Expand this Topic clickable element to expand a topic
OSA Publishing
You have attempted to access the full-text of an Early Posting article. Access is available via an institutional subscription.

See the Early Posting FAQ page for additional information.

Electric Field Vector Measurements Via Nanosecond Electric Field Induced Second Harmonic Generation

Optics Letters
  • Tat Loon Chng, Maya Naphade, Benjamin Goldberg, Igor Adamovich, and Svetlana Starikovskaya
  • received 08/15/2019; accepted 10/19/2019; posted 10/21/2019; Doc. ID 374833
  • Abstract: Electric field induced second harmonic generation, or E-FISH, has received renewed interest as a non-intrusive tool for probing electric fields in gas discharges and plasmas using ultrashort laser pulses. An important contribution of this work lies in establishing that the E-FISH method works effectively in the nanosecond regime, yielding field sensitivities of about a kV/cm at atmospheric pressure from a 16 ns pulse. This is expected to broaden its applicability within the plasma community, given the wider access to conventional nanosecond laser sources. A Pockels-cell-based pulse-slicing scheme, which may be readily integrated with such nanosecond laser systems, is shown to be a complementary and cost-effective option for improving the time resolution of the electric field measurement. Using this scheme, a time resolution of ~3 ns is achieved, without any detriment to the signal sensitivity. This could prove invaluable for non-equilibrium plasma applications, where time resolution of a few nanoseconds or less is often critical. Finally, we take advantage of the field vector sensitivity of the E-FISH signal to demonstrate simultaneous measurements of both the horizontal and vertical components of the electric field.
Select as filters


    Select Topics Cancel
    © Copyright 2020 | The Optical Society. All Rights Reserved