Abstract

Typically, materials with large optical losses such as metals are used as microheaters for silicon based thermo-optic phase shifters. Consequently, the heater must be placed far from the waveguide, which could come at the expense of the phase shifter performance. Reducing the gap between the waveguide and the heater allows reducing the power consumption or increasing the switching speed. In this work, we propose an ultra-low loss microheater for thermo-optic tuning by using a CMOS-compatible transparent conducting oxide such as indium tin oxide (ITO) with the aim of drastically reducing the gap. Using finite element method simulations, ITO and Ti based heaters are compared for different cladding configurations and TE and TM polarizations. Furthermore, the proposed ITO based microheaters have also been fabricated using the optimum gap and cladding configuration. Experimental results show power consumption to achieve a π phase shift of 10 mW and switching time of a few microseconds for a 50 µm long ITO heater. The obtained results demonstrate the potential of using ITO as an ultra-low loss microheater for high performance silicon thermo-optic tuning and open an alternative way for enabling the large-scale integration of phase shifters required in emerging integrated photonic applications.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform

Maxime Jacques, Alireza Samani, Eslam El-Fiky, David Patel, Zhenping Xing, and David V. Plant
Opt. Express 27(8) 10456-10471 (2019)

Efficient, compact and low loss thermo-optic phase shifter in silicon

Nicholas C. Harris, Yangjin Ma, Jacob Mower, Tom Baehr-Jones, Dirk Englund, Michael Hochberg, and Christophe Galland
Opt. Express 22(9) 10487-10493 (2014)

Ultra-power-efficient 2 × 2 Si Mach-Zehnder interferometer optical switch based on III-V/Si hybrid MOS phase shifter

Q. Li, J.-H. Han, C. P. Ho, S. Takagi, and M. Takenaka
Opt. Express 26(26) 35003-35012 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
    [Crossref]
  2. E. Timurdogan, M. R. Watts, E. S. Hosseini, A. Yaacobi, and J. Sun, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
    [Crossref]
  3. Y. Shen, N. C. Harris, D. Englund, and M. Soljacic, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
    [Crossref]
  4. A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
    [Crossref]
  5. D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
    [Crossref]
  6. J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics (2019).
  7. P. Sun and R. M. Reano, “Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides,” Opt. Express 18(8), 8406 (2010).
    [Crossref]
  8. A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Sub-100-nanosecond thermal reconfiguration of silicon photonic devices,” Opt. Express 21(13), 15706 (2013).
    [Crossref]
  9. A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” IEEE Int. Conf. on Group IV Photonics GFP2, 83–84 (2013).
  10. A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Fabrication and characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices,” Opt. Mater. Express 4(7), 1383 (2014).
    [Crossref]
  11. Á. Rosa, A. Gutiérrez, A. Brimont, A. Griol, and P. Sanchis, “High performace silicon 2x2 optical switch based on a thermo-optically tunable multimode interference coupler and efficient electrodes,” Opt. Express 24(1), 191 (2016).
    [Crossref]
  12. M. Jacques, A. Samani, E. El-Fiky, D. Patel, Z. Xing, and D. V. Plant, “Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform,” Opt. Express 27(8), 10456 (2019).
    [Crossref]
  13. X. I. W. Ang and K. S. Chiang, “Polarization-insensitive mode-independent thermo-optic switch based on symmetric waveguide directional coupler,” Opt. Express 27(24), 35385–35393 (2019).
    [Crossref]
  14. A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18(17), 18312 (2010).
    [Crossref]
  15. L. Yu, Y. Yin, Y. Shi, D. Dai, and S. He, “Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters,” Optica 3(2), 159 (2016).
    [Crossref]
  16. D. Schall, M. Mohsin, A. A. Sagade, M. Otto, B. Chmielak, S. Suckow, A. L. Giesecke, D. Neumaier, and H. Kurz, “Infrared transparent graphene heater for silicon photonic integrated circuits,” Opt. Express 24(8), 7871 (2016).
    [Crossref]
  17. S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
    [Crossref]
  18. Z. Xu, C. Qiu, Y. Yang, Q. Zhu, X. Jiang, Y. Zhang, W. Gao, and Y. Su, “Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater,” Opt. Express 25(16), 19479 (2017).
    [Crossref]
  19. J. Lv, Y. Yang, B. Lin, Y. Cao, Y. Zhang, S. Li, Y. Yi, F. Wang, and D. Zhang, “Graphene-embedded first-order mode polymer Mach-Zender interferometer thermo-optic switch with low power consumption,” Opt. Lett. 44(18), 4606 (2019).
    [Crossref]
  20. X. Wang, W. Jin, Z. Chang, and K. S. Chiang, “Buried graphene electrode heater for a polymer waveguide thermo-optic device,” Opt. Lett. 44(6), 1480 (2019).
    [Crossref]
  21. D. J. Lee, H. M. Kim, J. Y. Kwon, H. Choi, S. H. Kim, and K. B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater. 21(3), 448–455 (2011).
    [Crossref]
  22. J. W. Cleary, E. M. Smith, K. D. Leedy, G. Grzybowski, and J. Guo, “Optical and electrical properties of ultra-thin indium tin oxide nanofilms on silicon for infrared photonics,” Opt. Mater. Express 8(5), 1231 (2018).
    [Crossref]
  23. S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering,” J. Appl. Phys. 54(6), 3497–3501 (1983).
    [Crossref]
  24. V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326 (2013).
    [Crossref]
  25. V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
    [Crossref]
  26. K. Shi, R. R. Haque, B. Zhao, R. Zhao, and Z. Lu, “Broadband electro-optical modulator based on transparent conducting oxide,” Opt. Lett. 39(17), 4978 (2014).
    [Crossref]
  27. C. Hoessbacher, Y. Fedoryshyn, A. Emboras, A. Melikyan, M. Kohl, D. Hillerkuss, C. Hafner, and J. Leuthold, “The plasmonic memristor: a latching optical switch,” Optica 1(4), 198 (2014).
    [Crossref]
  28. X. Liu, K. Zang, J. H. Kang, J. Park, J. S. Harris, P. G. Kik, and M. L. Brongersma, “Epsilon-Near-Zero Si Slot-Waveguide Modulator,” ACS Photonics 5(11), 4484–4490 (2018).
    [Crossref]
  29. E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultracompact Silicon-Conductive Oxide Nanocavity Modulator with 0.02 Lambda-Cubic Active Volume,” Nano Lett. 18(2), 1075–1081 (2018).
    [Crossref]
  30. E. Li, Q. Gao, S. Liverman, and A. X. Wang, “One-volt silicon photonic crystal nanocavity modulator with indium oxide gate,” Opt. Lett. 43(18), 4429–4432 (2018).
    [Crossref]
  31. R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, and V. J. Sorger, “0.52 V mm ITO-based Mach-Zehnder modulator in silicon photonics,” APL Photonics 3(12), 126104 (2018).
    [Crossref]
  32. Q. Gao, E. Li, and A. X. Wang, “Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide,” Photonics Res. 6(4), 277 (2018).
    [Crossref]
  33. M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler, “Gigahertz speed operation of epsilon-near-zero silicon photonic modulators,” Optica 5(3), 233 (2018).
    [Crossref]
  34. E. Li, B. A. Nia, B. Zhou, and A. X. Wang, “Transparent conductive oxide-gated silicon microring with extreme resonance wavelength tunability,” Photonics Res. 7(4), 473 (2019).
    [Crossref]
  35. J. Parra, I. Olivares, A. Brimont, and P. Sanchis, “Non-volatile epsilon-near-zero readout memory,” Opt. Lett. 44(16), 3932 (2019).
    [Crossref]
  36. Y. Gui, M. Miscuglio, Z. Ma, M. H. Tahersima, S. Sun, R. Amin, H. Dalir, and V. J. Sorger, “Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide,” Sci. Rep. 9(1), 11279 (2019).
    [Crossref]
  37. S. Xian, L. Nie, J. Qin, T. Kang, C. Li, J. Xie, L. Deng, and L. Bi, “Effect of oxygen stoichiometry on the structure, optical and epsilon-near-zero properties of indium tin oxide films,” Opt. Express 27(20), 28618 (2019).
    [Crossref]
  38. P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks, “Basic materials physics of transparent conducting oxides,” Dalton Transactions pp. 2995–3002 (2004).
  39. F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, “Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 µm,” Opt. Lett. 34(6), 839 (2009).
    [Crossref]
  40. X. Fang and L. Yang, “Thermal effect analysis of silicon microring optical switch for on-chip interconnect,” J. Semicond. 38(10), 104004 (2017).
    [Crossref]

2019 (8)

M. Jacques, A. Samani, E. El-Fiky, D. Patel, Z. Xing, and D. V. Plant, “Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform,” Opt. Express 27(8), 10456 (2019).
[Crossref]

X. I. W. Ang and K. S. Chiang, “Polarization-insensitive mode-independent thermo-optic switch based on symmetric waveguide directional coupler,” Opt. Express 27(24), 35385–35393 (2019).
[Crossref]

J. Lv, Y. Yang, B. Lin, Y. Cao, Y. Zhang, S. Li, Y. Yi, F. Wang, and D. Zhang, “Graphene-embedded first-order mode polymer Mach-Zender interferometer thermo-optic switch with low power consumption,” Opt. Lett. 44(18), 4606 (2019).
[Crossref]

X. Wang, W. Jin, Z. Chang, and K. S. Chiang, “Buried graphene electrode heater for a polymer waveguide thermo-optic device,” Opt. Lett. 44(6), 1480 (2019).
[Crossref]

E. Li, B. A. Nia, B. Zhou, and A. X. Wang, “Transparent conductive oxide-gated silicon microring with extreme resonance wavelength tunability,” Photonics Res. 7(4), 473 (2019).
[Crossref]

J. Parra, I. Olivares, A. Brimont, and P. Sanchis, “Non-volatile epsilon-near-zero readout memory,” Opt. Lett. 44(16), 3932 (2019).
[Crossref]

Y. Gui, M. Miscuglio, Z. Ma, M. H. Tahersima, S. Sun, R. Amin, H. Dalir, and V. J. Sorger, “Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide,” Sci. Rep. 9(1), 11279 (2019).
[Crossref]

S. Xian, L. Nie, J. Qin, T. Kang, C. Li, J. Xie, L. Deng, and L. Bi, “Effect of oxygen stoichiometry on the structure, optical and epsilon-near-zero properties of indium tin oxide films,” Opt. Express 27(20), 28618 (2019).
[Crossref]

2018 (8)

J. W. Cleary, E. M. Smith, K. D. Leedy, G. Grzybowski, and J. Guo, “Optical and electrical properties of ultra-thin indium tin oxide nanofilms on silicon for infrared photonics,” Opt. Mater. Express 8(5), 1231 (2018).
[Crossref]

X. Liu, K. Zang, J. H. Kang, J. Park, J. S. Harris, P. G. Kik, and M. L. Brongersma, “Epsilon-Near-Zero Si Slot-Waveguide Modulator,” ACS Photonics 5(11), 4484–4490 (2018).
[Crossref]

E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultracompact Silicon-Conductive Oxide Nanocavity Modulator with 0.02 Lambda-Cubic Active Volume,” Nano Lett. 18(2), 1075–1081 (2018).
[Crossref]

E. Li, Q. Gao, S. Liverman, and A. X. Wang, “One-volt silicon photonic crystal nanocavity modulator with indium oxide gate,” Opt. Lett. 43(18), 4429–4432 (2018).
[Crossref]

R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, and V. J. Sorger, “0.52 V mm ITO-based Mach-Zehnder modulator in silicon photonics,” APL Photonics 3(12), 126104 (2018).
[Crossref]

Q. Gao, E. Li, and A. X. Wang, “Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide,” Photonics Res. 6(4), 277 (2018).
[Crossref]

M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler, “Gigahertz speed operation of epsilon-near-zero silicon photonic modulators,” Optica 5(3), 233 (2018).
[Crossref]

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref]

2017 (5)

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref]

Y. Shen, N. C. Harris, D. Englund, and M. Soljacic, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref]

Z. Xu, C. Qiu, Y. Yang, Q. Zhu, X. Jiang, Y. Zhang, W. Gao, and Y. Su, “Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater,” Opt. Express 25(16), 19479 (2017).
[Crossref]

X. Fang and L. Yang, “Thermal effect analysis of silicon microring optical switch for on-chip interconnect,” J. Semicond. 38(10), 104004 (2017).
[Crossref]

2016 (3)

2014 (3)

2013 (3)

2012 (2)

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

2011 (1)

D. J. Lee, H. M. Kim, J. Y. Kwon, H. Choi, S. H. Kim, and K. B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater. 21(3), 448–455 (2011).
[Crossref]

2010 (2)

2009 (1)

1983 (1)

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering,” J. Appl. Phys. 54(6), 3497–3501 (1983).
[Crossref]

Absil, P.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Fabrication and characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices,” Opt. Mater. Express 4(7), 1383 (2014).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” IEEE Int. Conf. on Group IV Photonics GFP2, 83–84 (2013).

Adibi, A.

Al Qubaisi, K.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref]

Alloatti, L.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref]

Amin, R.

Y. Gui, M. Miscuglio, Z. Ma, M. H. Tahersima, S. Sun, R. Amin, H. Dalir, and V. J. Sorger, “Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide,” Sci. Rep. 9(1), 11279 (2019).
[Crossref]

R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, and V. J. Sorger, “0.52 V mm ITO-based Mach-Zehnder modulator in silicon photonics,” APL Photonics 3(12), 126104 (2018).
[Crossref]

Ang, X. I. W.

Atabaki, A. H.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref]

A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Sub-100-nanosecond thermal reconfiguration of silicon photonic devices,” Opt. Express 21(13), 15706 (2013).
[Crossref]

A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18(17), 18312 (2010).
[Crossref]

Babicheva, V. E.

Baiocco, C. V.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref]

Banerjee, R.

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering,” J. Appl. Phys. 54(6), 3497–3501 (1983).
[Crossref]

Barua, A. K.

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering,” J. Appl. Phys. 54(6), 3497–3501 (1983).
[Crossref]

Basu, N.

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering,” J. Appl. Phys. 54(6), 3497–3501 (1983).
[Crossref]

Batabyal, A. K.

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering,” J. Appl. Phys. 54(6), 3497–3501 (1983).
[Crossref]

Bi, L.

Bogaerts, W.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Fabrication and characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices,” Opt. Mater. Express 4(7), 1383 (2014).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” IEEE Int. Conf. on Group IV Photonics GFP2, 83–84 (2013).

Boltasseva, A.

Brimont, A.

Brongersma, M. L.

X. Liu, K. Zang, J. H. Kang, J. Park, J. S. Harris, P. G. Kik, and M. L. Brongersma, “Epsilon-Near-Zero Si Slot-Waveguide Modulator,” ACS Photonics 5(11), 4484–4490 (2018).
[Crossref]

Campione, S.

Cao, W.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref]

Cao, Y.

Capmany, J.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref]

Carfano, C.

R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, and V. J. Sorger, “0.52 V mm ITO-based Mach-Zehnder modulator in silicon photonics,” APL Photonics 3(12), 126104 (2018).
[Crossref]

Chang, Z.

Chen, R. T.

E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultracompact Silicon-Conductive Oxide Nanocavity Modulator with 0.02 Lambda-Cubic Active Volume,” Nano Lett. 18(2), 1075–1081 (2018).
[Crossref]

Chiang, K. S.

Chmielak, B.

Choi, H.

D. J. Lee, H. M. Kim, J. Y. Kwon, H. Choi, S. H. Kim, and K. B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater. 21(3), 448–455 (2011).
[Crossref]

Cleary, J. W.

Crudgington, L.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref]

Dai, D.

Dalir, H.

Y. Gui, M. Miscuglio, Z. Ma, M. H. Tahersima, S. Sun, R. Amin, H. Dalir, and V. J. Sorger, “Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide,” Sci. Rep. 9(1), 11279 (2019).
[Crossref]

R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, and V. J. Sorger, “0.52 V mm ITO-based Mach-Zehnder modulator in silicon photonics,” APL Photonics 3(12), 126104 (2018).
[Crossref]

Danz, N.

Deng, L.

Descrovi, E.

Ding, Y.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref]

Dominici, L.

Dong, J.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref]

Edwards, P. P.

P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks, “Basic materials physics of transparent conducting oxides,” Dalton Transactions pp. 2995–3002 (2004).

Eftekhar, A. A.

El-Fiky, E.

Emboras, A.

Englund, D.

Y. Shen, N. C. Harris, D. Englund, and M. Soljacic, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Fang, X.

X. Fang and L. Yang, “Thermal effect analysis of silicon microring optical switch for on-chip interconnect,” J. Semicond. 38(10), 104004 (2017).
[Crossref]

Fedoryshyn, Y.

Ferrera, M.

Frandsen, L. H.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref]

Gao, Q.

E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultracompact Silicon-Conductive Oxide Nanocavity Modulator with 0.02 Lambda-Cubic Active Volume,” Nano Lett. 18(2), 1075–1081 (2018).
[Crossref]

Q. Gao, E. Li, and A. X. Wang, “Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide,” Photonics Res. 6(4), 277 (2018).
[Crossref]

E. Li, Q. Gao, S. Liverman, and A. X. Wang, “One-volt silicon photonic crystal nanocavity modulator with indium oxide gate,” Opt. Lett. 43(18), 4429–4432 (2018).
[Crossref]

Gao, W.

Gasulla, I.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref]

Gevorgyan, H.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref]

Giesecke, A. L.

Goossens, D.

Griol, A.

Grzybowski, G.

Gui, Y.

Y. Gui, M. Miscuglio, Z. Ma, M. H. Tahersima, S. Sun, R. Amin, H. Dalir, and V. J. Sorger, “Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide,” Sci. Rep. 9(1), 11279 (2019).
[Crossref]

Guo, J.

Gutiérrez, A.

Hafner, C.

Haque, R. R.

Harris, J. S.

X. Liu, K. Zang, J. H. Kang, J. Park, J. S. Harris, P. G. Kik, and M. L. Brongersma, “Epsilon-Near-Zero Si Slot-Waveguide Modulator,” ACS Photonics 5(11), 4484–4490 (2018).
[Crossref]

Harris, N. C.

Y. Shen, N. C. Harris, D. Englund, and M. Soljacic, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

He, S.

Heinert, D.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Hillerkuss, D.

Hoessbacher, C.

Hofmann, G.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Hosseini, E. S.

E. Timurdogan, M. R. Watts, E. S. Hosseini, A. Yaacobi, and J. Sun, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref]

Jacques, M.

Jiang, X.

Jin, W.

Jones, M. O.

P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks, “Basic materials physics of transparent conducting oxides,” Dalton Transactions pp. 2995–3002 (2004).

Kang, J. H.

X. Liu, K. Zang, J. H. Kang, J. Park, J. S. Harris, P. G. Kik, and M. L. Brongersma, “Epsilon-Near-Zero Si Slot-Waveguide Modulator,” ACS Photonics 5(11), 4484–4490 (2018).
[Crossref]

Kang, T.

Keeler, G. A.

Khilo, A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref]

Khokhar, A. Z.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref]

Kik, P. G.

X. Liu, K. Zang, J. H. Kang, J. Park, J. S. Harris, P. G. Kik, and M. L. Brongersma, “Epsilon-Near-Zero Si Slot-Waveguide Modulator,” ACS Photonics 5(11), 4484–4490 (2018).
[Crossref]

Kim, H. M.

D. J. Lee, H. M. Kim, J. Y. Kwon, H. Choi, S. H. Kim, and K. B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater. 21(3), 448–455 (2011).
[Crossref]

Kim, K. B.

D. J. Lee, H. M. Kim, J. Y. Kwon, H. Choi, S. H. Kim, and K. B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater. 21(3), 448–455 (2011).
[Crossref]

Kim, S. H.

D. J. Lee, H. M. Kim, J. Y. Kwon, H. Choi, S. H. Kim, and K. B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater. 21(3), 448–455 (2011).
[Crossref]

Kinsey, N.

Kohl, M.

Komma, J.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Kruger, S. A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref]

Kurz, H.

Kwon, J. Y.

D. J. Lee, H. M. Kim, J. Y. Kwon, H. Choi, S. H. Kim, and K. B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater. 21(3), 448–455 (2011).
[Crossref]

Laing, A.

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics (2019).

Lanzillotti-Kimura, N. D.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Lavrinenko, A. V.

Lee, D. J.

D. J. Lee, H. M. Kim, J. Y. Kwon, H. Choi, S. H. Kim, and K. B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater. 21(3), 448–455 (2011).
[Crossref]

Leedy, K. D.

Lepage, G.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Fabrication and characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices,” Opt. Mater. Express 4(7), 1383 (2014).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” IEEE Int. Conf. on Group IV Photonics GFP2, 83–84 (2013).

Leuthold, J.

Li, C.

Li, E.

E. Li, B. A. Nia, B. Zhou, and A. X. Wang, “Transparent conductive oxide-gated silicon microring with extreme resonance wavelength tunability,” Photonics Res. 7(4), 473 (2019).
[Crossref]

E. Li, Q. Gao, S. Liverman, and A. X. Wang, “One-volt silicon photonic crystal nanocavity modulator with indium oxide gate,” Opt. Lett. 43(18), 4429–4432 (2018).
[Crossref]

Q. Gao, E. Li, and A. X. Wang, “Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide,” Photonics Res. 6(4), 277 (2018).
[Crossref]

E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultracompact Silicon-Conductive Oxide Nanocavity Modulator with 0.02 Lambda-Cubic Active Volume,” Nano Lett. 18(2), 1075–1081 (2018).
[Crossref]

Li, K.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref]

Li, S.

Lilach, Y.

R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, and V. J. Sorger, “0.52 V mm ITO-based Mach-Zehnder modulator in silicon photonics,” APL Photonics 3(12), 126104 (2018).
[Crossref]

Lin, B.

Liu, X.

X. Liu, K. Zang, J. H. Kang, J. Park, J. S. Harris, P. G. Kik, and M. L. Brongersma, “Epsilon-Near-Zero Si Slot-Waveguide Modulator,” ACS Photonics 5(11), 4484–4490 (2018).
[Crossref]

Liverman, S.

Lu, Z.

Luk, T. S.

Lv, J.

Ma, R. M.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Ma, Z.

Y. Gui, M. Miscuglio, Z. Ma, M. H. Tahersima, S. Sun, R. Amin, H. Dalir, and V. J. Sorger, “Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide,” Sci. Rep. 9(1), 11279 (2019).
[Crossref]

R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, and V. J. Sorger, “0.52 V mm ITO-based Mach-Zehnder modulator in silicon photonics,” APL Photonics 3(12), 126104 (2018).
[Crossref]

Maiti, R.

R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, and V. J. Sorger, “0.52 V mm ITO-based Mach-Zehnder modulator in silicon photonics,” APL Photonics 3(12), 126104 (2018).
[Crossref]

Mashanovich, G. Z.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref]

Masood, A.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Fabrication and characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices,” Opt. Mater. Express 4(7), 1383 (2014).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” IEEE Int. Conf. on Group IV Photonics GFP2, 83–84 (2013).

Melikyan, A.

Menchini, F.

Meng, H.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref]

Michelotti, F.

Miscuglio, M.

Y. Gui, M. Miscuglio, Z. Ma, M. H. Tahersima, S. Sun, R. Amin, H. Dalir, and V. J. Sorger, “Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide,” Sci. Rep. 9(1), 11279 (2019).
[Crossref]

Moazeni, S.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref]

Mohsin, M.

Morgan, D. V.

P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks, “Basic materials physics of transparent conducting oxides,” Dalton Transactions pp. 2995–3002 (2004).

Mortensen, N. A.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref]

Naik, G. V.

Nawrodt, R.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Neumaier, D.

Nia, B. A.

E. Li, B. A. Nia, B. Zhou, and A. X. Wang, “Transparent conductive oxide-gated silicon microring with extreme resonance wavelength tunability,” Photonics Res. 7(4), 473 (2019).
[Crossref]

Nie, L.

Notaros, J.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref]

Olivares, I.

Otto, M.

Pantouvaki, M.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Fabrication and characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices,” Opt. Mater. Express 4(7), 1383 (2014).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” IEEE Int. Conf. on Group IV Photonics GFP2, 83–84 (2013).

Parameswaran, S.

Park, J.

X. Liu, K. Zang, J. H. Kang, J. Park, J. S. Harris, P. G. Kik, and M. L. Brongersma, “Epsilon-Near-Zero Si Slot-Waveguide Modulator,” ACS Photonics 5(11), 4484–4490 (2018).
[Crossref]

Parra, J.

Patel, D.

Pavanello, F.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref]

Pérez, D.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref]

Perks, R. M.

P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks, “Basic materials physics of transparent conducting oxides,” Dalton Transactions pp. 2995–3002 (2004).

Plant, D. V.

Popovic, M. A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref]

Porch, A.

P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks, “Basic materials physics of transparent conducting oxides,” Dalton Transactions pp. 2995–3002 (2004).

Qin, J.

Qiu, C.

Ram, R. J.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref]

Ratnayake, D.

R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, and V. J. Sorger, “0.52 V mm ITO-based Mach-Zehnder modulator in silicon photonics,” APL Photonics 3(12), 126104 (2018).
[Crossref]

Ray, S.

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering,” J. Appl. Phys. 54(6), 3497–3501 (1983).
[Crossref]

Reano, R. M.

Rosa, Á.

Sagade, A. A.

Samani, A.

Sanchis, P.

Schall, D.

Schwarz, C.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Sciarrino, F.

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics (2019).

Serkland, D. K.

Shah Hosseini, E.

Shalaev, V. M.

Shen, Y.

Y. Shen, N. C. Harris, D. Englund, and M. Soljacic, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Shi, K.

Shi, Y.

Smith, E. M.

Soljacic, M.

Y. Shen, N. C. Harris, D. Englund, and M. Soljacic, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Sorger, V. J.

Y. Gui, M. Miscuglio, Z. Ma, M. H. Tahersima, S. Sun, R. Amin, H. Dalir, and V. J. Sorger, “Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide,” Sci. Rep. 9(1), 11279 (2019).
[Crossref]

R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, and V. J. Sorger, “0.52 V mm ITO-based Mach-Zehnder modulator in silicon photonics,” APL Photonics 3(12), 126104 (2018).
[Crossref]

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Stojanovic, V. M.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref]

Su, Y.

Suckow, S.

Sun, C.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref]

Sun, J.

E. Timurdogan, M. R. Watts, E. S. Hosseini, A. Yaacobi, and J. Sun, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref]

Sun, P.

Sun, S.

Y. Gui, M. Miscuglio, Z. Ma, M. H. Tahersima, S. Sun, R. Amin, H. Dalir, and V. J. Sorger, “Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide,” Sci. Rep. 9(1), 11279 (2019).
[Crossref]

Tahersima, M. H.

Y. Gui, M. Miscuglio, Z. Ma, M. H. Tahersima, S. Sun, R. Amin, H. Dalir, and V. J. Sorger, “Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide,” Sci. Rep. 9(1), 11279 (2019).
[Crossref]

R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, and V. J. Sorger, “0.52 V mm ITO-based Mach-Zehnder modulator in silicon photonics,” APL Photonics 3(12), 126104 (2018).
[Crossref]

Thompson, M. G.

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics (2019).

Thomson, D. J.

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref]

Timurdogan, E.

E. Timurdogan, M. R. Watts, E. S. Hosseini, A. Yaacobi, and J. Sun, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref]

Van Campenhout, J.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Fabrication and characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices,” Opt. Mater. Express 4(7), 1383 (2014).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” IEEE Int. Conf. on Group IV Photonics GFP2, 83–84 (2013).

Van Thourhout, D.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Fabrication and characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices,” Opt. Mater. Express 4(7), 1383 (2014).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” IEEE Int. Conf. on Group IV Photonics GFP2, 83–84 (2013).

Verheyen, P.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Fabrication and characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices,” Opt. Mater. Express 4(7), 1383 (2014).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” IEEE Int. Conf. on Group IV Photonics GFP2, 83–84 (2013).

Wade, M. T.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref]

Wang, A. X.

E. Li, B. A. Nia, B. Zhou, and A. X. Wang, “Transparent conductive oxide-gated silicon microring with extreme resonance wavelength tunability,” Photonics Res. 7(4), 473 (2019).
[Crossref]

E. Li, Q. Gao, S. Liverman, and A. X. Wang, “One-volt silicon photonic crystal nanocavity modulator with indium oxide gate,” Opt. Lett. 43(18), 4429–4432 (2018).
[Crossref]

Q. Gao, E. Li, and A. X. Wang, “Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide,” Photonics Res. 6(4), 277 (2018).
[Crossref]

E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultracompact Silicon-Conductive Oxide Nanocavity Modulator with 0.02 Lambda-Cubic Active Volume,” Nano Lett. 18(2), 1075–1081 (2018).
[Crossref]

Wang, F.

Wang, I.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref]

Wang, J.

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics (2019).

Wang, X.

Watts, M. R.

E. Timurdogan, M. R. Watts, E. S. Hosseini, A. Yaacobi, and J. Sun, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref]

Wendt, J. R.

Wood, M. G.

Xian, S.

Xiao, S.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref]

Xie, J.

Xing, Z.

Xu, Z.

Yaacobi, A.

E. Timurdogan, M. R. Watts, E. S. Hosseini, A. Yaacobi, and J. Sun, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref]

Yan, S.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref]

Yang, L.

X. Fang and L. Yang, “Thermal effect analysis of silicon microring optical switch for on-chip interconnect,” J. Semicond. 38(10), 104004 (2017).
[Crossref]

Yang, Y.

Yegnanarayanan, S.

Yi, Y.

Yin, Y.

Yu, L.

Zang, K.

X. Liu, K. Zang, J. H. Kang, J. Park, J. S. Harris, P. G. Kik, and M. L. Brongersma, “Epsilon-Near-Zero Si Slot-Waveguide Modulator,” ACS Photonics 5(11), 4484–4490 (2018).
[Crossref]

Zhang, B.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref]

Zhang, D.

Zhang, X.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Zhang, Y.

Zhao, B.

Zhao, R.

Zhou, B.

E. Li, B. A. Nia, B. Zhou, and A. X. Wang, “Transparent conductive oxide-gated silicon microring with extreme resonance wavelength tunability,” Photonics Res. 7(4), 473 (2019).
[Crossref]

Zhu, Q.

Zhu, X.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref]

ACS Photonics (1)

X. Liu, K. Zang, J. H. Kang, J. Park, J. S. Harris, P. G. Kik, and M. L. Brongersma, “Epsilon-Near-Zero Si Slot-Waveguide Modulator,” ACS Photonics 5(11), 4484–4490 (2018).
[Crossref]

Adv. Funct. Mater. (1)

D. J. Lee, H. M. Kim, J. Y. Kwon, H. Choi, S. H. Kim, and K. B. Kim, “Structural and electrical properties of atomic layer deposited Al-doped ZnO films,” Adv. Funct. Mater. 21(3), 448–455 (2011).
[Crossref]

APL Photonics (1)

R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, and V. J. Sorger, “0.52 V mm ITO-based Mach-Zehnder modulator in silicon photonics,” APL Photonics 3(12), 126104 (2018).
[Crossref]

Appl. Phys. Lett. (1)

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

J. Appl. Phys. (1)

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, “Properties of tin doped indium oxide thin films prepared by magnetron sputtering,” J. Appl. Phys. 54(6), 3497–3501 (1983).
[Crossref]

J. Semicond. (1)

X. Fang and L. Yang, “Thermal effect analysis of silicon microring optical switch for on-chip interconnect,” J. Semicond. 38(10), 104004 (2017).
[Crossref]

Nano Lett. (1)

E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultracompact Silicon-Conductive Oxide Nanocavity Modulator with 0.02 Lambda-Cubic Active Volume,” Nano Lett. 18(2), 1075–1081 (2018).
[Crossref]

Nanophotonics (1)

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Nat. Commun. (2)

D. Pérez, I. Gasulla, L. Crudgington, D. J. Thomson, A. Z. Khokhar, K. Li, W. Cao, G. Z. Mashanovich, and J. Capmany, “Multipurpose silicon photonics signal processor core,” Nat. Commun. 8(1), 636 (2017).
[Crossref]

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref]

Nat. Photonics (1)

Y. Shen, N. C. Harris, D. Englund, and M. Soljacic, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11(7), 441–446 (2017).
[Crossref]

Nature (2)

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref]

E. Timurdogan, M. R. Watts, E. S. Hosseini, A. Yaacobi, and J. Sun, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref]

Opt. Express (10)

D. Schall, M. Mohsin, A. A. Sagade, M. Otto, B. Chmielak, S. Suckow, A. L. Giesecke, D. Neumaier, and H. Kurz, “Infrared transparent graphene heater for silicon photonic integrated circuits,” Opt. Express 24(8), 7871 (2016).
[Crossref]

Z. Xu, C. Qiu, Y. Yang, Q. Zhu, X. Jiang, Y. Zhang, W. Gao, and Y. Su, “Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater,” Opt. Express 25(16), 19479 (2017).
[Crossref]

M. Jacques, A. Samani, E. El-Fiky, D. Patel, Z. Xing, and D. V. Plant, “Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform,” Opt. Express 27(8), 10456 (2019).
[Crossref]

P. Sun and R. M. Reano, “Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides,” Opt. Express 18(8), 8406 (2010).
[Crossref]

A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18(17), 18312 (2010).
[Crossref]

A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Sub-100-nanosecond thermal reconfiguration of silicon photonic devices,” Opt. Express 21(13), 15706 (2013).
[Crossref]

V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326 (2013).
[Crossref]

Á. Rosa, A. Gutiérrez, A. Brimont, A. Griol, and P. Sanchis, “High performace silicon 2x2 optical switch based on a thermo-optically tunable multimode interference coupler and efficient electrodes,” Opt. Express 24(1), 191 (2016).
[Crossref]

S. Xian, L. Nie, J. Qin, T. Kang, C. Li, J. Xie, L. Deng, and L. Bi, “Effect of oxygen stoichiometry on the structure, optical and epsilon-near-zero properties of indium tin oxide films,” Opt. Express 27(20), 28618 (2019).
[Crossref]

X. I. W. Ang and K. S. Chiang, “Polarization-insensitive mode-independent thermo-optic switch based on symmetric waveguide directional coupler,” Opt. Express 27(24), 35385–35393 (2019).
[Crossref]

Opt. Lett. (6)

Opt. Mater. Express (2)

Optica (3)

Photonics Res. (2)

Q. Gao, E. Li, and A. X. Wang, “Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide,” Photonics Res. 6(4), 277 (2018).
[Crossref]

E. Li, B. A. Nia, B. Zhou, and A. X. Wang, “Transparent conductive oxide-gated silicon microring with extreme resonance wavelength tunability,” Photonics Res. 7(4), 473 (2019).
[Crossref]

Sci. Rep. (1)

Y. Gui, M. Miscuglio, Z. Ma, M. H. Tahersima, S. Sun, R. Amin, H. Dalir, and V. J. Sorger, “Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide,” Sci. Rep. 9(1), 11279 (2019).
[Crossref]

Other (3)

P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks, “Basic materials physics of transparent conducting oxides,” Dalton Transactions pp. 2995–3002 (2004).

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics (2019).

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” IEEE Int. Conf. on Group IV Photonics GFP2, 83–84 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) 3D view schematic and (b) cross-section of the analyzed heater/Si waveguide configuration.
Fig. 2.
Fig. 2. (a) ITO permittivity and (b) resistivity as a function of the free carrier density. Permittivity is obtained by using the Drude model at $\lambda = 1550$ nm. Drude parameters are: $\varepsilon _{\infty }=3.9$ , $\Gamma = 1.8\times 10^{14}$ rad/s and $m^{*}/m_{e}=0.35$ [39].
Fig. 3.
Fig. 3. Normalized steady-state heat distribution for different upper- and under-claddings. (a) SiO $_{2}$ /SiO $_{2}$ , (b) SiN/SiO $_{2}$ and (c) SiN/SiN.
Fig. 4.
Fig. 4. (a) Power consumption (TM polarization) to achieve a phase shift of $\pi$ rad ( $P_{\pi }$ ) as a function of the gap for Ti (solid lines) and ITO (dashed lines) heaters and different under-/upper-claddings: SiO $_{2}$ /SiO $_{2}$ , SiN/SiO $_{2}$ and SiN/SiN. (b) Mode profile ( $|E_{y}|$ ) comparison between ITO and Ti heater for the SiN/SiO $_{2}$ configuration and gaps of 200 and 500 nm. Results are obtained at $\lambda =1550$ nm.
Fig. 5.
Fig. 5. Switching time as a function of the gap for the different under- and upper-claddings.
Fig. 6.
Fig. 6. (a) Coupling and (b) propagation losses as a function of the gap for a full SiO $_{2}$ cladding and for Ti and ITO heaters. Dashed line in (a) represents the limit of 0.01 dB.
Fig. 7.
Fig. 7. (a) Optical image of the fabricated MZIs with ITO heaters on top. (b) SEM images of the ITO/Si TO phase shifter structure. The silicon waveguide looks wider than 500 nm because of the conformal PECVD deposition of the SiO $_{2}$ upper-cladding. On both images ITO is false coloured.
Fig. 8.
Fig. 8. (a) Normalized measured spectrum of the TE MZI with 50 µm long ITO heaters on-top for zero and $P_{\pi }$ power applied to the heater on the long arm. Phase shift as a function of the ITO heater power consumption. (b) TE and TM polarization for a 150 µm long ITO heater. (c) TE polarization for a 150 µm and 50 µm long ITO heater.
Fig. 9.
Fig. 9. (a) Recorded rise and fall times when a 10 kHz square signal is applied to the heater as a function peak power power applied to the heater. Dashed line stands for simulation value. Normalized temporal response when (a) 4 mW and (b) 13 mW of peak power is applied to the heater. Measurements correspond for TE polarization and a 50 µm long ITO heater.

Tables (2)

Tables Icon

Table 1. Thermal and optical constants. Refractive index is given at 1550 nm.

Tables Icon

Table 2. Main results of ITO and Ti heaters to obtain less than 0.01 dB of insertion losses for the SiO 2 /SiO 2 cladding configuration.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

( k T ) + D c T t = Q
Q = P V
Q = ρ I 2 S 2
ε = ε ( 1 ω p 2 ω 2 + j ω Γ ) ,
ω p = N q 2 ε ε 0 m ,
ρ = Γ m N q 2 .

Metrics