Expand this Topic clickable element to expand a topic
OSA Publishing
You have attempted to access the full-text of an Early Posting article. Access is available via an institutional subscription.

See the Early Posting FAQ page for additional information.

Chirp-controlled high-harmonic and attosecond-pulse generation via coherent-wake plasma emission driven by mid-infrared laser pulses

Optics Letters
  • Alexander Mitrofanov, Dmitry Sidorov-Biryukov, Pavel Borisovich, Mikhail Rozhko, Evgeny Stepanov, Anton Shutov, Sergey Ryabchuk, Aleksandr Voronin, Andrey Fedotov, and Aleksei Zheltikov
  • received 08/05/2019; accepted 10/29/2019; posted 10/29/2019; Doc. ID 374617
  • Abstract: Coherent-wake plasma emission induced by ultrashort mid-infrared laser pulses on a solid target is shown to give rise to high-brightness, high-order harmonic radiation, offering a promising source of attosecond pulses and a probe for ultrafast subrelativistic plasma dynamics. With 80-fs, 0.2-TW pulses of 3.9-micrometer radiation used as a driver, optical harmonics up to the 34th order are detected, with their spectrum stretching from the mid-infrared to the extreme ultraviolet. The harmonic spectrum is found to be highly sensitive to the chirp of the driver. Particle-in-cell analysis of this effect suggests, in agreement with the generic scenario of coherent-wake emission, that optical harmonics are radiated as trains of extremely short, attosecond ultraviolet pulses with a pulse-to-pulse interval varying over the pulse train. A positive chirp of the driver pulse can partially compensate for this variation in the interpulse separation, allowing harmonics of highest orders to be generated in the plasma emission spectrum.
Select as filters


    Select Topics Cancel
    © Copyright 2020 | The Optical Society. All Rights Reserved