Abstract

We propose and experimentally demonstrate a novel, to the best of our knowledge, correlated random bit generation (CRBG) scheme in virtue of the synchronization of two physical entropy sources that are composed of a continuous-wave laser, a phase modulator that is driven by the output of a local laser subject to constant-amplitude and random-phase (CARP) injection, as well as a dispersive component. It is experimentally indicated that wideband complex physical entropy sources with an effective bandwidth of 22 GHz can be achieved, and high-quality synchronization with a large cross-correlation coefficient ($\sim{0.95}$) can be achieved by introducing symmetric CARP injections into the local lasers at Alice and Bob ends. Based on this, two distributed CRBSs with a bit rate over 3 Gb/s and satisfactory consistency are independently generated at Alice and Bob ends; the excellent randomness of CRBSs is verified using a test suite of the National Institute of Standards and Technology.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tbits/s physical random bit generation based on mutually coupled semiconductor laser chaotic entropy source

Xi Tang, Zheng-Mao Wu, Jia-Gui Wu, Tao Deng, Jian-Jun Chen, Li Fan, Zhu-Qiang Zhong, and Guang-Qiong Xia
Opt. Express 23(26) 33130-33141 (2015)

Minimal-post-processing 320-Gbps true random bit generation using physical white chaos

Anbang Wang, Longsheng Wang, Pu Li, and Yuncai Wang
Opt. Express 25(4) 3153-3164 (2017)

Key distribution based on synchronization in bandwidth-enhanced random bit generators with dynamic post-processing

Chenpeng Xue, Ning Jiang, Kun Qiu, and Yunxin Lv
Opt. Express 23(11) 14510-14519 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription