Abstract

We demonstrate a new biphoton manipulation and characterization technique based on electro-optic intensity modulation and time shifting. By applying fast modulation signals with a sharply peaked cross-correlation to each photon from an entangled pair, it is possible to measure temporal correlations with significantly higher precision than that attainable using standard single-photon detection. Low-duty-cycle pulses and maximal-length sequences are considered as modulation functions, reducing the time spread in our correlation measurement by a factor of five compared to our detector jitter. With state-of-the-art electro-optic components, we expect the potential to surpass the speed of any single-photon detectors currently available.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electro-optically switchable spatial-mode entangled photon pairs using a modified Mach–Zehnder interferometer

Jasleen Lugani, Sankalpa Ghosh, and Krishna Thyagarajan
Opt. Lett. 37(17) 3729-3731 (2012)

Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue
Opt. Express 15(21) 13957-13964 (2007)

Engineering of near-IR photon pairs to be factorable in space-time and entangled in polarization

Kevin Zielnicki, Karina Garay-Palmett, Radhika Dirks, Alfred B. U’Ren, and Paul G. Kwiat
Opt. Express 23(6) 7894-7907 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, Ultrafast Optics (Wiley, 2009).
  2. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
    [Crossref]
  3. A. E. Willner, S. Khaleghi, M. R. Chitgarha, and O. F. Yilmaz, J. Lightwave Technol. 32, 660 (2014).
    [Crossref]
  4. S. Wabnitz and B. J. Eggleton, eds., All-Optical Signal Processing (Springer, 2015).
  5. M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, IEEE J. Sel. Top. Quantum Electron. 13, 852 (2007).
    [Crossref]
  6. J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Gol’tsman, and R. Sobolewski, IEEE Trans. Appl. Supercond. 13, 180 (2003).
    [Crossref]
  7. A. Beling and J. C. Campbell, IEEE J. Sel. Top. Quantum Electron. 20, 57 (2014).
    [Crossref]
  8. B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, 043602 (2005).
    [Crossref]
  9. A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, 073601 (2005).
    [Crossref]
  10. K. A. O’Donnell and A. B. U’Ren, Phys. Rev. Lett. 103, 123602 (2009).
    [Crossref]
  11. S. Du, Phys. Rev. A 83, 033807 (2011).
    [Crossref]
  12. J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, Phys. Rev. Lett. 111, 193603 (2013).
    [Crossref]
  13. O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, Opt. Lett. 33, 2257 (2008).
    [Crossref]
  14. O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, Phys. Rev. Lett. 101, 153602 (2008).
    [Crossref]
  15. J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, Phys. Rev. Lett. 111, 153602 (2013).
    [Crossref]
  16. J. M. Donohue, J. Lavoie, and K. J. Resch, Phys. Rev. Lett. 113, 163602 (2014).
    [Crossref]
  17. S. E. Harris, Phys. Rev. A 78, 021807 (2008).
    [Crossref]
  18. C. Belthangady, S. Du, C.-S. Chuu, G. Y. Yin, and S. E. Harris, Phys. Rev. A 80, 031803 (2009).
    [Crossref]
  19. EOSpace, “Advanced product line,” 2015, www.eospace.com.
  20. C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).
    [Crossref]
  21. R. J. Glauber, Phys. Rev. 130, 2529 (1963).
    [Crossref]
  22. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  23. A. Rashidinejad and A. M. Weiner, J. Lightwave Technol. 32, 3383 (2014).
    [Crossref]
  24. Y. Li, A. Rashidinejad, J.-M. Wun, D. E. Leaird, J.-W. Shi, and A. M. Weiner, Optica 1, 446 (2014).
    [Crossref]
  25. M. R. Schroeder, Number Theory in Science and Communication (Springer-Verlag, 1986).
  26. J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, Opt. Lett. 38, 4652 (2013).
    [Crossref]

2014 (5)

2013 (3)

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, Opt. Lett. 38, 4652 (2013).
[Crossref]

J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, Phys. Rev. Lett. 111, 153602 (2013).
[Crossref]

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, Phys. Rev. Lett. 111, 193603 (2013).
[Crossref]

2011 (1)

S. Du, Phys. Rev. A 83, 033807 (2011).
[Crossref]

2009 (2)

C. Belthangady, S. Du, C.-S. Chuu, G. Y. Yin, and S. E. Harris, Phys. Rev. A 80, 031803 (2009).
[Crossref]

K. A. O’Donnell and A. B. U’Ren, Phys. Rev. Lett. 103, 123602 (2009).
[Crossref]

2008 (3)

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, Opt. Lett. 33, 2257 (2008).
[Crossref]

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, Phys. Rev. Lett. 101, 153602 (2008).
[Crossref]

S. E. Harris, Phys. Rev. A 78, 021807 (2008).
[Crossref]

2007 (1)

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, IEEE J. Sel. Top. Quantum Electron. 13, 852 (2007).
[Crossref]

2005 (2)

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, 043602 (2005).
[Crossref]

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, 073601 (2005).
[Crossref]

2003 (1)

J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Gol’tsman, and R. Sobolewski, IEEE Trans. Appl. Supercond. 13, 180 (2003).
[Crossref]

1997 (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[Crossref]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).
[Crossref]

1963 (1)

R. J. Glauber, Phys. Rev. 130, 2529 (1963).
[Crossref]

Agnew, M.

J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, Phys. Rev. Lett. 111, 153602 (2013).
[Crossref]

Beling, A.

A. Beling and J. C. Campbell, IEEE J. Sel. Top. Quantum Electron. 20, 57 (2014).
[Crossref]

Belthangady, C.

C. Belthangady, S. Du, C.-S. Chuu, G. Y. Yin, and S. E. Harris, Phys. Rev. A 80, 031803 (2009).
[Crossref]

Campbell, J. C.

A. Beling and J. C. Campbell, IEEE J. Sel. Top. Quantum Electron. 20, 57 (2014).
[Crossref]

Chitgarha, M. R.

Chulkova, G.

J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Gol’tsman, and R. Sobolewski, IEEE Trans. Appl. Supercond. 13, 180 (2003).
[Crossref]

Chuu, C.-S.

C. Belthangady, S. Du, C.-S. Chuu, G. Y. Yin, and S. E. Harris, Phys. Rev. A 80, 031803 (2009).
[Crossref]

Cova, S.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, IEEE J. Sel. Top. Quantum Electron. 13, 852 (2007).
[Crossref]

Dayan, B.

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, 043602 (2005).
[Crossref]

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, 073601 (2005).
[Crossref]

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[Crossref]

Dezfooliyan, A.

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, Opt. Lett. 38, 4652 (2013).
[Crossref]

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, Phys. Rev. Lett. 111, 193603 (2013).
[Crossref]

Donohue, J. M.

J. M. Donohue, J. Lavoie, and K. J. Resch, Phys. Rev. Lett. 113, 163602 (2014).
[Crossref]

J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, Phys. Rev. Lett. 111, 153602 (2013).
[Crossref]

Du, S.

S. Du, Phys. Rev. A 83, 033807 (2011).
[Crossref]

C. Belthangady, S. Du, C.-S. Chuu, G. Y. Yin, and S. E. Harris, Phys. Rev. A 80, 031803 (2009).
[Crossref]

Fejer, M. M.

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, Phys. Rev. Lett. 111, 193603 (2013).
[Crossref]

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, Opt. Lett. 38, 4652 (2013).
[Crossref]

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[Crossref]

Friesem, A. A.

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, 073601 (2005).
[Crossref]

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, 043602 (2005).
[Crossref]

Ghioni, M.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, IEEE J. Sel. Top. Quantum Electron. 13, 852 (2007).
[Crossref]

Glauber, R. J.

R. J. Glauber, Phys. Rev. 130, 2529 (1963).
[Crossref]

Gol’tsman, G. N.

J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Gol’tsman, and R. Sobolewski, IEEE Trans. Appl. Supercond. 13, 180 (2003).
[Crossref]

Gulinatti, A.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, IEEE J. Sel. Top. Quantum Electron. 13, 852 (2007).
[Crossref]

Harris, S. E.

C. Belthangady, S. Du, C.-S. Chuu, G. Y. Yin, and S. E. Harris, Phys. Rev. A 80, 031803 (2009).
[Crossref]

S. E. Harris, Phys. Rev. A 78, 021807 (2008).
[Crossref]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).
[Crossref]

Kane, D. J.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[Crossref]

Khaleghi, S.

Korneev, A.

J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Gol’tsman, and R. Sobolewski, IEEE Trans. Appl. Supercond. 13, 180 (2003).
[Crossref]

Krumbügel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[Crossref]

Kurimura, S.

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, Opt. Lett. 33, 2257 (2008).
[Crossref]

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, Phys. Rev. Lett. 101, 153602 (2008).
[Crossref]

Kuzucu, O.

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, Opt. Lett. 33, 2257 (2008).
[Crossref]

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, Phys. Rev. Lett. 101, 153602 (2008).
[Crossref]

Langrock, C.

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, Phys. Rev. Lett. 111, 193603 (2013).
[Crossref]

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, Opt. Lett. 38, 4652 (2013).
[Crossref]

Lavoie, J.

J. M. Donohue, J. Lavoie, and K. J. Resch, Phys. Rev. Lett. 113, 163602 (2014).
[Crossref]

J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, Phys. Rev. Lett. 111, 153602 (2013).
[Crossref]

Leaird, D. E.

Li, Y.

Lipatov, A.

J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Gol’tsman, and R. Sobolewski, IEEE Trans. Appl. Supercond. 13, 180 (2003).
[Crossref]

Lukens, J. M.

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, Phys. Rev. Lett. 111, 193603 (2013).
[Crossref]

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, Opt. Lett. 38, 4652 (2013).
[Crossref]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).
[Crossref]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

O’Donnell, K. A.

K. A. O’Donnell and A. B. U’Ren, Phys. Rev. Lett. 103, 123602 (2009).
[Crossref]

Okunev, O.

J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Gol’tsman, and R. Sobolewski, IEEE Trans. Appl. Supercond. 13, 180 (2003).
[Crossref]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).
[Crossref]

Pe’er, A.

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, 073601 (2005).
[Crossref]

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, 043602 (2005).
[Crossref]

Rashidinejad, A.

Rech, I.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, IEEE J. Sel. Top. Quantum Electron. 13, 852 (2007).
[Crossref]

Resch, K. J.

J. M. Donohue, J. Lavoie, and K. J. Resch, Phys. Rev. Lett. 113, 163602 (2014).
[Crossref]

J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, Phys. Rev. Lett. 111, 153602 (2013).
[Crossref]

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[Crossref]

Schroeder, M. R.

M. R. Schroeder, Number Theory in Science and Communication (Springer-Verlag, 1986).

Shi, J.-W.

Silberberg, Y.

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, 043602 (2005).
[Crossref]

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, 073601 (2005).
[Crossref]

Slysz, W.

J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Gol’tsman, and R. Sobolewski, IEEE Trans. Appl. Supercond. 13, 180 (2003).
[Crossref]

Sobolewski, R.

J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Gol’tsman, and R. Sobolewski, IEEE Trans. Appl. Supercond. 13, 180 (2003).
[Crossref]

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[Crossref]

Tovstonog, S.

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, Opt. Lett. 33, 2257 (2008).
[Crossref]

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, Phys. Rev. Lett. 101, 153602 (2008).
[Crossref]

Trebino, R.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[Crossref]

U’Ren, A. B.

K. A. O’Donnell and A. B. U’Ren, Phys. Rev. Lett. 103, 123602 (2009).
[Crossref]

Verevkin, A.

J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Gol’tsman, and R. Sobolewski, IEEE Trans. Appl. Supercond. 13, 180 (2003).
[Crossref]

Weiner, A. M.

Willner, A. E.

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Wong, F. N. C.

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, Opt. Lett. 33, 2257 (2008).
[Crossref]

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, Phys. Rev. Lett. 101, 153602 (2008).
[Crossref]

Wun, J.-M.

Yilmaz, O. F.

Yin, G. Y.

C. Belthangady, S. Du, C.-S. Chuu, G. Y. Yin, and S. E. Harris, Phys. Rev. A 80, 031803 (2009).
[Crossref]

Zappa, F.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, IEEE J. Sel. Top. Quantum Electron. 13, 852 (2007).
[Crossref]

Zhang, J.

J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Gol’tsman, and R. Sobolewski, IEEE Trans. Appl. Supercond. 13, 180 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Beling and J. C. Campbell, IEEE J. Sel. Top. Quantum Electron. 20, 57 (2014).
[Crossref]

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, IEEE J. Sel. Top. Quantum Electron. 13, 852 (2007).
[Crossref]

IEEE Trans. Appl. Supercond. (1)

J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Gol’tsman, and R. Sobolewski, IEEE Trans. Appl. Supercond. 13, 180 (2003).
[Crossref]

J. Lightwave Technol. (2)

Opt. Lett. (2)

Optica (1)

Phys. Rev. (1)

R. J. Glauber, Phys. Rev. 130, 2529 (1963).
[Crossref]

Phys. Rev. A (3)

S. E. Harris, Phys. Rev. A 78, 021807 (2008).
[Crossref]

C. Belthangady, S. Du, C.-S. Chuu, G. Y. Yin, and S. E. Harris, Phys. Rev. A 80, 031803 (2009).
[Crossref]

S. Du, Phys. Rev. A 83, 033807 (2011).
[Crossref]

Phys. Rev. Lett. (8)

J. M. Lukens, A. Dezfooliyan, C. Langrock, M. M. Fejer, D. E. Leaird, and A. M. Weiner, Phys. Rev. Lett. 111, 193603 (2013).
[Crossref]

O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, Phys. Rev. Lett. 101, 153602 (2008).
[Crossref]

J. M. Donohue, M. Agnew, J. Lavoie, and K. J. Resch, Phys. Rev. Lett. 111, 153602 (2013).
[Crossref]

J. M. Donohue, J. Lavoie, and K. J. Resch, Phys. Rev. Lett. 113, 163602 (2014).
[Crossref]

B. Dayan, A. Pe’er, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, 043602 (2005).
[Crossref]

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, 073601 (2005).
[Crossref]

K. A. O’Donnell and A. B. U’Ren, Phys. Rev. Lett. 103, 123602 (2009).
[Crossref]

C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).
[Crossref]

Rev. Sci. Instrum. (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[Crossref]

Other (5)

A. M. Weiner, Ultrafast Optics (Wiley, 2009).

S. Wabnitz and B. J. Eggleton, eds., All-Optical Signal Processing (Springer, 2015).

M. R. Schroeder, Number Theory in Science and Communication (Springer-Verlag, 1986).

EOSpace, “Advanced product line,” 2015, www.eospace.com.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Experimental setup. Entangled photons are generated in the process of SPDC in a PPLN waveguide, coupled into an optical fiber, and separated with a fiber beam splitter. The signal and idler then experience intensity modulation, and coincidences are recorded as the timing of the signal modulation is swept. SMF, single-mode fiber; AWG, arbitrary waveform generator.
Fig. 2.
Fig. 2. Coincidence measurements with pulse-like modulation. (a) Modulation functions and (b) corresponding coincidence rate when a 25%-duty-cycle sequence is applied by a waveform generator. (c) Intensity modulation and (d) associated coincidence rate for a 12.5%-duty-cycle pattern. For comparison, the red dotted curve in (d) gives the measured coincidence spread when the modulators are bypassed and the photons are detected directly, binned into 32 ps time slots. For the modulation results in (b) and (d) [left axis], the error bars show experimental results; the solid curves give theoretical predictions.
Fig. 3.
Fig. 3. Additional tests. Coincidence rate versus time shift for (a) 50 m and (b) 200 m of single-mode fiber added before the coupler in Fig. 1. The background-subtracted FWHMs for each are 97.5 and 269 ps, compared to 73.5 ps in Fig. 2(d). (c) Results for fiber added instead in the idler arm of Fig. 1. The solid blue, dotted black, and dashed red cases correspond to 41.9, 43.7, and 46.0 links, respectively. (d) Effect of length-15 M-sequences. Biphoton coincidence rate as the voltage applied to the signal modulator is temporally shifted. In all subfigures, error bars give experimental results, and curves, theory.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R c ( τ ) = K d t G 0 ( 2 ) ( t ) γ s i ( t + τ ) ,
γ s i ( t ) = t 0 t 0 + T d x M s ( x + t ) M i ( x )

Metrics