Abstract

We present wide field-of-view (FOV) bi-directional point-to-multipoint indoor optical wireless communications operating over a range of 4 m. The system is designed to integrate with fiber-to-the-home/building networks realized by a passive optical network. A phase-only spatial light modulator (SLM)-based beam steering base station with a ±30° FOV broadcasts downstream transmissions to two nomadic user terminals that use mirror-based beam steering to provide a ±50° FOV. At the base station, a composite phase mask is constructed on the SLM not only to perform optical broadcasting, but also to steer upstream optical transmissions from user terminals at a different wavelength. Successful upstream and downstream data transmission of 25 Gbit/s PAM4 is achieved.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
High-speed indoor optical wireless communication system employing a silicon integrated photonic circuit

Ke Wang, Ampalavanapillai Nirmalathas, Christina Lim, Elaine Wong, Kamal Alameh, Hongtao Li, and Efstratios Skafidas
Opt. Lett. 43(13) 3132-3135 (2018)

Steerable pencil beams for multi-Gbps indoor optical wireless communication

C. W. Oh, E. Tangdiongga, and A. M. J. Koonen
Opt. Lett. 39(18) 5427-5430 (2014)

Cost-efficient half-duplex 10  Gbit/s all-optical indoor optical wireless communication enabled by a low-cost Fabry–Perot laser/photodetector

Chao Li, Xuebing Zhang, Eduward Tangdiongga, Xiaoyu Dai, Cheng-Ting Tsai, Huai-Yung Wang, Yuanjiang Xiang, Gong-Ru Lin, Zizheng Cao, and Ton Koonen
Opt. Lett. 44(5) 1158-1161 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. Koonen, J. Lightwave Technol. 36, 1459 (2017).
    [Crossref]
  2. D. C. O’Brien, “Optical wireless communications: current status and future prospects,” in Proc. IEEE Summ. Top., Newport Beach (2016).
  3. M. Maier, M. Levesque, and L. Ivanescu, IEEE Netw. 26, 15 (2012).
    [Crossref]
  4. L.-Y. Wei, C.-W. Chow, G.-H. Chen, Y. Liu, C.-H. Yeh, and C.-W. Hsu, Opt. Express 27, 25072 (2019).
    [Crossref]
  5. T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, Y.-F. Huang, and G.-R. Lin, Sci. Rep. 7, 11 (2017).
    [Crossref]
  6. A. Gomez, K. Shi, C. Quintana, G. Faulkner, B. C. Thomsen, and D. O’Brien, J. Lightwave Technol. 34, 2510 (2016).
    [Crossref]
  7. F. Feng, P. Sangwongngam, H. Chun, G. Faulkner, and D. O’Brien, in Conference on Lasers and Electro-Optics (Optical Society of America, 2019), paper SM2G.5.
  8. D. Nesset, J. Lightwave Technol. 33, 1136 (2015).
    [Crossref]
  9. F. Feng, I. H. White, and T. D. Wilkinson, J. Lightwave Technol. 31, 2001 (2013).
    [Crossref]
  10. F. Feng, X. Jin, D. O’Brien, F. Payne, Y. Jung, Q. Kang, P. Barua, J. K. Sahu, S.-U. Alam, D. J. Richardson, and T. D. Wilkinson, Opt. Express 25, 13773 (2017).
    [Crossref]
  11. N. Matsumoto, T. Inoue, T. Ando, Y. Takiguchi, Y. Ohtake, and H. Toyoda, Opt. Lett. 37, 3135 (2012).
    [Crossref]
  12. F. Feng, I. H. White, and T. D. Wilkinson, J. Lightwave Technol. 32, 1239 (2014).
    [Crossref]

2019 (1)

2017 (3)

2016 (1)

2015 (1)

2014 (1)

2013 (1)

2012 (2)

Alam, S.-U.

Ando, T.

Barua, P.

Chen, G.-H.

Chi, Y.-C.

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, Y.-F. Huang, and G.-R. Lin, Sci. Rep. 7, 11 (2017).
[Crossref]

Chow, C.-W.

Chun, H.

F. Feng, P. Sangwongngam, H. Chun, G. Faulkner, and D. O’Brien, in Conference on Lasers and Electro-Optics (Optical Society of America, 2019), paper SM2G.5.

Faulkner, G.

A. Gomez, K. Shi, C. Quintana, G. Faulkner, B. C. Thomsen, and D. O’Brien, J. Lightwave Technol. 34, 2510 (2016).
[Crossref]

F. Feng, P. Sangwongngam, H. Chun, G. Faulkner, and D. O’Brien, in Conference on Lasers and Electro-Optics (Optical Society of America, 2019), paper SM2G.5.

Feng, F.

Gomez, A.

Hsu, C.-W.

Huang, Y.-F.

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, Y.-F. Huang, and G.-R. Lin, Sci. Rep. 7, 11 (2017).
[Crossref]

Inoue, T.

Ivanescu, L.

M. Maier, M. Levesque, and L. Ivanescu, IEEE Netw. 26, 15 (2012).
[Crossref]

Jin, X.

Jung, Y.

Kang, Q.

Koonen, T.

Levesque, M.

M. Maier, M. Levesque, and L. Ivanescu, IEEE Netw. 26, 15 (2012).
[Crossref]

Lin, G.-R.

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, Y.-F. Huang, and G.-R. Lin, Sci. Rep. 7, 11 (2017).
[Crossref]

Liu, Y.

Maier, M.

M. Maier, M. Levesque, and L. Ivanescu, IEEE Netw. 26, 15 (2012).
[Crossref]

Matsumoto, N.

Nesset, D.

O’Brien, D.

O’Brien, D. C.

D. C. O’Brien, “Optical wireless communications: current status and future prospects,” in Proc. IEEE Summ. Top., Newport Beach (2016).

Ohtake, Y.

Payne, F.

Quintana, C.

Richardson, D. J.

Sahu, J. K.

Sangwongngam, P.

F. Feng, P. Sangwongngam, H. Chun, G. Faulkner, and D. O’Brien, in Conference on Lasers and Electro-Optics (Optical Society of America, 2019), paper SM2G.5.

Shi, K.

Takiguchi, Y.

Thomsen, B. C.

Toyoda, H.

Tsai, C.-T.

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, Y.-F. Huang, and G.-R. Lin, Sci. Rep. 7, 11 (2017).
[Crossref]

Wang, H.-Y.

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, Y.-F. Huang, and G.-R. Lin, Sci. Rep. 7, 11 (2017).
[Crossref]

Wei, L.-Y.

White, I. H.

Wilkinson, T. D.

Wu, T.-C.

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, Y.-F. Huang, and G.-R. Lin, Sci. Rep. 7, 11 (2017).
[Crossref]

Yeh, C.-H.

IEEE Netw. (1)

M. Maier, M. Levesque, and L. Ivanescu, IEEE Netw. 26, 15 (2012).
[Crossref]

J. Lightwave Technol. (5)

Opt. Express (2)

Opt. Lett. (1)

Sci. Rep. (1)

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, Y.-F. Huang, and G.-R. Lin, Sci. Rep. 7, 11 (2017).
[Crossref]

Other (2)

D. C. O’Brien, “Optical wireless communications: current status and future prospects,” in Proc. IEEE Summ. Top., Newport Beach (2016).

F. Feng, P. Sangwongngam, H. Chun, G. Faulkner, and D. O’Brien, in Conference on Lasers and Electro-Optics (Optical Society of America, 2019), paper SM2G.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. System design of the wide FOV point-to-multipoint indoor bi-directional OWC system to integrate with FTTH/B networks enabled by NG-PON2.
Fig. 2.
Fig. 2. Left, illustrations of bi-directional operations with different phase masks on the SLM. Right, the induced bi-directional operation coupling loss to corresponding upstream and/or downstream transmission(s) versus the upstream and downstream operating wavelengths. (a) With a single downstream phase mask, the upstream transmission experiences the additional loss. (b) With a single upstream phase mask, the downstream transmission experiences the additional loss. (c) With a composite phase mask for both upstream and downstream transmissions, both the upstream and downstream transmissions experience a relatively low additional coupling loss.
Fig. 3.
Fig. 3. (a) Illustrative example of the bi-directional optical broadcasting to two user terminals with a 1599 nm downstream wavelength and 1536 nm upstream wavelength. (b) Downstream replay field with 1603 nm downstream wavelength and 1524 nm upstream wavelength. (c) Downstream replay field with 1577 nm downstream wavelength and 1270 nm upstream wavelength.
Fig. 4.
Fig. 4. (a) Experimental system for the wide FOV bi-directional point-to-multipoint data transmission tests using PAM-4. (b) BER curves for the broadcast bi-directional transmissions at 25 Gbit/s using PAM-4 and typical eye diagrams. ROP, received optical power.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

h x , y = exp ( i · arg [ m = 0 M 1 w m · θ m , x , y ] ) ,
Loss Total of one link ( dB ) = Loss Avg_coupling 10 log 10 ( 1 N ) + Loss Bi-directional .

Metrics