), 1196 (2012).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref]

Sai Saravanan, G.

M. N. Mudholkar, G. Sai Saravanan, K. Mahadeva Bhat, C. Sridhar, H. P. Vyas, and R. Muralidharan, “Etching of 200 µm deep GaAs via holes with near vertical wall profile using photoresist mask with inductively coupled plasma,” Proceedings of the 14th International Workshop on the Physics of Semiconductor Devices, IWPSD pp. 466–468 (2007).

Salavrakos, A.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref]

Santagati, R.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref]

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

Santos, F.

Santos, F. G.

F. G. Santos, Y. Espinel, G. de Oliveira Luiz, R. Benevides, G. Wiederhecker, and T. P. Alegre, “Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator,” Opt. Express 25(2), 508–1001 (2017).
[Crossref]

R. Benevides, F. G. Santos, G. O. Luiz, G. S. Wiederhecker, and T. P. Mayer Alegre, “Ultrahigh-Q optomechanical crystal cavities fabricated in a CMOS foundry,” Sci. Rep. 7(1), 2491 (2017).
[Crossref]

Schift, H.

R. Kirchner, V. A. Guzenko, I. Vartiainen, N. Chidambaram, and H. Schift, “ZEP520A - A resist for electron-beam grayscale lithography and thermal reflow,” Microelectron. Eng. 153, 71–76 (2016).
[Crossref]

A. Schleunitz, V. A. Guzenko, M. Messerschmidt, H. Atasoy, R. Kirchner, and H. Schift, “Novel 3D micro- and nanofabrication method using thermally activated selective topography equilibration (TASTE) of polymers,” Nano Convergence 1(1), 7 (2014).
[Crossref]

Schleunitz, A.

A. Schleunitz, V. A. Guzenko, M. Messerschmidt, H. Atasoy, R. Kirchner, and H. Schift, “Novel 3D micro- and nanofabrication method using thermally activated selective topography equilibration (TASTE) of polymers,” Nano Convergence 1(1), 7 (2014).
[Crossref]

Schliesser, A.

Schmidt, B. S.

Schuck, C.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
[Crossref]

Senellart, P.

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High Frequency GaAs Nano-Optomechanical Disk Resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref]

Shang, J.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Nonclassical correlations between single photons and phonons from a mechanical oscillator,” Nature 530(7590), 313–316 (2016).
[Crossref]

Sharping, J. E.

Shoji, Y.

A. Matsutani, F. Ishiwari, Y. Shoji, T. Kajitani, T. Uehara, M. Nakagawa, and T. Fukushima, “Chlorine-based inductively coupled plasma etching of GaAs wafer using tripodal paraffinic triptycene as an etching resist mask,” Jpn. J. Appl. Phys. 55(6S1), 06GL01 (2016).
[Crossref]

Silverstone, J. W.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref]

Skauli, T.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for gaas and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Skrzypczyk, P.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref]

Slater, J. A.

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Nonclassical correlations between single photons and phonons from a mechanical oscillator,” Nature 530(7590), 313–316 (2016).
[Crossref]

Sledzinska, M.

D. Navarro-Urrios, N. E. Capuj, M. F. Colombano, P. D. García, M. Sledzinska, F. Alzina, A. Griol, A. Martínez, and C. M. Sotomayor-Torres, “Nonlinear dynamics and chaos in an optomechanical beam,” Nat. Commun. 8(1), 14965 (2017).
[Crossref]

Song, J. D.

K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10(5), 346–352 (2016).
[Crossref]

K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica 1(6), 414 (2014).
[Crossref]

Sotomayor-Torres, C. M.

D. Navarro-Urrios, N. E. Capuj, M. F. Colombano, P. D. García, M. Sledzinska, F. Alzina, A. Griol, A. Martínez, and C. M. Sotomayor-Torres, “Nonlinear dynamics and chaos in an optomechanical beam,” Nat. Commun. 8(1), 14965 (2017).
[Crossref]

Sridhar, C.

M. N. Mudholkar, G. Sai Saravanan, K. Mahadeva Bhat, C. Sridhar, H. P. Vyas, and R. Muralidharan, “Etching of 200 µm deep GaAs via holes with near vertical wall profile using photoresist mask with inductively coupled plasma,” Proceedings of the 14th International Workshop on the Physics of Semiconductor Devices, IWPSD pp. 466–468 (2007).

Srinivasan, K.

K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10(5), 346–352 (2016).
[Crossref]

K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica 1(6), 414 (2014).
[Crossref]

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, “Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots,” Appl. Phys. Lett. 86(15), 151106 (2005).
[Crossref]

Steel, M. J.

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nat. Photonics 13(10), 664–677 (2019).
[Crossref]

Stern, B.

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]

Stintz, A.

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, “Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots,” Appl. Phys. Lett. 86(15), 151106 (2005).
[Crossref]

Stobbe, S.

L. Midolo, T. Pregnolato, G. Kirsanske, and S. Stobbe, “Soft-mask fabrication of gallium arsenide nanomembranes for integrated quantum photonics,” Nanotechnology 26(48), 484002 (2015).
[Crossref]

K. Usami, A. Naesby, T. Bagci, B. Melholt Nielsen, J. Liu, S. Stobbe, P. Lodahl, and E. S. Polzik, “Optical cavity cooling of mechanical modes of a semiconductor nanomembrane,” Nat. Phys. 8(2), 168–172 (2012).
[Crossref]

J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, and S. Stobbe, “High-Q optomechanical GaAs nanomembranes,” Appl. Phys. Lett. 99(24), 243102 (2011).
[Crossref]

Sun, X.

X. Xi, J. Ma, and X. Sun, “Carrier-mediated cavity optomechanics in a semiconductor laser,” Phys. Rev. A 99(5), 053837 (2019).
[Crossref]

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
[Crossref]

X. Sun, X. Zhang, and H. X. Tang, “High-Q silicon optomechanical microdisk resonators at gigahertz frequencies,” Appl. Phys. Lett. 100(17), 173116 (2012).
[Crossref]

Szameit, A.

M. Gräfe, R. Heilmann, M. Lebugle, D. Guzman-Silva, A. Perez-Leija, and A. Szameit, “Integrated photonic quantum walks,” J. Opt. 18(10), 103002 (2016).
[Crossref]

Tan, C. L.

Y. W. Chen, B. S. Ooi, G. I. Ng, K. Radhakrishnan, and C. L. Tan, “Dry via hole etching of GaAs using high-density Cl2/Ar plasma,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 18(5), 2509 (2000).
[Crossref]

Tang, H. X.

X. Sun, X. Zhang, and H. X. Tang, “High-Q silicon optomechanical microdisk resonators at gigahertz frequencies,” Appl. Phys. Lett. 100(17), 173116 (2012).
[Crossref]

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
[Crossref]

Teufel, J. D.

K. Børkje, A. Nunnenkamp, J. D. Teufel, and S. M. Girvin, “Signatures of Nonlinear Cavity Optomechanics in the Weak Coupling Regime,” Phys. Rev. Lett. 111(5), 053603 (2013).
[Crossref]

Thompson, M. G.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref]

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

Tura, J.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref]

Turner, A. C.

Uehara, T.

A. Matsutani, F. Ishiwari, Y. Shoji, T. Kajitani, T. Uehara, M. Nakagawa, and T. Fukushima, “Chlorine-based inductively coupled plasma etching of GaAs wafer using tripodal paraffinic triptycene as an etching resist mask,” Jpn. J. Appl. Phys. 55(6S1), 06GL01 (2016).
[Crossref]

Ulin, V.

Usami, K.

K. Usami, A. Naesby, T. Bagci, B. Melholt Nielsen, J. Liu, S. Stobbe, P. Lodahl, and E. S. Polzik, “Optical cavity cooling of mechanical modes of a semiconductor nanomembrane,” Nat. Phys. 8(2), 168–172 (2012).
[Crossref]

J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, and S. Stobbe, “High-Q optomechanical GaAs nanomembranes,” Appl. Phys. Lett. 99(24), 243102 (2011).
[Crossref]

Vahala, K. J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. J. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref]

Van Laer, R.

Van Thourhout, D.

Vartiainen, I.

R. Kirchner, V. A. Guzenko, I. Vartiainen, N. Chidambaram, and H. Schift, “ZEP520A - A resist for electron-beam grayscale lithography and thermal reflow,” Microelectron. Eng. 153, 71–76 (2016).
[Crossref]

Vodopyanov, K. L.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for gaas and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Voigt, A.

S. Pfirrmann, A. Voigt, A. Kolander, G. Grützner, O. Lohse, I. Harder, and V. A. Guzenko, “Towards a novel positive tone resist mr-PosEBR for high resolution electron-beam lithography,” Microelectron. Eng. 155, 67–73 (2016).
[Crossref]

Vuckovic, J.

Vyas, H. P.

M. N. Mudholkar, G. Sai Saravanan, K. Mahadeva Bhat, C. Sridhar, H. P. Vyas, and R. Muralidharan, “Etching of 200 µm deep GaAs via holes with near vertical wall profile using photoresist mask with inductively coupled plasma,” Proceedings of the 14th International Workshop on the Physics of Semiconductor Devices, IWPSD pp. 466–468 (2007).

Wang, C.

Wang, J.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref]

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

Wang, J. B.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

Wang, Q.

K. Liu, X.-M. Ren, Y.-Q. Huang, S.-W. Cai, X.-F. Duan, Q. Wang, C. Kang, J.-S. Li, Q.-T. Chen, and J.-R. Fei, “Inductively coupled plasma etching of GaAs in Cl2/Ar, Cl2/Ar/O2 chemistries with photoresist mask,” Appl. Surf. Sci. 356, 776–779 (2015).
[Crossref]

Wiederhecker, G.

Wiederhecker, G. S.

G. S. Wiederhecker, P. Dainese, and T. P. Mayer Alegre, “Brillouin optomechanics in nanophotonic structures,” APL Photonics 4(7), 071101 (2019).
[Crossref]

D. Princepe, G. S. Wiederhecker, I. Favero, and N. C. Frateschi, “Self-Sustained Laser Pulsation in Active Optomechanical Devices,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

R. Benevides, F. G. Santos, G. O. Luiz, G. S. Wiederhecker, and T. P. Mayer Alegre, “Ultrahigh-Q optomechanical crystal cavities fabricated in a CMOS foundry,” Sci. Rep. 7(1), 2491 (2017).
[Crossref]

M. A. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of Micromechanical Oscillators Using Light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref]

R. Benevides, N. C. Carvalho, M. Ménard, N. C. Frateschi, G. S. Wiederhecker, and T. P. M. Alegre, “Overcoming optical spring effect with thermo-opto-mechanical coupling in GaAs microdisks,” in “Latin America Optics and Photonics Conference,” (Optical Society of America, Lima, 2018), OSA Technical Digest, p. W4D.4.

Wilkes, C. M.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

Winger, M.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. J. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Xi, X.

X. Xi, J. Ma, and X. Sun, “Carrier-mediated cavity optomechanics in a semiconductor laser,” Phys. Rev. A 99(5), 053837 (2019).
[Crossref]

Xiong, C.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
[Crossref]

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. J. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Yang, W.

W. Yang, S. A. Gerke, K. W. Ng, Y. Rao, C. Chase, and C. J. Chang-Hasnain, “Laser optomechanics,” Sci. Rep. 5(1), 13700 (2015).
[Crossref]

Yi, X. X.

G.-J. Qiao, H.-X. Gao, H.-D. Liu, and X. X. Yi, “Quantum synchronization of two mechanical oscillators in coupled optomechanical systems with Kerr nonlinearity,” Sci. Rep. 8(1), 15614 (2018).
[Crossref]

Zhang, J.

Zhang, J. L.

Zhang, M.

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]

A. Mohanty, M. Zhang, A. Dutt, S. Ramelow, P. Nussenzveig, and M. Lipson, “Quantum interference between transverse spatial waveguide modes,” Nat. Commun. 8(1), 14010 (2017).
[Crossref]

Zhang, M. A.

M. A. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of Micromechanical Oscillators Using Light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref]

Zhang, X.

X. Sun, X. Zhang, and H. X. Tang, “High-Q silicon optomechanical microdisk resonators at gigahertz frequencies,” Appl. Phys. Lett. 100(17), 173116 (2012).
[Crossref]

Zhou, X.

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

APL Photonics (1)

G. S. Wiederhecker, P. Dainese, and T. P. Mayer Alegre, “Brillouin optomechanics in nanophotonic structures,” APL Photonics 4(7), 071101 (2019).
[Crossref]

Appl. Phys. Lett. (3)

X. Sun, X. Zhang, and H. X. Tang, “High-Q silicon optomechanical microdisk resonators at gigahertz frequencies,” Appl. Phys. Lett. 100(17), 173116 (2012).
[Crossref]

J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, and S. Stobbe, “High-Q optomechanical GaAs nanomembranes,” Appl. Phys. Lett. 99(24), 243102 (2011).
[Crossref]

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, “Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots,” Appl. Phys. Lett. 86(15), 151106 (2005).
[Crossref]

Appl. Phys. Rev. (1)

M. Metcalfe, “Applications of cavity optomechanics,” Appl. Phys. Rev. 1(3), 031105 (2014).
[Crossref]

Appl. Surf. Sci. (1)

K. Liu, X.-M. Ren, Y.-Q. Huang, S.-W. Cai, X.-F. Duan, Q. Wang, C. Kang, J.-S. Li, Q.-T. Chen, and J.-R. Fei, “Inductively coupled plasma etching of GaAs in Cl2/Ar, Cl2/Ar/O2 chemistries with photoresist mask,” Appl. Surf. Sci. 356, 776–779 (2015).
[Crossref]

IEEE Photonics J. (1)

D. Princepe, G. S. Wiederhecker, I. Favero, and N. C. Frateschi, “Self-Sustained Laser Pulsation in Active Optomechanical Devices,” IEEE Photonics J. 10(3), 1–10 (2018).
[Crossref]

J. Appl. Phys. (2)

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for gaas and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

R. W. Dixon, “Photoelastic Properties of Selected Materials and Their Relevance for Applications to Acoustic Light Modulators and Scanners,” J. Appl. Phys. 38(13), 5149–5153 (1967).
[Crossref]

J. Opt. (1)

M. Gräfe, R. Heilmann, M. Lebugle, D. Guzman-Silva, A. Perez-Leija, and A. Szameit, “Integrated photonic quantum walks,” J. Opt. 18(10), 103002 (2016).
[Crossref]

J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. (1)

Y. W. Chen, B. S. Ooi, G. I. Ng, K. Radhakrishnan, and C. L. Tan, “Dry via hole etching of GaAs using high-density Cl2/Ar plasma,” J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 18(5), 2509 (2000).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. Matsutani, F. Ishiwari, Y. Shoji, T. Kajitani, T. Uehara, M. Nakagawa, and T. Fukushima, “Chlorine-based inductively coupled plasma etching of GaAs wafer using tripodal paraffinic triptycene as an etching resist mask,” Jpn. J. Appl. Phys. 55(6S1), 06GL01 (2016).
[Crossref]

Microelectron. Eng. (2)

R. Kirchner, V. A. Guzenko, I. Vartiainen, N. Chidambaram, and H. Schift, “ZEP520A - A resist for electron-beam grayscale lithography and thermal reflow,” Microelectron. Eng. 153, 71–76 (2016).
[Crossref]

S. Pfirrmann, A. Voigt, A. Kolander, G. Grützner, O. Lohse, I. Harder, and V. A. Guzenko, “Towards a novel positive tone resist mr-PosEBR for high resolution electron-beam lithography,” Microelectron. Eng. 155, 67–73 (2016).
[Crossref]

Nano Convergence (1)

A. Schleunitz, V. A. Guzenko, M. Messerschmidt, H. Atasoy, R. Kirchner, and H. Schift, “Novel 3D micro- and nanofabrication method using thermally activated selective topography equilibration (TASTE) of polymers,” Nano Convergence 1(1), 7 (2014).
[Crossref]

Nanotechnology (1)

L. Midolo, T. Pregnolato, G. Kirsanske, and S. Stobbe, “Soft-mask fabrication of gallium arsenide nanomembranes for integrated quantum photonics,” Nanotechnology 26(48), 484002 (2015).
[Crossref]

Nat. Commun. (4)

M. Karpov, M. H. P. Pfeiffer, J. Liu, A. Lukashchuk, and T. J. Kippenberg, “Photonic chip-based soliton frequency combs covering the biological imaging window,” Nat. Commun. 9(1), 1146 (2018).
[Crossref]

A. Mohanty, M. Zhang, A. Dutt, S. Ramelow, P. Nussenzveig, and M. Lipson, “Quantum interference between transverse spatial waveguide modes,” Nat. Commun. 8(1), 14010 (2017).
[Crossref]

D. Navarro-Urrios, N. E. Capuj, M. F. Colombano, P. D. García, M. Sledzinska, F. Alzina, A. Griol, A. Martínez, and C. M. Sotomayor-Torres, “Nonlinear dynamics and chaos in an optomechanical beam,” Nat. Commun. 8(1), 14965 (2017).
[Crossref]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3(1), 1196 (2012).
[Crossref]

Nat. Photonics (5)

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. J. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10(5), 346–352 (2016).
[Crossref]

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nat. Photonics 13(10), 664–677 (2019).
[Crossref]

X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews, “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat. Photonics 12(9), 534–539 (2018).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. J. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6(6), 369–373 (2012).
[Crossref]

Nat. Phys. (1)

K. Usami, A. Naesby, T. Bagci, B. Melholt Nielsen, J. Liu, S. Stobbe, P. Lodahl, and E. S. Polzik, “Optical cavity cooling of mechanical modes of a semiconductor nanomembrane,” Nat. Phys. 8(2), 168–172 (2012).
[Crossref]

Nature (4)

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref]

B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature 562(7727), 401–405 (2018).
[Crossref]

R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher, “Nonclassical correlations between single photons and phonons from a mechanical oscillator,” Nature 530(7590), 313–316 (2016).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref]

New J. Phys. (2)

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vučković, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13(5), 055025 (2011).
[Crossref]

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
[Crossref]

Opt. Express (9)

C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk resonators,” Opt. Express 22(12), 14072 (2014).
[Crossref]

B. Guha, S. Mariani, A. Lemaître, S. Combrié, G. Leo, and I. Favero, “High frequency optomechanical disk resonators in III-V ternary semiconductors,” Opt. Express 25(20), 24639–24649 (2017).
[Crossref]

F. G. Santos, Y. Espinel, G. de Oliveira Luiz, R. Benevides, G. Wiederhecker, and T. P. Alegre, “Hybrid confinement of optical and mechanical modes in a bullseye optomechanical resonator,” Opt. Express 25(2), 508–1001 (2017).
[Crossref]

G. Luiz, R. Benevides, F. Santos, Y. Espinel, T. Mayer Alegre, and G. Wiederhecker, “Efficient anchor loss suppression in coupled near-field optomechanical resonators,” Opt. Express 25(25), 31347–31361 (2017).
[Crossref]

W. C. Jiang, X. Lu, J. Zhang, and Q. Lin, “High-frequency silicon optomechanical oscillator with an ultralow threshold,” Opt. Express 20(14), 15991–15996 (2012).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14(25), 12388 (2006).
[Crossref]

M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, “Determination of the vacuum optomechanical coupling rate using frequency noise calibration,” Opt. Express 18(22), 23236 (2010).
[Crossref]

K. Rivoire, S. Buckley, and J. Vučković, “Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion,” Opt. Express 19(22), 22198 (2011).
[Crossref]

Opt. Lett. (1)

Optica (3)

Phys. Rev. A (1)

X. Xi, J. Ma, and X. Sun, “Carrier-mediated cavity optomechanics in a semiconductor laser,” Phys. Rev. A 99(5), 053837 (2019).
[Crossref]

Phys. Rev. Lett. (4)

K. Børkje, A. Nunnenkamp, J. D. Teufel, and S. M. Girvin, “Signatures of Nonlinear Cavity Optomechanics in the Weak Coupling Regime,” Phys. Rev. Lett. 111(5), 053603 (2013).
[Crossref]

A. G. Krause, J. T. Hill, M. Ludwig, A. H. Safavi-naeini, J. Chan, F. Marquardt, and O. Painter, “Nonlinear radiation pressure dynamics in an optomechanical crystal,” Phys. Rev. Lett. 115(23), 233601 (2015).
[Crossref]

M. A. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lipson, “Synchronization of Micromechanical Oscillators Using Light,” Phys. Rev. Lett. 109(23), 233906 (2012).
[Crossref]

L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High Frequency GaAs Nano-Optomechanical Disk Resonator,” Phys. Rev. Lett. 105(26), 263903 (2010).
[Crossref]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Sci. Rep. (3)

W. Yang, S. A. Gerke, K. W. Ng, Y. Rao, C. Chase, and C. J. Chang-Hasnain, “Laser optomechanics,” Sci. Rep. 5(1), 13700 (2015).
[Crossref]

R. Benevides, F. G. Santos, G. O. Luiz, G. S. Wiederhecker, and T. P. Mayer Alegre, “Ultrahigh-Q optomechanical crystal cavities fabricated in a CMOS foundry,” Sci. Rep. 7(1), 2491 (2017).
[Crossref]

G.-J. Qiao, H.-X. Gao, H.-D. Liu, and X. X. Yi, “Quantum synchronization of two mechanical oscillators in coupled optomechanical systems with Kerr nonlinearity,” Sci. Rep. 8(1), 15614 (2018).
[Crossref]

Science (1)

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360(6386), 285–291 (2018).
[Crossref]

Other (5)

R. Benevides, N. C. Carvalho, M. Ménard, N. C. Frateschi, G. S. Wiederhecker, and T. P. M. Alegre, “Overcoming optical spring effect with thermo-opto-mechanical coupling in GaAs microdisks,” in “Latin America Optics and Photonics Conference,” (Optical Society of America, Lima, 2018), OSA Technical Digest, p. W4D.4.

A. Faraon, “Locally controlled photonic crystal devices with coupled quantum dots: physics and applications,” Ph.D. thesis, Stanford University (2009).

M. J. Madou, “Fundamentals of Microfabrication: The Science of Miniaturization,” Fundamentals of Microfabrication: The Science of Miniaturization p. 49 (2002).

A. Baca and C. I. Ashby, Fabrication of GaAs devices (IET, 2009), 2nd ed.

M. N. Mudholkar, G. Sai Saravanan, K. Mahadeva Bhat, C. Sridhar, H. P. Vyas, and R. Muralidharan, “Etching of 200 µm deep GaAs via holes with near vertical wall profile using photoresist mask with inductively coupled plasma,” Proceedings of the 14th International Workshop on the Physics of Semiconductor Devices, IWPSD pp. 466–468 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Fabrication procedure. Over a MBE-epitaxy grown GaAs/AlGaAs wafer (250 nm/2000 nm)(a), an electroresist layer (500 nm) is spun (b). Electron beam lithography features the resist (c), with transfer to GaAs layer done with ICP-etching (d). The resist is removed (e) and a wet HF-release with post-cleaning is performed, yielding a suspended disk (f).
Fig. 2.
Fig. 2. Electroresist edges profile. Different walls slope are obtained changing the electron beam exposure dose from a) 45 µC$/$cm$^{2}$, to b) 60 µC$/$cm$^{2}$, to c) 75 µC$/$cm$^{2}$. All images were taken at 30 kV using secondary electron detector. The resist layer was false-ed as red.
Fig. 3.
Fig. 3. Reflow process. Microdisks fabricated with resist reflowed at different temperatures: a) without reflow, b) $140^{\textrm {o}}$ C, c) $160^{\textrm {o}}$ C and d) $180^{\textrm {o}}$ C for 2 minutes at a hot plate. Etching parameters were gas flow Ar/Cl$_{2}=12/8$ sccm, RF power $=150$ W, ICP power $= 210$ W, and chamber pressure $= 4.5$ mTorr. All images were taken at 20 kV using secondary electron detector. The top resist layer was false-ed as red, the brightness contrast between the top GaAs layer and AlGaAs is intrinsic to the SEM image. The image in (c) is also shown in Fig. 4(b) and Fig. 5(a), for easier comparison.
Fig. 4.
Fig. 4. Gases flow. Etched disks sidewall profile for Ar/Cl$_{2}$ flow of a) $16/4$ sccm, b) 12/8 sccm, c) 8/12 sccm and d) 4/16 sccm. Etching parameters were RF power $=150$ W, ICP power $= 210$ W and chamber pressure $= 4.5$ mTorr and a $2$ minutes resist reflow at $160^{\circ }$ C. The etch duration were 90 s for a) and b), 35 s for c) and $25$ s for d). All images were taken at $20$ kV using secondary electron detector and false-ed. The image in b) is also shown in Fig. 3(c) and Fig. 5(a), for easier comparison.
Fig. 5.
Fig. 5. Chamber pressure. SEM images of microdisks etched at chamber pressures of a) $4.5$ mTorr, a) $6.0$ mTorr, a) $7.5$ mTorr and a) $9.0$ mTorr. Changes in sidewall roughness, angle and depth can be observed. These devices were fabricated with Ar/Cl$_2$ flow = $12/8$ sccm, RF power = $150$ W, ICP power = $210$ W and a resist reflow process of $2$ minutes at $160^{\textrm {o}}$ C. The image in a) is also shown in Fig. 3(c) and Fig. 4(b), for easier comparison.
Fig. 6.
Fig. 6. a) Experimental setup used to characterize optomechanical disks. $\phi$-mod, PD, DAQ, MZ, Acet., FPD and ESA stand for phase modulator, photodetector, analog-digital converter, Mach-Zehnder interferometer, acetylene cell, fast photodetector and electrical spectrum analyzer, respectively. b) Broaband spectrum of of a $10\;\mu$m radius disk. The fitted intrinsic quality factor is $Q_{\textrm {opt}}=2.0\times 10^{5}$. c) Microscope image of the fabricated sample, TPL stands for the taper parking lot used to stabilize the tapered fiber position.d) Optical modes of a $10\;\mu$m radius disk, with intrinsic $Q_{\textrm {opt}} = 1.55\times 10^{5}$ and $Q_{\textrm {opt}} = 2.0\times 10^{5}$ respectively. e) Instrinsic optical quality factors for a cavity with (blue bars) and a cavity without resist reflow (orange bars). We see that the optimized recipe shows higher quality factors.
Fig. 7.
Fig. 7. a) Mechanical mode at $\Omega _{\textrm {m}} = 2\pi \times 370$ MHz observed for a 3.6 µm radius disk, with a quality factor of $Q_{\textrm {mec}} = 760$. A phase modulator calibration tone can be seen at $374$ MHz, yielding an optomechanical coupling rate of $g_0=2\pi \times 13.6$ kHz. The inset shows a Finite Element Simulation (FEM) of normalized displacement profile of the fundamental mechanical breathing mode. b) Self-sustained oscillation of the fundamental mechanical mode is shown with a peak of more than $50$ dB above the noise floor.

Tables (2)

Tables Icon

Table 1. Etching rate dependence on gas flow.

Tables Icon

Table 2. Etching rate dependence on chamber pressure.

Metrics