Abstract

Grating couplers are proposed for polarization-independent coupling of light between a single-mode fiber and a 220-nm-thick channel waveguide on silicon-on-insulator. The grating couplers have nonuniform grating periods that are composed of the intersection or union of a set of two near-optimal TE- and TM-grating periods. The proposed grating couplers have a coupling efficiency greater than 20% and polarization dependent loss (PDL) lower than 0.5 dB within 3-dB bandwidth in design. For the evaluation of the design concept, a fabricated intersection grating coupler has the PDL of less than 0.8 dB within the wavelength range of 1540 to 1560 nm, and the coupling efficiency is 18%.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides

Xia Chen and Hon K. Tsang
Opt. Lett. 36(6) 796-798 (2011)

Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits

Yongbo Tang, Zhechao Wang, Lech Wosinski, Urban Westergren, and Sailing He
Opt. Lett. 35(8) 1290-1292 (2010)

Subwavelength-grating-assisted broadband polarization-independent directional coupler

Lu Liu, Qingzhong Deng, and Zhiping Zhou
Opt. Lett. 41(7) 1648-1651 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription