Abstract

An optical modulator of a metasurface constructed by an arrayed nano-ridge-aperture with a central nano-cylinder (NRANC) is designed and fabricated. The coupling effect between the localized surface plasmons (LSPs) distributed over each nano-apex of the nano-ridge-aperture and the outer-edge of the central nano-cylinder, and the surface plasmons polaritons (SPPs) generated over the periodic metasurface, have been investigated carefully. The tapered structure can be utilized to concentrate the incident energy and also remarkably enhance the localized light-field. The electrical dipolar induced on the tapered structure will regulate the reflectance or transmission characters. The coupling effect of the LSPs formed over the NRANC will lead to an enhancement of the induced surface electrical dipolar and further regulate the optical properties of the NRANC. By varying the geometrical parameters of the metasurface, the resonance frequency of the LSPs mode can also be adjusted and the movement of transmittance peak can be viewed, and the enhancement factor would reach as large as 1.4×103. The coupling between the LSPs and SPPs would stimulate Fano resonance. Adjusting the incidence angle of illuminating lasers in the visible and infrared ranges could modulate the stimulation of SPPs, so as to induce a relatively large alteration on the transmittance spectral. Through performing the near-field optical measurements, the near-field optical characteristic including the surface induced charge information can be viewed, and a small (∼96 nm at x-direction) and bright hot-spot is already observed under 45° oblique incidence of 633 nm TM lasers. The metasurface of constructed NRANC highlights several potential applications such as color filter, reflective reflectors, surface enhanced Raman.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical interactions in a plasmonic particle coupled to a metallic film

Gaëtan Lévêque and Olivier J. F. Martin
Opt. Express 14(21) 9971-9981 (2006)

Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Excitation of direction-tunable surface plasmon polaritons by using a rectangular array of silver nanodisks

Shunyu Yao, Zhiyou Guo, Huiqing Sun, and Hongyong Huang
Opt. Express 26(16) 20102-20110 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref]
  2. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref]
  3. X. Chen, N. C. Lindquist, D. J. Klemme, P. Nagpal, D. J. Norris, and S.-H. Oh, “Split-wedge antennas with sub-5 nm gaps for plasmonic nanofocusing,” Nano Lett. 16(12), 7849–7856 (2016).
    [Crossref]
  4. H. Xiang, M. Zhang, X. Zhang, and G. Lu, “Understanding quantum plasmonics from time-dependent orbital-free density functional theory,” J. Phys. Chem. C 120(26), 14330–14336 (2016).
    [Crossref]
  5. S. F. Becker, M. Esmann, K. Yoo, P. Gross, R. Vogelgesang, N. Park, and C. Lienau, “Gap-plasmon-enhanced nanofocusing near-field microscopy,” ACS Photonics 3(2), 223–232 (2016).
    [Crossref]
  6. Z. Guo, J. Hwang, B. Zhao, J. H. Chung, S. G. Cho, S.-J. Baek, and J. Choo, “Ultrasensitive trace analysis for 2, 4, 6-trinitrotoluene using nano-dumbbell surface-enhanced Raman scattering hot spots,” Analyst 139(4), 807–812 (2014).
    [Crossref]
  7. S. Chen, Z. Guo, D. K. Sang, H. Wang, Y. Xu, S. Tang, Q. Luo, R. Cao, X. Wang, L. Zhang, J. Liao, H. Zhang, X.-F. Yu, B. Zhao, and D. Fan, “Gold-patterned microarray chips for ultrasensitive surface-enhanced Raman scattering detection of ultratrace samples,” J. Raman Spectrosc. 50(1), 26–33 (2019).
    [Crossref]
  8. C. Kuroda, Y. Ohki, and M. Fujimaki, “Optimization of a waveguide-mode sensing chip for an ultraviolet near-field illumination biosensor,” Opt. Express 25(21), 26011–26019 (2017).
    [Crossref]
  9. J. Lang, P. Lu, G. Bi, C. Cai, and H. Wu, “Plasmon-enhanced luminescence in novel complex conjugated polymer nanoparticles,” Opt. Lett. 42(19), 3789–3792 (2017).
    [Crossref]
  10. B. Desiatov, I. Goykhman, J. Shappir, and U. Levy, “Defect-assisted sub-bandgap avalanche photodetection in interleaved carrier-depletion silicon waveguide for telecom band,” Appl. Phys. Lett. 104(9), 091105 (2014).
    [Crossref]
  11. B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2(4), 335–338 (2015).
    [Crossref]
  12. W. Li and Y. Hou, “Electromagnetic field hugely enhanced by coupling to optical energy focusing structure,” Opt. Express 25(7), 7358–7368 (2017).
    [Crossref]
  13. Z. Wang, G. Ren, Y. Gao, B. Zhu, and S. Jian, “Plasmonic in-plane total internal reflection: azimuthal polarized beam focusing and application,” Opt. Express 25(20), 23989–23999 (2017).
    [Crossref]
  14. X. J. Jiao, P. Wang, D. Zhang, L. Tang, J. Xie, and H. Ming, “Numerical simulation of nanolithography with the subwavelength metallic grating waveguide structure,” Opt. Express 14(11), 4850–4860 (2006).
    [Crossref]
  15. Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
    [Crossref]
  16. Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
    [Crossref]
  17. L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
    [Crossref]
  18. Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, “Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide,” Photonics Res. 7(5), 494 (2019).
    [Crossref]
  19. C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, and H. Zhang, “2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics,” Adv. Opt. Mater. 5(24), 1700884 (2017).
    [Crossref]
  20. J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-Layer Phosphorene-Decorated Microfiber for All-Optical Thresholding and Optical Modulation,” Adv. Opt. Mater. 5(9), 1700026 (2017).
    [Crossref]
  21. Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear Few-Layer Antimonene-Based All-Optical Signal Processing: Ultrafast Optical Switching and High-Speed Wavelength Conversion,” Adv. Opt. Mater. 6(13), 1701287 (2018).
    [Crossref]
  22. Y. Song, Y. Chen, X. Jiang, Y. Ge, Y. Wang, K. You, K. Wang, J. Zheng, J. Ji, Y. Zhang, J. Li, and H. Zhang, “Nonlinear Few-Layer MXene-Assisted All-Optical Wavelength Conversion at Telecommunication Band,” Adv. Opt. Mater. 7(18), 1801777 (2019).
    [Crossref]
  23. Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, and P. N. Prasad, “Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities,” Phys. Rep. 795, 1–51 (2019).
    [Crossref]
  24. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4–6), 153–164 (2010).
    [Crossref]
  25. X. Wen, M. Yi, D. Zhang, P. Wang, Y. Lu, and H. Ming, “Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays,” Nanotechnology 22(8), 085203 (2011).
    [Crossref]
  26. H. Wei and H. Xu, “Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy,” Nanoscale 5(22), 10794–10805 (2013).
    [Crossref]
  27. M. Song, C. Wang, Z. Zhao, M. Pu, L. Liu, W. Zhang, H. Yu, and X. Luo, “Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance,” Nanoscale 8(3), 1635–1641 (2016).
    [Crossref]
  28. Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
    [Crossref]
  29. R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
    [Crossref]

2019 (4)

S. Chen, Z. Guo, D. K. Sang, H. Wang, Y. Xu, S. Tang, Q. Luo, R. Cao, X. Wang, L. Zhang, J. Liao, H. Zhang, X.-F. Yu, B. Zhao, and D. Fan, “Gold-patterned microarray chips for ultrasensitive surface-enhanced Raman scattering detection of ultratrace samples,” J. Raman Spectrosc. 50(1), 26–33 (2019).
[Crossref]

Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, “Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide,” Photonics Res. 7(5), 494 (2019).
[Crossref]

Y. Song, Y. Chen, X. Jiang, Y. Ge, Y. Wang, K. You, K. Wang, J. Zheng, J. Ji, Y. Zhang, J. Li, and H. Zhang, “Nonlinear Few-Layer MXene-Assisted All-Optical Wavelength Conversion at Telecommunication Band,” Adv. Opt. Mater. 7(18), 1801777 (2019).
[Crossref]

Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, and P. N. Prasad, “Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities,” Phys. Rep. 795, 1–51 (2019).
[Crossref]

2018 (3)

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear Few-Layer Antimonene-Based All-Optical Signal Processing: Ultrafast Optical Switching and High-Speed Wavelength Conversion,” Adv. Opt. Mater. 6(13), 1701287 (2018).
[Crossref]

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

2017 (6)

2016 (4)

M. Song, C. Wang, Z. Zhao, M. Pu, L. Liu, W. Zhang, H. Yu, and X. Luo, “Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance,” Nanoscale 8(3), 1635–1641 (2016).
[Crossref]

X. Chen, N. C. Lindquist, D. J. Klemme, P. Nagpal, D. J. Norris, and S.-H. Oh, “Split-wedge antennas with sub-5 nm gaps for plasmonic nanofocusing,” Nano Lett. 16(12), 7849–7856 (2016).
[Crossref]

H. Xiang, M. Zhang, X. Zhang, and G. Lu, “Understanding quantum plasmonics from time-dependent orbital-free density functional theory,” J. Phys. Chem. C 120(26), 14330–14336 (2016).
[Crossref]

S. F. Becker, M. Esmann, K. Yoo, P. Gross, R. Vogelgesang, N. Park, and C. Lienau, “Gap-plasmon-enhanced nanofocusing near-field microscopy,” ACS Photonics 3(2), 223–232 (2016).
[Crossref]

2015 (3)

B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2(4), 335–338 (2015).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
[Crossref]

2014 (2)

Z. Guo, J. Hwang, B. Zhao, J. H. Chung, S. G. Cho, S.-J. Baek, and J. Choo, “Ultrasensitive trace analysis for 2, 4, 6-trinitrotoluene using nano-dumbbell surface-enhanced Raman scattering hot spots,” Analyst 139(4), 807–812 (2014).
[Crossref]

B. Desiatov, I. Goykhman, J. Shappir, and U. Levy, “Defect-assisted sub-bandgap avalanche photodetection in interleaved carrier-depletion silicon waveguide for telecom band,” Appl. Phys. Lett. 104(9), 091105 (2014).
[Crossref]

2013 (1)

H. Wei and H. Xu, “Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy,” Nanoscale 5(22), 10794–10805 (2013).
[Crossref]

2011 (2)

X. Wen, M. Yi, D. Zhang, P. Wang, Y. Lu, and H. Ming, “Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays,” Nanotechnology 22(8), 085203 (2011).
[Crossref]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref]

2010 (3)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4–6), 153–164 (2010).
[Crossref]

2006 (1)

Adam, P. M.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
[Crossref]

Baek, S.-J.

Z. Guo, J. Hwang, B. Zhao, J. H. Chung, S. G. Cho, S.-J. Baek, and J. Choo, “Ultrasensitive trace analysis for 2, 4, 6-trinitrotoluene using nano-dumbbell surface-enhanced Raman scattering hot spots,” Analyst 139(4), 807–812 (2014).
[Crossref]

Becker, S. F.

S. F. Becker, M. Esmann, K. Yoo, P. Gross, R. Vogelgesang, N. Park, and C. Lienau, “Gap-plasmon-enhanced nanofocusing near-field microscopy,” ACS Photonics 3(2), 223–232 (2016).
[Crossref]

Bi, G.

Cai, C.

Cao, R.

S. Chen, Z. Guo, D. K. Sang, H. Wang, Y. Xu, S. Tang, Q. Luo, R. Cao, X. Wang, L. Zhang, J. Liao, H. Zhang, X.-F. Yu, B. Zhao, and D. Fan, “Gold-patterned microarray chips for ultrasensitive surface-enhanced Raman scattering detection of ultratrace samples,” J. Raman Spectrosc. 50(1), 26–33 (2019).
[Crossref]

Chen, H.

Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, “Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide,” Photonics Res. 7(5), 494 (2019).
[Crossref]

Chen, S.

S. Chen, Z. Guo, D. K. Sang, H. Wang, Y. Xu, S. Tang, Q. Luo, R. Cao, X. Wang, L. Zhang, J. Liao, H. Zhang, X.-F. Yu, B. Zhao, and D. Fan, “Gold-patterned microarray chips for ultrasensitive surface-enhanced Raman scattering detection of ultratrace samples,” J. Raman Spectrosc. 50(1), 26–33 (2019).
[Crossref]

Chen, X.

X. Chen, N. C. Lindquist, D. J. Klemme, P. Nagpal, D. J. Norris, and S.-H. Oh, “Split-wedge antennas with sub-5 nm gaps for plasmonic nanofocusing,” Nano Lett. 16(12), 7849–7856 (2016).
[Crossref]

Chen, Y.

Y. Song, Y. Chen, X. Jiang, Y. Ge, Y. Wang, K. You, K. Wang, J. Zheng, J. Ji, Y. Zhang, J. Li, and H. Zhang, “Nonlinear Few-Layer MXene-Assisted All-Optical Wavelength Conversion at Telecommunication Band,” Adv. Opt. Mater. 7(18), 1801777 (2019).
[Crossref]

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear Few-Layer Antimonene-Based All-Optical Signal Processing: Ultrafast Optical Switching and High-Speed Wavelength Conversion,” Adv. Opt. Mater. 6(13), 1701287 (2018).
[Crossref]

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-Layer Phosphorene-Decorated Microfiber for All-Optical Thresholding and Optical Modulation,” Adv. Opt. Mater. 5(9), 1700026 (2017).
[Crossref]

Cho, S. G.

Z. Guo, J. Hwang, B. Zhao, J. H. Chung, S. G. Cho, S.-J. Baek, and J. Choo, “Ultrasensitive trace analysis for 2, 4, 6-trinitrotoluene using nano-dumbbell surface-enhanced Raman scattering hot spots,” Analyst 139(4), 807–812 (2014).
[Crossref]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Choo, J.

Z. Guo, J. Hwang, B. Zhao, J. H. Chung, S. G. Cho, S.-J. Baek, and J. Choo, “Ultrasensitive trace analysis for 2, 4, 6-trinitrotoluene using nano-dumbbell surface-enhanced Raman scattering hot spots,” Analyst 139(4), 807–812 (2014).
[Crossref]

Chung, J. H.

Z. Guo, J. Hwang, B. Zhao, J. H. Chung, S. G. Cho, S.-J. Baek, and J. Choo, “Ultrasensitive trace analysis for 2, 4, 6-trinitrotoluene using nano-dumbbell surface-enhanced Raman scattering hot spots,” Analyst 139(4), 807–812 (2014).
[Crossref]

Dai, Z.

Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, and P. N. Prasad, “Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities,” Phys. Rep. 795, 1–51 (2019).
[Crossref]

De Angelis, F.

Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Desiatov, B.

B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2(4), 335–338 (2015).
[Crossref]

B. Desiatov, I. Goykhman, J. Shappir, and U. Levy, “Defect-assisted sub-bandgap avalanche photodetection in interleaved carrier-depletion silicon waveguide for telecom band,” Appl. Phys. Lett. 104(9), 091105 (2014).
[Crossref]

Dhanabalan, S. C.

C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, and H. Zhang, “2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics,” Adv. Opt. Mater. 5(24), 1700884 (2017).
[Crossref]

Di Fabrizio, E.

Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Dong, B.

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

El-Sayed, M. A.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4–6), 153–164 (2010).
[Crossref]

Esmann, M.

S. F. Becker, M. Esmann, K. Yoo, P. Gross, R. Vogelgesang, N. Park, and C. Lienau, “Gap-plasmon-enhanced nanofocusing near-field microscopy,” ACS Photonics 3(2), 223–232 (2016).
[Crossref]

Fan, D.

S. Chen, Z. Guo, D. K. Sang, H. Wang, Y. Xu, S. Tang, Q. Luo, R. Cao, X. Wang, L. Zhang, J. Liao, H. Zhang, X.-F. Yu, B. Zhao, and D. Fan, “Gold-patterned microarray chips for ultrasensitive surface-enhanced Raman scattering detection of ultratrace samples,” J. Raman Spectrosc. 50(1), 26–33 (2019).
[Crossref]

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, and H. Zhang, “2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics,” Adv. Opt. Mater. 5(24), 1700884 (2017).
[Crossref]

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-Layer Phosphorene-Decorated Microfiber for All-Optical Thresholding and Optical Modulation,” Adv. Opt. Mater. 5(9), 1700026 (2017).
[Crossref]

Fan, T.

Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, “Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide,” Photonics Res. 7(5), 494 (2019).
[Crossref]

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, and H. Zhang, “2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics,” Adv. Opt. Mater. 5(24), 1700884 (2017).
[Crossref]

Fujimaki, M.

Gao, P.

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]

Gao, Y.

Ge, Y.

Y. Song, Y. Chen, X. Jiang, Y. Ge, Y. Wang, K. You, K. Wang, J. Zheng, J. Ji, Y. Zhang, J. Li, and H. Zhang, “Nonlinear Few-Layer MXene-Assisted All-Optical Wavelength Conversion at Telecommunication Band,” Adv. Opt. Mater. 7(18), 1801777 (2019).
[Crossref]

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear Few-Layer Antimonene-Based All-Optical Signal Processing: Ultrafast Optical Switching and High-Speed Wavelength Conversion,” Adv. Opt. Mater. 6(13), 1701287 (2018).
[Crossref]

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Gholipour, B.

Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Goykhman, I.

B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2(4), 335–338 (2015).
[Crossref]

B. Desiatov, I. Goykhman, J. Shappir, and U. Levy, “Defect-assisted sub-bandgap avalanche photodetection in interleaved carrier-depletion silicon waveguide for telecom band,” Appl. Phys. Lett. 104(9), 091105 (2014).
[Crossref]

Gross, P.

S. F. Becker, M. Esmann, K. Yoo, P. Gross, R. Vogelgesang, N. Park, and C. Lienau, “Gap-plasmon-enhanced nanofocusing near-field microscopy,” ACS Photonics 3(2), 223–232 (2016).
[Crossref]

Guo, Z.

S. Chen, Z. Guo, D. K. Sang, H. Wang, Y. Xu, S. Tang, Q. Luo, R. Cao, X. Wang, L. Zhang, J. Liao, H. Zhang, X.-F. Yu, B. Zhao, and D. Fan, “Gold-patterned microarray chips for ultrasensitive surface-enhanced Raman scattering detection of ultratrace samples,” J. Raman Spectrosc. 50(1), 26–33 (2019).
[Crossref]

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Z. Guo, J. Hwang, B. Zhao, J. H. Chung, S. G. Cho, S.-J. Baek, and J. Choo, “Ultrasensitive trace analysis for 2, 4, 6-trinitrotoluene using nano-dumbbell surface-enhanced Raman scattering hot spots,” Analyst 139(4), 807–812 (2014).
[Crossref]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Haus, J. W.

Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, and P. N. Prasad, “Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities,” Phys. Rep. 795, 1–51 (2019).
[Crossref]

Herro, Z.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
[Crossref]

Hewak, D. W.

Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Hou, Y.

Huang, C. C.

Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Huang, W.

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Hwang, J.

Z. Guo, J. Hwang, B. Zhao, J. H. Chung, S. G. Cho, S.-J. Baek, and J. Choo, “Ultrasensitive trace analysis for 2, 4, 6-trinitrotoluene using nano-dumbbell surface-enhanced Raman scattering hot spots,” Analyst 139(4), 807–812 (2014).
[Crossref]

Jain, P. K.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4–6), 153–164 (2010).
[Crossref]

Ji, J.

Y. Song, Y. Chen, X. Jiang, Y. Ge, Y. Wang, K. You, K. Wang, J. Zheng, J. Ji, Y. Zhang, J. Li, and H. Zhang, “Nonlinear Few-Layer MXene-Assisted All-Optical Wavelength Conversion at Telecommunication Band,” Adv. Opt. Mater. 7(18), 1801777 (2019).
[Crossref]

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear Few-Layer Antimonene-Based All-Optical Signal Processing: Ultrafast Optical Switching and High-Speed Wavelength Conversion,” Adv. Opt. Mater. 6(13), 1701287 (2018).
[Crossref]

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-Layer Phosphorene-Decorated Microfiber for All-Optical Thresholding and Optical Modulation,” Adv. Opt. Mater. 5(9), 1700026 (2017).
[Crossref]

Jian, S.

Jiang, X.

Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, “Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide,” Photonics Res. 7(5), 494 (2019).
[Crossref]

Y. Song, Y. Chen, X. Jiang, Y. Ge, Y. Wang, K. You, K. Wang, J. Zheng, J. Ji, Y. Zhang, J. Li, and H. Zhang, “Nonlinear Few-Layer MXene-Assisted All-Optical Wavelength Conversion at Telecommunication Band,” Adv. Opt. Mater. 7(18), 1801777 (2019).
[Crossref]

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear Few-Layer Antimonene-Based All-Optical Signal Processing: Ultrafast Optical Switching and High-Speed Wavelength Conversion,” Adv. Opt. Mater. 6(13), 1701287 (2018).
[Crossref]

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Jiao, X. J.

Kazan, M.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
[Crossref]

Khurgin, J. B.

Klemme, D. J.

X. Chen, N. C. Lindquist, D. J. Klemme, P. Nagpal, D. J. Norris, and S.-H. Oh, “Split-wedge antennas with sub-5 nm gaps for plasmonic nanofocusing,” Nano Lett. 16(12), 7849–7856 (2016).
[Crossref]

Knight, K.

Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Kuroda, C.

Lang, J.

Lévêque, G.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
[Crossref]

Levy, U.

B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2(4), 335–338 (2015).
[Crossref]

B. Desiatov, I. Goykhman, J. Shappir, and U. Levy, “Defect-assisted sub-bandgap avalanche photodetection in interleaved carrier-depletion silicon waveguide for telecom band,” Appl. Phys. Lett. 104(9), 091105 (2014).
[Crossref]

Li, J.

Y. Song, Y. Chen, X. Jiang, Y. Ge, Y. Wang, K. You, K. Wang, J. Zheng, J. Ji, Y. Zhang, J. Li, and H. Zhang, “Nonlinear Few-Layer MXene-Assisted All-Optical Wavelength Conversion at Telecommunication Band,” Adv. Opt. Mater. 7(18), 1801777 (2019).
[Crossref]

Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, “Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide,” Photonics Res. 7(5), 494 (2019).
[Crossref]

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Li, W.

Li, Z.

Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, “Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide,” Photonics Res. 7(5), 494 (2019).
[Crossref]

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Liang, W.

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear Few-Layer Antimonene-Based All-Optical Signal Processing: Ultrafast Optical Switching and High-Speed Wavelength Conversion,” Adv. Opt. Mater. 6(13), 1701287 (2018).
[Crossref]

C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, and H. Zhang, “2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics,” Adv. Opt. Mater. 5(24), 1700884 (2017).
[Crossref]

Liang, Z.

Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, “Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide,” Photonics Res. 7(5), 494 (2019).
[Crossref]

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear Few-Layer Antimonene-Based All-Optical Signal Processing: Ultrafast Optical Switching and High-Speed Wavelength Conversion,” Adv. Opt. Mater. 6(13), 1701287 (2018).
[Crossref]

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-Layer Phosphorene-Decorated Microfiber for All-Optical Thresholding and Optical Modulation,” Adv. Opt. Mater. 5(9), 1700026 (2017).
[Crossref]

C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, and H. Zhang, “2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics,” Adv. Opt. Mater. 5(24), 1700884 (2017).
[Crossref]

Liao, J.

S. Chen, Z. Guo, D. K. Sang, H. Wang, Y. Xu, S. Tang, Q. Luo, R. Cao, X. Wang, L. Zhang, J. Liao, H. Zhang, X.-F. Yu, B. Zhao, and D. Fan, “Gold-patterned microarray chips for ultrasensitive surface-enhanced Raman scattering detection of ultratrace samples,” J. Raman Spectrosc. 50(1), 26–33 (2019).
[Crossref]

Lienau, C.

S. F. Becker, M. Esmann, K. Yoo, P. Gross, R. Vogelgesang, N. Park, and C. Lienau, “Gap-plasmon-enhanced nanofocusing near-field microscopy,” ACS Photonics 3(2), 223–232 (2016).
[Crossref]

Lim, C.-K.

Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, and P. N. Prasad, “Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities,” Phys. Rep. 795, 1–51 (2019).
[Crossref]

Lindquist, N. C.

X. Chen, N. C. Lindquist, D. J. Klemme, P. Nagpal, D. J. Norris, and S.-H. Oh, “Split-wedge antennas with sub-5 nm gaps for plasmonic nanofocusing,” Nano Lett. 16(12), 7849–7856 (2016).
[Crossref]

Liu, J.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Liu, L.

M. Song, C. Wang, Z. Zhao, M. Pu, L. Liu, W. Zhang, H. Yu, and X. Luo, “Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance,” Nanoscale 8(3), 1635–1641 (2016).
[Crossref]

Liu, Y.

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-Layer Phosphorene-Decorated Microfiber for All-Optical Thresholding and Optical Modulation,” Adv. Opt. Mater. 5(9), 1700026 (2017).
[Crossref]

Lu, G.

H. Xiang, M. Zhang, X. Zhang, and G. Lu, “Understanding quantum plasmonics from time-dependent orbital-free density functional theory,” J. Phys. Chem. C 120(26), 14330–14336 (2016).
[Crossref]

Lu, L.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Lu, P.

Lu, S.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Lu, Y.

X. Wen, M. Yi, D. Zhang, P. Wang, Y. Lu, and H. Ming, “Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays,” Nanotechnology 22(8), 085203 (2011).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Luo, Q.

S. Chen, Z. Guo, D. K. Sang, H. Wang, Y. Xu, S. Tang, Q. Luo, R. Cao, X. Wang, L. Zhang, J. Liao, H. Zhang, X.-F. Yu, B. Zhao, and D. Fan, “Gold-patterned microarray chips for ultrasensitive surface-enhanced Raman scattering detection of ultratrace samples,” J. Raman Spectrosc. 50(1), 26–33 (2019).
[Crossref]

Luo, X.

M. Song, C. Wang, Z. Zhao, M. Pu, L. Liu, W. Zhang, H. Yu, and X. Luo, “Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance,” Nanoscale 8(3), 1635–1641 (2016).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]

Luo, Y.

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]

MacDonald, K. F.

Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Madi, Y.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
[Crossref]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Marae-Djouda, J.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
[Crossref]

Maurer, T.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
[Crossref]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref]

Mazurski, N.

Ming, H.

X. Wen, M. Yi, D. Zhang, P. Wang, Y. Lu, and H. Ming, “Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays,” Nanotechnology 22(8), 085203 (2011).
[Crossref]

X. J. Jiao, P. Wang, D. Zhang, L. Tang, J. Xie, and H. Ming, “Numerical simulation of nanolithography with the subwavelength metallic grating waveguide structure,” Opt. Express 14(11), 4850–4860 (2006).
[Crossref]

Montay, G.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
[Crossref]

Nagpal, P.

X. Chen, N. C. Lindquist, D. J. Klemme, P. Nagpal, D. J. Norris, and S.-H. Oh, “Split-wedge antennas with sub-5 nm gaps for plasmonic nanofocusing,” Nano Lett. 16(12), 7849–7856 (2016).
[Crossref]

Nicolas, R.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
[Crossref]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Norris, D. J.

X. Chen, N. C. Lindquist, D. J. Klemme, P. Nagpal, D. J. Norris, and S.-H. Oh, “Split-wedge antennas with sub-5 nm gaps for plasmonic nanofocusing,” Nano Lett. 16(12), 7849–7856 (2016).
[Crossref]

Oh, S.-H.

X. Chen, N. C. Lindquist, D. J. Klemme, P. Nagpal, D. J. Norris, and S.-H. Oh, “Split-wedge antennas with sub-5 nm gaps for plasmonic nanofocusing,” Nano Lett. 16(12), 7849–7856 (2016).
[Crossref]

Ohki, Y.

Park, N.

S. F. Becker, M. Esmann, K. Yoo, P. Gross, R. Vogelgesang, N. Park, and C. Lienau, “Gap-plasmon-enhanced nanofocusing near-field microscopy,” ACS Photonics 3(2), 223–232 (2016).
[Crossref]

Plain, J.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
[Crossref]

Ponraj, J. S.

C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, and H. Zhang, “2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics,” Adv. Opt. Mater. 5(24), 1700884 (2017).
[Crossref]

Prasad, P. N.

Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, and P. N. Prasad, “Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities,” Phys. Rep. 795, 1–51 (2019).
[Crossref]

Pu, M.

M. Song, C. Wang, Z. Zhao, M. Pu, L. Liu, W. Zhang, H. Yu, and X. Luo, “Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance,” Nanoscale 8(3), 1635–1641 (2016).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]

Qu, J.

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Ren, G.

Samson, Z. L.

Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Sang, D. K.

S. Chen, Z. Guo, D. K. Sang, H. Wang, Y. Xu, S. Tang, Q. Luo, R. Cao, X. Wang, L. Zhang, J. Liao, H. Zhang, X.-F. Yu, B. Zhao, and D. Fan, “Gold-patterned microarray chips for ultrasensitive surface-enhanced Raman scattering detection of ultratrace samples,” J. Raman Spectrosc. 50(1), 26–33 (2019).
[Crossref]

Shappir, J.

B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2(4), 335–338 (2015).
[Crossref]

B. Desiatov, I. Goykhman, J. Shappir, and U. Levy, “Defect-assisted sub-bandgap avalanche photodetection in interleaved carrier-depletion silicon waveguide for telecom band,” Appl. Phys. Lett. 104(9), 091105 (2014).
[Crossref]

Song, M.

M. Song, C. Wang, Z. Zhao, M. Pu, L. Liu, W. Zhang, H. Yu, and X. Luo, “Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance,” Nanoscale 8(3), 1635–1641 (2016).
[Crossref]

Song, Y.

Y. Song, Y. Chen, X. Jiang, Y. Ge, Y. Wang, K. You, K. Wang, J. Zheng, J. Ji, Y. Zhang, J. Li, and H. Zhang, “Nonlinear Few-Layer MXene-Assisted All-Optical Wavelength Conversion at Telecommunication Band,” Adv. Opt. Mater. 7(18), 1801777 (2019).
[Crossref]

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear Few-Layer Antimonene-Based All-Optical Signal Processing: Ultrafast Optical Switching and High-Speed Wavelength Conversion,” Adv. Opt. Mater. 6(13), 1701287 (2018).
[Crossref]

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-Layer Phosphorene-Decorated Microfiber for All-Optical Thresholding and Optical Modulation,” Adv. Opt. Mater. 5(9), 1700026 (2017).
[Crossref]

Tang, L.

Tang, S.

S. Chen, Z. Guo, D. K. Sang, H. Wang, Y. Xu, S. Tang, Q. Luo, R. Cao, X. Wang, L. Zhang, J. Liao, H. Zhang, X.-F. Yu, B. Zhao, and D. Fan, “Gold-patterned microarray chips for ultrasensitive surface-enhanced Raman scattering detection of ultratrace samples,” J. Raman Spectrosc. 50(1), 26–33 (2019).
[Crossref]

Tang, X.

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-Layer Phosphorene-Decorated Microfiber for All-Optical Thresholding and Optical Modulation,” Adv. Opt. Mater. 5(9), 1700026 (2017).
[Crossref]

Vogelgesang, R.

S. F. Becker, M. Esmann, K. Yoo, P. Gross, R. Vogelgesang, N. Park, and C. Lienau, “Gap-plasmon-enhanced nanofocusing near-field microscopy,” ACS Photonics 3(2), 223–232 (2016).
[Crossref]

Wang, C.

M. Song, C. Wang, Z. Zhao, M. Pu, L. Liu, W. Zhang, H. Yu, and X. Luo, “Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance,” Nanoscale 8(3), 1635–1641 (2016).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]

Wang, H.

S. Chen, Z. Guo, D. K. Sang, H. Wang, Y. Xu, S. Tang, Q. Luo, R. Cao, X. Wang, L. Zhang, J. Liao, H. Zhang, X.-F. Yu, B. Zhao, and D. Fan, “Gold-patterned microarray chips for ultrasensitive surface-enhanced Raman scattering detection of ultratrace samples,” J. Raman Spectrosc. 50(1), 26–33 (2019).
[Crossref]

Wang, K.

Y. Song, Y. Chen, X. Jiang, Y. Ge, Y. Wang, K. You, K. Wang, J. Zheng, J. Ji, Y. Zhang, J. Li, and H. Zhang, “Nonlinear Few-Layer MXene-Assisted All-Optical Wavelength Conversion at Telecommunication Band,” Adv. Opt. Mater. 7(18), 1801777 (2019).
[Crossref]

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear Few-Layer Antimonene-Based All-Optical Signal Processing: Ultrafast Optical Switching and High-Speed Wavelength Conversion,” Adv. Opt. Mater. 6(13), 1701287 (2018).
[Crossref]

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-Layer Phosphorene-Decorated Microfiber for All-Optical Thresholding and Optical Modulation,” Adv. Opt. Mater. 5(9), 1700026 (2017).
[Crossref]

Wang, P.

X. Wen, M. Yi, D. Zhang, P. Wang, Y. Lu, and H. Ming, “Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays,” Nanotechnology 22(8), 085203 (2011).
[Crossref]

X. J. Jiao, P. Wang, D. Zhang, L. Tang, J. Xie, and H. Ming, “Numerical simulation of nanolithography with the subwavelength metallic grating waveguide structure,” Opt. Express 14(11), 4850–4860 (2006).
[Crossref]

Wang, X.

S. Chen, Z. Guo, D. K. Sang, H. Wang, Y. Xu, S. Tang, Q. Luo, R. Cao, X. Wang, L. Zhang, J. Liao, H. Zhang, X.-F. Yu, B. Zhao, and D. Fan, “Gold-patterned microarray chips for ultrasensitive surface-enhanced Raman scattering detection of ultratrace samples,” J. Raman Spectrosc. 50(1), 26–33 (2019).
[Crossref]

Wang, Y.

Y. Song, Y. Chen, X. Jiang, Y. Ge, Y. Wang, K. You, K. Wang, J. Zheng, J. Ji, Y. Zhang, J. Li, and H. Zhang, “Nonlinear Few-Layer MXene-Assisted All-Optical Wavelength Conversion at Telecommunication Band,” Adv. Opt. Mater. 7(18), 1801777 (2019).
[Crossref]

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]

Wang, Z.

Wei, H.

H. Wei and H. Xu, “Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy,” Nanoscale 5(22), 10794–10805 (2013).
[Crossref]

Wen, X.

X. Wen, M. Yi, D. Zhang, P. Wang, Y. Lu, and H. Ming, “Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays,” Nanotechnology 22(8), 085203 (2011).
[Crossref]

Wu, H.

Wu, L.

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear Few-Layer Antimonene-Based All-Optical Signal Processing: Ultrafast Optical Switching and High-Speed Wavelength Conversion,” Adv. Opt. Mater. 6(13), 1701287 (2018).
[Crossref]

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Xiang, H.

H. Xiang, M. Zhang, X. Zhang, and G. Lu, “Understanding quantum plasmonics from time-dependent orbital-free density functional theory,” J. Phys. Chem. C 120(26), 14330–14336 (2016).
[Crossref]

Xiang, Y.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Xie, J.

Xie, Z.

Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, “Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide,” Photonics Res. 7(5), 494 (2019).
[Crossref]

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, and H. Zhang, “2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics,” Adv. Opt. Mater. 5(24), 1700884 (2017).
[Crossref]

Xing, C.

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, and H. Zhang, “2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics,” Adv. Opt. Mater. 5(24), 1700884 (2017).
[Crossref]

Xu, H.

H. Wei and H. Xu, “Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy,” Nanoscale 5(22), 10794–10805 (2013).
[Crossref]

Xu, S.

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Xu, Y.

S. Chen, Z. Guo, D. K. Sang, H. Wang, Y. Xu, S. Tang, Q. Luo, R. Cao, X. Wang, L. Zhang, J. Liao, H. Zhang, X.-F. Yu, B. Zhao, and D. Fan, “Gold-patterned microarray chips for ultrasensitive surface-enhanced Raman scattering detection of ultratrace samples,” J. Raman Spectrosc. 50(1), 26–33 (2019).
[Crossref]

Yang, Z.

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-Layer Phosphorene-Decorated Microfiber for All-Optical Thresholding and Optical Modulation,” Adv. Opt. Mater. 5(9), 1700026 (2017).
[Crossref]

Yao, N.

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]

Yi, M.

X. Wen, M. Yi, D. Zhang, P. Wang, Y. Lu, and H. Ming, “Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays,” Nanotechnology 22(8), 085203 (2011).
[Crossref]

Yoo, K.

S. F. Becker, M. Esmann, K. Yoo, P. Gross, R. Vogelgesang, N. Park, and C. Lienau, “Gap-plasmon-enhanced nanofocusing near-field microscopy,” ACS Photonics 3(2), 223–232 (2016).
[Crossref]

You, K.

Y. Song, Y. Chen, X. Jiang, Y. Ge, Y. Wang, K. You, K. Wang, J. Zheng, J. Ji, Y. Zhang, J. Li, and H. Zhang, “Nonlinear Few-Layer MXene-Assisted All-Optical Wavelength Conversion at Telecommunication Band,” Adv. Opt. Mater. 7(18), 1801777 (2019).
[Crossref]

Yu, G.

Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, and P. N. Prasad, “Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities,” Phys. Rep. 795, 1–51 (2019).
[Crossref]

Yu, H.

M. Song, C. Wang, Z. Zhao, M. Pu, L. Liu, W. Zhang, H. Yu, and X. Luo, “Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance,” Nanoscale 8(3), 1635–1641 (2016).
[Crossref]

Yu, X.-F.

S. Chen, Z. Guo, D. K. Sang, H. Wang, Y. Xu, S. Tang, Q. Luo, R. Cao, X. Wang, L. Zhang, J. Liao, H. Zhang, X.-F. Yu, B. Zhao, and D. Fan, “Gold-patterned microarray chips for ultrasensitive surface-enhanced Raman scattering detection of ultratrace samples,” J. Raman Spectrosc. 50(1), 26–33 (2019).
[Crossref]

Zhang, D.

X. Wen, M. Yi, D. Zhang, P. Wang, Y. Lu, and H. Ming, “Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays,” Nanotechnology 22(8), 085203 (2011).
[Crossref]

X. J. Jiao, P. Wang, D. Zhang, L. Tang, J. Xie, and H. Ming, “Numerical simulation of nanolithography with the subwavelength metallic grating waveguide structure,” Opt. Express 14(11), 4850–4860 (2006).
[Crossref]

Zhang, F.

Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, “Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide,” Photonics Res. 7(5), 494 (2019).
[Crossref]

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear Few-Layer Antimonene-Based All-Optical Signal Processing: Ultrafast Optical Switching and High-Speed Wavelength Conversion,” Adv. Opt. Mater. 6(13), 1701287 (2018).
[Crossref]

Zhang, H.

Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, and P. N. Prasad, “Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities,” Phys. Rep. 795, 1–51 (2019).
[Crossref]

Y. Song, Y. Chen, X. Jiang, Y. Ge, Y. Wang, K. You, K. Wang, J. Zheng, J. Ji, Y. Zhang, J. Li, and H. Zhang, “Nonlinear Few-Layer MXene-Assisted All-Optical Wavelength Conversion at Telecommunication Band,” Adv. Opt. Mater. 7(18), 1801777 (2019).
[Crossref]

Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, “Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide,” Photonics Res. 7(5), 494 (2019).
[Crossref]

S. Chen, Z. Guo, D. K. Sang, H. Wang, Y. Xu, S. Tang, Q. Luo, R. Cao, X. Wang, L. Zhang, J. Liao, H. Zhang, X.-F. Yu, B. Zhao, and D. Fan, “Gold-patterned microarray chips for ultrasensitive surface-enhanced Raman scattering detection of ultratrace samples,” J. Raman Spectrosc. 50(1), 26–33 (2019).
[Crossref]

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear Few-Layer Antimonene-Based All-Optical Signal Processing: Ultrafast Optical Switching and High-Speed Wavelength Conversion,” Adv. Opt. Mater. 6(13), 1701287 (2018).
[Crossref]

C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, and H. Zhang, “2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics,” Adv. Opt. Mater. 5(24), 1700884 (2017).
[Crossref]

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-Layer Phosphorene-Decorated Microfiber for All-Optical Thresholding and Optical Modulation,” Adv. Opt. Mater. 5(9), 1700026 (2017).
[Crossref]

Zhang, L.

S. Chen, Z. Guo, D. K. Sang, H. Wang, Y. Xu, S. Tang, Q. Luo, R. Cao, X. Wang, L. Zhang, J. Liao, H. Zhang, X.-F. Yu, B. Zhao, and D. Fan, “Gold-patterned microarray chips for ultrasensitive surface-enhanced Raman scattering detection of ultratrace samples,” J. Raman Spectrosc. 50(1), 26–33 (2019).
[Crossref]

Zhang, M.

H. Xiang, M. Zhang, X. Zhang, and G. Lu, “Understanding quantum plasmonics from time-dependent orbital-free density functional theory,” J. Phys. Chem. C 120(26), 14330–14336 (2016).
[Crossref]

Zhang, W.

M. Song, C. Wang, Z. Zhao, M. Pu, L. Liu, W. Zhang, H. Yu, and X. Luo, “Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance,” Nanoscale 8(3), 1635–1641 (2016).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]

Zhang, X.

H. Xiang, M. Zhang, X. Zhang, and G. Lu, “Understanding quantum plasmonics from time-dependent orbital-free density functional theory,” J. Phys. Chem. C 120(26), 14330–14336 (2016).
[Crossref]

Zhang, Y.

Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, and P. N. Prasad, “Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities,” Phys. Rep. 795, 1–51 (2019).
[Crossref]

Y. Song, Y. Chen, X. Jiang, Y. Ge, Y. Wang, K. You, K. Wang, J. Zheng, J. Ji, Y. Zhang, J. Li, and H. Zhang, “Nonlinear Few-Layer MXene-Assisted All-Optical Wavelength Conversion at Telecommunication Band,” Adv. Opt. Mater. 7(18), 1801777 (2019).
[Crossref]

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-Layer Phosphorene-Decorated Microfiber for All-Optical Thresholding and Optical Modulation,” Adv. Opt. Mater. 5(9), 1700026 (2017).
[Crossref]

Zhao, B.

S. Chen, Z. Guo, D. K. Sang, H. Wang, Y. Xu, S. Tang, Q. Luo, R. Cao, X. Wang, L. Zhang, J. Liao, H. Zhang, X.-F. Yu, B. Zhao, and D. Fan, “Gold-patterned microarray chips for ultrasensitive surface-enhanced Raman scattering detection of ultratrace samples,” J. Raman Spectrosc. 50(1), 26–33 (2019).
[Crossref]

Z. Guo, J. Hwang, B. Zhao, J. H. Chung, S. G. Cho, S.-J. Baek, and J. Choo, “Ultrasensitive trace analysis for 2, 4, 6-trinitrotoluene using nano-dumbbell surface-enhanced Raman scattering hot spots,” Analyst 139(4), 807–812 (2014).
[Crossref]

Zhao, C.

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]

Zhao, J.

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

Zhao, Z.

M. Song, C. Wang, Z. Zhao, M. Pu, L. Liu, W. Zhang, H. Yu, and X. Luo, “Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance,” Nanoscale 8(3), 1635–1641 (2016).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Zheng, J.

Y. Song, Y. Chen, X. Jiang, Y. Ge, Y. Wang, K. You, K. Wang, J. Zheng, J. Ji, Y. Zhang, J. Li, and H. Zhang, “Nonlinear Few-Layer MXene-Assisted All-Optical Wavelength Conversion at Telecommunication Band,” Adv. Opt. Mater. 7(18), 1801777 (2019).
[Crossref]

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear Few-Layer Antimonene-Based All-Optical Signal Processing: Ultrafast Optical Switching and High-Speed Wavelength Conversion,” Adv. Opt. Mater. 6(13), 1701287 (2018).
[Crossref]

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-Layer Phosphorene-Decorated Microfiber for All-Optical Thresholding and Optical Modulation,” Adv. Opt. Mater. 5(9), 1700026 (2017).
[Crossref]

Zhu, B.

ACS Photonics (1)

S. F. Becker, M. Esmann, K. Yoo, P. Gross, R. Vogelgesang, N. Park, and C. Lienau, “Gap-plasmon-enhanced nanofocusing near-field microscopy,” ACS Photonics 3(2), 223–232 (2016).
[Crossref]

Adv. Funct. Mater. (1)

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, and H. Zhang, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Adv. Opt. Mater. (5)

L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, and H. Zhang, “Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion,” Adv. Opt. Mater. 6(2), 1700985 (2018).
[Crossref]

C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, and H. Zhang, “2D Nonlayered Selenium Nanosheets: Facile Synthesis, Photoluminescence, and Ultrafast Photonics,” Adv. Opt. Mater. 5(24), 1700884 (2017).
[Crossref]

J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen, K. Wang, Y. Song, Y. Zhang, J. Ji, Y. Liu, D. Fan, and H. Zhang, “Few-Layer Phosphorene-Decorated Microfiber for All-Optical Thresholding and Optical Modulation,” Adv. Opt. Mater. 5(9), 1700026 (2017).
[Crossref]

Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng, J. Ji, and H. Zhang, “Nonlinear Few-Layer Antimonene-Based All-Optical Signal Processing: Ultrafast Optical Switching and High-Speed Wavelength Conversion,” Adv. Opt. Mater. 6(13), 1701287 (2018).
[Crossref]

Y. Song, Y. Chen, X. Jiang, Y. Ge, Y. Wang, K. You, K. Wang, J. Zheng, J. Ji, Y. Zhang, J. Li, and H. Zhang, “Nonlinear Few-Layer MXene-Assisted All-Optical Wavelength Conversion at Telecommunication Band,” Adv. Opt. Mater. 7(18), 1801777 (2019).
[Crossref]

Analyst (1)

Z. Guo, J. Hwang, B. Zhao, J. H. Chung, S. G. Cho, S.-J. Baek, and J. Choo, “Ultrasensitive trace analysis for 2, 4, 6-trinitrotoluene using nano-dumbbell surface-enhanced Raman scattering hot spots,” Analyst 139(4), 807–812 (2014).
[Crossref]

Appl. Phys. Lett. (2)

B. Desiatov, I. Goykhman, J. Shappir, and U. Levy, “Defect-assisted sub-bandgap avalanche photodetection in interleaved carrier-depletion silicon waveguide for telecom band,” Appl. Phys. Lett. 104(9), 091105 (2014).
[Crossref]

Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010).
[Crossref]

Chem. Phys. Lett. (1)

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4–6), 153–164 (2010).
[Crossref]

Chem. Rev. (1)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref]

J. Phys. Chem. C (1)

H. Xiang, M. Zhang, X. Zhang, and G. Lu, “Understanding quantum plasmonics from time-dependent orbital-free density functional theory,” J. Phys. Chem. C 120(26), 14330–14336 (2016).
[Crossref]

J. Raman Spectrosc. (1)

S. Chen, Z. Guo, D. K. Sang, H. Wang, Y. Xu, S. Tang, Q. Luo, R. Cao, X. Wang, L. Zhang, J. Liao, H. Zhang, X.-F. Yu, B. Zhao, and D. Fan, “Gold-patterned microarray chips for ultrasensitive surface-enhanced Raman scattering detection of ultratrace samples,” J. Raman Spectrosc. 50(1), 26–33 (2019).
[Crossref]

Nano Lett. (1)

X. Chen, N. C. Lindquist, D. J. Klemme, P. Nagpal, D. J. Norris, and S.-H. Oh, “Split-wedge antennas with sub-5 nm gaps for plasmonic nanofocusing,” Nano Lett. 16(12), 7849–7856 (2016).
[Crossref]

Nanoscale (2)

H. Wei and H. Xu, “Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy,” Nanoscale 5(22), 10794–10805 (2013).
[Crossref]

M. Song, C. Wang, Z. Zhao, M. Pu, L. Liu, W. Zhang, H. Yu, and X. Luo, “Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance,” Nanoscale 8(3), 1635–1641 (2016).
[Crossref]

Nanotechnology (1)

X. Wen, M. Yi, D. Zhang, P. Wang, Y. Lu, and H. Ming, “Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays,” Nanotechnology 22(8), 085203 (2011).
[Crossref]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Optica (1)

Photonics Res. (1)

Z. Xie, F. Zhang, Z. Liang, T. Fan, Z. Li, X. Jiang, H. Chen, J. Li, and H. Zhang, “Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide,” Photonics Res. 7(5), 494 (2019).
[Crossref]

Phys. Rep. (1)

Y. Zhang, C.-K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, and P. N. Prasad, “Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities,” Phys. Rep. 795, 1–51 (2019).
[Crossref]

Sci. Rep. (2)

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5(1), 14419 (2015).
[Crossref]

Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, and X. Luo, “Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination,” Sci. Rep. 5(1), 15320 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. The layout of a basic NRANC which consists of a nano-ridge-aperture coupled with a central nano-cylinder for constructing a special metasurface by orderly arranging plenty of NRANC. (a) Several key geometric parameters including the side length of the central nano-square being 200 nm and the total length of the maximum aperture size being 900 nm. (b) Schematic of a single NRANC formed in a metal film pre-deposited over a common silicon substrate. (c) A laser beam with a needed polarization is incident normally upon the metasurface constructed. The side views of the structure: (d) a single NRANC and (e) a nano-ridge-aperture and (f) a nano-cylinder.
Fig. 2.
Fig. 2. Near-field lightwave intensity distribution of a single NRANC with different structural parameter configuration. (a) The typical lightwave intensity distribution corresponding to a nano-ridge-aperture without shaping a coupling nano-cavity with the central nano-cylinder. (b) The similar case corresponding to a nano-cylinder. (c)∼(f) A nano-complex constructed by practically coupling a nano-ridge-aperture with a central nano-cylinder but having different gap size through arranging different nano-cylinder radius of (c)100 nm, (d)130 nm, (e)135 nm, and (f) $100\sqrt 2 $nm, respectively. (g) The relationship between the maxima of the near-field lightwave intensity over the NRANC with the radius of the nano-cylinder r.
Fig. 3.
Fig. 3. (a) The transmission spectra of a single NRANC with different nano-cylinder's radius. Light-field or electric-field intensity and its direction vector distribution on the xz plane or surface of the NRANC with a radius of the nano-cylinder being 30 nm corresponding to an incident lightwave with a central wavelength of 823 nm: (b) |E|; (c) |Ex|; (d) phase(Ex); (e) |Ez|. Light-field or electric-field intensity and its direction vector distribution on the xz plane or surface of the NRANC with a radius of the nano-cylinder being 70 nm corresponding to an incident lightwave with a central wavelength of 674 nm: (f) |E|; (g) |Ex|; (h) phase(Ex); (i) |Ez|. Light-field or electric-field intensity and its direction vector distribution on the xz plane or surface of the NRANC with a radius of the nano-cylinder being 70 nm corresponding to an incident lightwave with a central wavelength of 1.214 µm: (j) |E|; (k) |Ex|; (l) phase(Ex); (m) |Ez|.
Fig. 4.
Fig. 4. (a) The transmission spectra (blue solid line) of an isolated aluminum NRANC and the transmission spectra (red dash-dot line) of an arrayed aluminum NRANC metasurface. (b) The near-field lightwave intensity distribution on the isolated aluminum NRANC at 780 nm normal incidence. (c) The near-field lightwave intensity distribution on an arrayed aluminum NRANC metasurface.
Fig. 5.
Fig. 5. (a) Schematic of a 633 nm beams incident upon a metasurface at 45°. (b) Simulation of the near-field lightwave intensity distribution over a single aluminum NRANC lead to a metasurface above. (c) Transmission spectra at different incident angle and demonstrating a remarkable red shift corresponding to a ∼600 nm wavelength of resonance mode and a ∼1.2 µm wavelength of resonance mode.
Fig. 6.
Fig. 6. SEM, AFM and near-field lightwave intensity distribution of the NRANC metasurface. (a) SEM images of a metasurface sample, (b) near-field lightwave intensity distribution on the sample, (c) near-field lightwave intensity distribution along red dashed line. The white dashed lines are the outlines of the nano-apertures. The red dotted line is the trendline of the electric intensity distribution curve. (d) AFM image of the metasurface sample.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k SPP 2 = k 0 2 ε m ε d ε m + ε d = ( k x + m 2 π / L ) 2 + ( k y + n 2 π / L ) 2

Metrics