Abstract

The feasibility of an innovative biomedical diagnostic technique, thermal photo-acoustic (TPA) measurement, for non-ionizing and non-invasive assessment of bone health is investigated. Unlike conventional photo-acoustic PA methods that are mostly focused on the measurement of absolute signal intensity, TPA targets the change in PA signal intensity as a function of the sample temperature, i.e., the temperature-dependent Grueneisen parameter that is closely relevant to the chemical and molecular properties in the sample. Based on the differentiation measurement, the results from TPA technique are less susceptible to the variations associated with sample and system, and could be quantified with improved accurately. Due to the fact that the PA signal intensity from organic components such as blood changes faster than that from non-organic mineral under the same modulation of temperature, TPA measurement is able to objectively evaluate bone mineral density (BMD) and its loss as a result of osteoporosis. In an experiment on well-established rat models of bone loss and preservation, PA measurements of rat tibia bones were conducted over a temperature range from 37°C to 44°C. The slope of PA signal intensity verses temperature was quantified for each specimen. The comparison among three groups of specimens with different BMD shows that bones with lower BMD have higher slopes, demonstrating the potential of the proposed TPA technique in future clinical management of osteoporosis.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of bone microstructure using photoacoustic spectrum analysis

Ting Feng, Joseph E. Perosky, Kenneth M. Kozloff, Guan Xu, Qian Cheng, Sidan Du, Jie Yuan, Cheri X. Deng, and Xueding Wang
Opt. Express 23(19) 25217-25224 (2015)

Spatially offset Raman spectroscopy for in vivo bone strength prediction

Chi Shu, Keren Chen, Maria Lynch, Jason R. Maher, Hani A. Awad, and Andrew J. Berger
Biomed. Opt. Express 9(10) 4781-4791 (2018)

Jitter reduction technique for acoustic radiation force impulse microscopy via photoacoustic detection

Bong Jin Kang, Changhan Yoon, Jin Man Park, Jae Youn Hwang, and K. Kirk Shung
Opt. Express 23(15) 19166-19175 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription