Abstract

We report on the crystal growth, spectroscopy and first laser operation of a novel double molybdate compound – Tm:KY(MoO4)2. This orthorhombic (sp. gr. Pbna) crystal exhibits strong anisotropy of the spectroscopic properties due to its layered structure. The maximum stimulated emission cross-section for the 3F43H6 transition is 2.70×10−20 cm2 at 1856nm with a bandwidth of >110 nm (for E || b). The lifetime of the 3F4 state is 2.29 ms. Crystalline films and plates (thickness down to 70 µm) of high optical quality are obtained by mechanical cleavage along the (100) plane. Continuous-wave diode-pumped laser operation is achieved in such thin films and plates yielding a maximum output power of 0.88 W at ∼1.9 µm with a slope efficiency of 65.8% and a linearly polarized laser output. Vibronic lasing is demonstrated at ∼2.06 µm. Tm:KY(MoO4)2 is promising for microchip and thin-disk lasers.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Close look on cubic Tm:KY3F10 crystal for highly efficient lasing on the 3H43H5 transition

Lauren Guillemot, Pavel Loiko, Rémi Soulard, Alain Braud, Jean-Louis Doualan, Ammar Hideur, and Patrice Camy
Opt. Express 28(3) 3451-3463 (2020)

Spectral properties and efficient laser operation near 2.0 μm of Tm3+:BaGd2(MoO4)4 crystal

Haomiao Zhu, Yujin Chen, Yanfu Lin, Xinghong Gong, Zundu Luo, and Yidong Huang
J. Opt. Soc. Am. B 25(5) 801-809 (2008)

Tm:KY1-x-yGdxLuy(WO4)2 planar waveguide laser passively Q-switched by single-walled carbon nanotubes

Esrom Kifle, Xavier Mateos, Pavel Loiko, Sun Yung Choi, Ji Eun Bae, Fabian Rotermund, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, and Valentin Petrov
Opt. Express 26(4) 4961-4966 (2018)

References

  • View by:
  • |
  • |
  • |

  1. V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
    [Crossref]
  2. X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42(10), 1008–1015 (2006).
    [Crossref]
  3. A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, E. B. and A, and A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
    [Crossref]
  4. K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
    [Crossref]
  5. Ò. Silvestre, M. C. M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87(4), 707–716 (2007).
    [Crossref]
  6. M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
    [Crossref]
  7. J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3 W of output power,” Opt. Lett. 39(14), 4247–4250 (2014).
    [Crossref]
  8. R. F. Klevtsova and S. V. Borisov, “X-ray structural study of the double molybdate KY(MoO4)2,” Sov. Phys. Dokl. 12, 1095 (1968) [Transl. from Dokl. Akad. Nauk SSSR 177(6), 1333–1336 (1967)].
  9. P. V. Klevtsov and R. F. Klevtsova, “Polymorphism of the double molybdates and tungstates of mono-and trivalent metals with the composition M+R3+(EO4)2,” J. Struct. Chem. 18(3), 339–355 (1977).
    [Crossref]
  10. J. Hanuza and L. Łabuda, “Polarized Raman and infrared spectra of a multilayer KY (MoO4)2 crystal,” J. Raman Spectrosc. 11(4), 231–237 (1981).
    [Crossref]
  11. J. Hanuza and L. Macalik, “Polarized IR and Raman spectra of orthorhombic KLn(MoO4)2 crystals (Ln = Y, Dy, Ho, Er, Tm, Yb, Lu),” Spectrochim. Acta A: Mol. Spectr. 38(1), 61–72 (1982).
    [Crossref]
  12. A. Volokitina, P. Loiko, E. Vilejshikova, X. Mateos, E. Dunina, A. Kornienko, N. Kuleshov, and A. Pavlyuk, “Eu3+:KY(MoO4)2: A novel anisotropic red-emitting material with a layered structure,” J. Alloys Compd. 762, 786–796 (2018).
    [Crossref]
  13. Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “Polarized spectral characteristics of Nd3+:KY(MoO4)2 crystal with perfect cleavage planes: a promising microchip gain medium,” J. Opt. Soc. Am. B 24(3), 496–503 (2007).
    [Crossref]
  14. A. A. Kaminskii and S. N. Bagayev, “Ribbon and sheet miniature crystal laser,” Quantum Electron. 24(12), 1029–1030 (1994).
    [Crossref]
  15. A. A. Kaminskii, P. V. Klevtsov, and A. A. Pavlyuk, “Stimulated emission from KY(MoO4)2-Nd3+ crystal laser,” Phys. Status Solidi A 1(3), K91–K94 (1970).
    [Crossref]
  16. A. A. Kaminskii, S. E. Sarkisov, and L. Li, “Investigation of stimulated emission in the 4F3/2→ 4I13/2 transition of Nd3+ ions in crystals (III),” Phys. Status Solidi A 15(2), K141–K144 (1973).
    [Crossref]
  17. A. A. Kaminskii and H. R. Verdun, “New high power, high efficient quasi-CW and CW single-mode KY(MoO4)2:Nd3+ laser end-pumped by a GaAlAs laser-diode array,” Phys. Status Solidi A 138(1), K49–K53 (1993).
    [Crossref]
  18. P. Loiko, E. Kifle, J. M. Serres, X. Mateos, M. Aguiló, F. Díaz, E. Vilejshikova, N. Kuleshov, and A. Pavlyuk, “Efficient continuous-wave in-band pumped Nd:KY(MoO4)2 laser,” Laser Phys. Lett. 15(6), 065002 (2018).
    [Crossref]
  19. J. Liu, W. Han, X. Chen, D. Zhong, B. Teng, C. Wang, and Y. Li, “Spectroscopic properties and continuous-wave laser operation of Yb:LuPO4 crystal,” Opt. Lett. 39(20), 5881–5884 (2014).
    [Crossref]
  20. H. Zhu, Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101(6), 063109 (2007).
    [Crossref]
  21. Y. A. Borovlev, N. V. Ivannikova, V. N. Shlegel, Y. V. Vasiliev, and V. A. Gusev, “Progress in growth of large sized BGO crystals by the low-thermal-gradient Czochralski technique,” J. Cryst. Growth 229(1-4), 305–311 (2001).
    [Crossref]
  22. P. Loiko, R. Thouroude, R. Soulard, L. Guillemot, G. Brasse, B. Guichardaz, A. Braud, A. Hideur, M. Laroche, H. Gilles, and P. Camy, “In-band pumping of Tm:LiYF4 channel waveguide: a power scaling strategy for ∼2 µm waveguide lasers,” Opt. Lett. 44(12), 3010–3013 (2019).
    [Crossref]
  23. B. Aull and H. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
    [Crossref]
  24. P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
    [Crossref]
  25. P. Loiko, L. Zhang, J. M. Serres, Y. Wang, M. Aguiló, F. Díaz, Z. Lin, H. Lin, G. Zhang, E. Vilejshikova, E. Dunina, A. Kornienko, L. Fomicheva, V. Petrov, U. Griebner, W. Chen, and X. Mateos, “Monoclinic Tm:MgWO4 crystal: Crystal-field analysis, tunable and vibronic laser demonstration,” J. Alloys Compd. 763, 581–591 (2018).
    [Crossref]
  26. S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
    [Crossref]

2019 (1)

2018 (3)

P. Loiko, E. Kifle, J. M. Serres, X. Mateos, M. Aguiló, F. Díaz, E. Vilejshikova, N. Kuleshov, and A. Pavlyuk, “Efficient continuous-wave in-band pumped Nd:KY(MoO4)2 laser,” Laser Phys. Lett. 15(6), 065002 (2018).
[Crossref]

P. Loiko, L. Zhang, J. M. Serres, Y. Wang, M. Aguiló, F. Díaz, Z. Lin, H. Lin, G. Zhang, E. Vilejshikova, E. Dunina, A. Kornienko, L. Fomicheva, V. Petrov, U. Griebner, W. Chen, and X. Mateos, “Monoclinic Tm:MgWO4 crystal: Crystal-field analysis, tunable and vibronic laser demonstration,” J. Alloys Compd. 763, 581–591 (2018).
[Crossref]

A. Volokitina, P. Loiko, E. Vilejshikova, X. Mateos, E. Dunina, A. Kornienko, N. Kuleshov, and A. Pavlyuk, “Eu3+:KY(MoO4)2: A novel anisotropic red-emitting material with a layered structure,” J. Alloys Compd. 762, 786–796 (2018).
[Crossref]

2016 (1)

2014 (3)

2012 (1)

M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
[Crossref]

2007 (5)

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, E. B. and A, and A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[Crossref]

Ò. Silvestre, M. C. M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87(4), 707–716 (2007).
[Crossref]

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “Polarized spectral characteristics of Nd3+:KY(MoO4)2 crystal with perfect cleavage planes: a promising microchip gain medium,” J. Opt. Soc. Am. B 24(3), 496–503 (2007).
[Crossref]

H. Zhu, Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101(6), 063109 (2007).
[Crossref]

2006 (2)

S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42(10), 1008–1015 (2006).
[Crossref]

2001 (1)

Y. A. Borovlev, N. V. Ivannikova, V. N. Shlegel, Y. V. Vasiliev, and V. A. Gusev, “Progress in growth of large sized BGO crystals by the low-thermal-gradient Czochralski technique,” J. Cryst. Growth 229(1-4), 305–311 (2001).
[Crossref]

1994 (1)

A. A. Kaminskii and S. N. Bagayev, “Ribbon and sheet miniature crystal laser,” Quantum Electron. 24(12), 1029–1030 (1994).
[Crossref]

1993 (1)

A. A. Kaminskii and H. R. Verdun, “New high power, high efficient quasi-CW and CW single-mode KY(MoO4)2:Nd3+ laser end-pumped by a GaAlAs laser-diode array,” Phys. Status Solidi A 138(1), K49–K53 (1993).
[Crossref]

1982 (2)

B. Aull and H. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

J. Hanuza and L. Macalik, “Polarized IR and Raman spectra of orthorhombic KLn(MoO4)2 crystals (Ln = Y, Dy, Ho, Er, Tm, Yb, Lu),” Spectrochim. Acta A: Mol. Spectr. 38(1), 61–72 (1982).
[Crossref]

1981 (1)

J. Hanuza and L. Łabuda, “Polarized Raman and infrared spectra of a multilayer KY (MoO4)2 crystal,” J. Raman Spectrosc. 11(4), 231–237 (1981).
[Crossref]

1977 (1)

P. V. Klevtsov and R. F. Klevtsova, “Polymorphism of the double molybdates and tungstates of mono-and trivalent metals with the composition M+R3+(EO4)2,” J. Struct. Chem. 18(3), 339–355 (1977).
[Crossref]

1973 (1)

A. A. Kaminskii, S. E. Sarkisov, and L. Li, “Investigation of stimulated emission in the 4F3/2→ 4I13/2 transition of Nd3+ ions in crystals (III),” Phys. Status Solidi A 15(2), K141–K144 (1973).
[Crossref]

1970 (1)

A. A. Kaminskii, P. V. Klevtsov, and A. A. Pavlyuk, “Stimulated emission from KY(MoO4)2-Nd3+ crystal laser,” Phys. Status Solidi A 1(3), K91–K94 (1970).
[Crossref]

1968 (1)

R. F. Klevtsova and S. V. Borisov, “X-ray structural study of the double molybdate KY(MoO4)2,” Sov. Phys. Dokl. 12, 1095 (1968) [Transl. from Dokl. Akad. Nauk SSSR 177(6), 1333–1336 (1967)].

Aguiló, M.

P. Loiko, E. Kifle, J. M. Serres, X. Mateos, M. Aguiló, F. Díaz, E. Vilejshikova, N. Kuleshov, and A. Pavlyuk, “Efficient continuous-wave in-band pumped Nd:KY(MoO4)2 laser,” Laser Phys. Lett. 15(6), 065002 (2018).
[Crossref]

P. Loiko, L. Zhang, J. M. Serres, Y. Wang, M. Aguiló, F. Díaz, Z. Lin, H. Lin, G. Zhang, E. Vilejshikova, E. Dunina, A. Kornienko, L. Fomicheva, V. Petrov, U. Griebner, W. Chen, and X. Mateos, “Monoclinic Tm:MgWO4 crystal: Crystal-field analysis, tunable and vibronic laser demonstration,” J. Alloys Compd. 763, 581–591 (2018).
[Crossref]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
[Crossref]

J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3 W of output power,” Opt. Lett. 39(14), 4247–4250 (2014).
[Crossref]

Ò. Silvestre, M. C. M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87(4), 707–716 (2007).
[Crossref]

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42(10), 1008–1015 (2006).
[Crossref]

and A, E. B.

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, E. B. and A, and A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[Crossref]

Aravazhi, S.

Aull, B.

B. Aull and H. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Bagayev, S. N.

A. A. Kaminskii and S. N. Bagayev, “Ribbon and sheet miniature crystal laser,” Quantum Electron. 24(12), 1029–1030 (1994).
[Crossref]

Betterton, J. G.

S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Borisov, S. V.

R. F. Klevtsova and S. V. Borisov, “X-ray structural study of the double molybdate KY(MoO4)2,” Sov. Phys. Dokl. 12, 1095 (1968) [Transl. from Dokl. Akad. Nauk SSSR 177(6), 1333–1336 (1967)].

Borovlev, Y. A.

Y. A. Borovlev, N. V. Ivannikova, V. N. Shlegel, Y. V. Vasiliev, and V. A. Gusev, “Progress in growth of large sized BGO crystals by the low-thermal-gradient Czochralski technique,” J. Cryst. Growth 229(1-4), 305–311 (2001).
[Crossref]

Brasse, G.

Braud, A.

Camy, P.

Chen, W.

P. Loiko, L. Zhang, J. M. Serres, Y. Wang, M. Aguiló, F. Díaz, Z. Lin, H. Lin, G. Zhang, E. Vilejshikova, E. Dunina, A. Kornienko, L. Fomicheva, V. Petrov, U. Griebner, W. Chen, and X. Mateos, “Monoclinic Tm:MgWO4 crystal: Crystal-field analysis, tunable and vibronic laser demonstration,” J. Alloys Compd. 763, 581–591 (2018).
[Crossref]

Chen, X.

Chen, Y.

H. Zhu, Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101(6), 063109 (2007).
[Crossref]

Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “Polarized spectral characteristics of Nd3+:KY(MoO4)2 crystal with perfect cleavage planes: a promising microchip gain medium,” J. Opt. Soc. Am. B 24(3), 496–503 (2007).
[Crossref]

Choi, S. Y.

Clarkson, W. A.

S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Díaz, F.

P. Loiko, E. Kifle, J. M. Serres, X. Mateos, M. Aguiló, F. Díaz, E. Vilejshikova, N. Kuleshov, and A. Pavlyuk, “Efficient continuous-wave in-band pumped Nd:KY(MoO4)2 laser,” Laser Phys. Lett. 15(6), 065002 (2018).
[Crossref]

P. Loiko, L. Zhang, J. M. Serres, Y. Wang, M. Aguiló, F. Díaz, Z. Lin, H. Lin, G. Zhang, E. Vilejshikova, E. Dunina, A. Kornienko, L. Fomicheva, V. Petrov, U. Griebner, W. Chen, and X. Mateos, “Monoclinic Tm:MgWO4 crystal: Crystal-field analysis, tunable and vibronic laser demonstration,” J. Alloys Compd. 763, 581–591 (2018).
[Crossref]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
[Crossref]

J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3 W of output power,” Opt. Lett. 39(14), 4247–4250 (2014).
[Crossref]

Ò. Silvestre, M. C. M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87(4), 707–716 (2007).
[Crossref]

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42(10), 1008–1015 (2006).
[Crossref]

Dunina, E.

P. Loiko, L. Zhang, J. M. Serres, Y. Wang, M. Aguiló, F. Díaz, Z. Lin, H. Lin, G. Zhang, E. Vilejshikova, E. Dunina, A. Kornienko, L. Fomicheva, V. Petrov, U. Griebner, W. Chen, and X. Mateos, “Monoclinic Tm:MgWO4 crystal: Crystal-field analysis, tunable and vibronic laser demonstration,” J. Alloys Compd. 763, 581–591 (2018).
[Crossref]

A. Volokitina, P. Loiko, E. Vilejshikova, X. Mateos, E. Dunina, A. Kornienko, N. Kuleshov, and A. Pavlyuk, “Eu3+:KY(MoO4)2: A novel anisotropic red-emitting material with a layered structure,” J. Alloys Compd. 762, 786–796 (2018).
[Crossref]

Dunina, E. B.

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, E. B. and A, and A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[Crossref]

Fomicheva, L.

P. Loiko, L. Zhang, J. M. Serres, Y. Wang, M. Aguiló, F. Díaz, Z. Lin, H. Lin, G. Zhang, E. Vilejshikova, E. Dunina, A. Kornienko, L. Fomicheva, V. Petrov, U. Griebner, W. Chen, and X. Mateos, “Monoclinic Tm:MgWO4 crystal: Crystal-field analysis, tunable and vibronic laser demonstration,” J. Alloys Compd. 763, 581–591 (2018).
[Crossref]

Galan, M.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42(10), 1008–1015 (2006).
[Crossref]

Gaponenko, M. S.

M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
[Crossref]

García-Blanco, S. M.

Gilles, H.

Gong, X.

Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “Polarized spectral characteristics of Nd3+:KY(MoO4)2 crystal with perfect cleavage planes: a promising microchip gain medium,” J. Opt. Soc. Am. B 24(3), 496–503 (2007).
[Crossref]

H. Zhu, Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101(6), 063109 (2007).
[Crossref]

Gorton, E. K.

S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Griebner, U.

P. Loiko, L. Zhang, J. M. Serres, Y. Wang, M. Aguiló, F. Díaz, Z. Lin, H. Lin, G. Zhang, E. Vilejshikova, E. Dunina, A. Kornienko, L. Fomicheva, V. Petrov, U. Griebner, W. Chen, and X. Mateos, “Monoclinic Tm:MgWO4 crystal: Crystal-field analysis, tunable and vibronic laser demonstration,” J. Alloys Compd. 763, 581–591 (2018).
[Crossref]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
[Crossref]

J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3 W of output power,” Opt. Lett. 39(14), 4247–4250 (2014).
[Crossref]

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42(10), 1008–1015 (2006).
[Crossref]

Grivas, C.

Güell, F.

Ò. Silvestre, M. C. M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87(4), 707–716 (2007).
[Crossref]

Guichardaz, B.

Guillemot, L.

Gusakova, N. V.

M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
[Crossref]

Gusev, V. A.

Y. A. Borovlev, N. V. Ivannikova, V. N. Shlegel, Y. V. Vasiliev, and V. A. Gusev, “Progress in growth of large sized BGO crystals by the low-thermal-gradient Czochralski technique,” J. Cryst. Growth 229(1-4), 305–311 (2001).
[Crossref]

Han, W.

Hanuza, J.

J. Hanuza and L. Macalik, “Polarized IR and Raman spectra of orthorhombic KLn(MoO4)2 crystals (Ln = Y, Dy, Ho, Er, Tm, Yb, Lu),” Spectrochim. Acta A: Mol. Spectr. 38(1), 61–72 (1982).
[Crossref]

J. Hanuza and L. Łabuda, “Polarized Raman and infrared spectra of a multilayer KY (MoO4)2 crystal,” J. Raman Spectrosc. 11(4), 231–237 (1981).
[Crossref]

Hideur, A.

Huang, Y.

Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “Polarized spectral characteristics of Nd3+:KY(MoO4)2 crystal with perfect cleavage planes: a promising microchip gain medium,” J. Opt. Soc. Am. B 24(3), 496–503 (2007).
[Crossref]

H. Zhu, Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101(6), 063109 (2007).
[Crossref]

Ivannikova, N. V.

Y. A. Borovlev, N. V. Ivannikova, V. N. Shlegel, Y. V. Vasiliev, and V. A. Gusev, “Progress in growth of large sized BGO crystals by the low-thermal-gradient Czochralski technique,” J. Cryst. Growth 229(1-4), 305–311 (2001).
[Crossref]

Jenssen, H.

B. Aull and H. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

Kaminskii, A. A.

A. A. Kaminskii and S. N. Bagayev, “Ribbon and sheet miniature crystal laser,” Quantum Electron. 24(12), 1029–1030 (1994).
[Crossref]

A. A. Kaminskii and H. R. Verdun, “New high power, high efficient quasi-CW and CW single-mode KY(MoO4)2:Nd3+ laser end-pumped by a GaAlAs laser-diode array,” Phys. Status Solidi A 138(1), K49–K53 (1993).
[Crossref]

A. A. Kaminskii, S. E. Sarkisov, and L. Li, “Investigation of stimulated emission in the 4F3/2→ 4I13/2 transition of Nd3+ ions in crystals (III),” Phys. Status Solidi A 15(2), K141–K144 (1973).
[Crossref]

A. A. Kaminskii, P. V. Klevtsov, and A. A. Pavlyuk, “Stimulated emission from KY(MoO4)2-Nd3+ crystal laser,” Phys. Status Solidi A 1(3), K91–K94 (1970).
[Crossref]

Kifle, E.

P. Loiko, E. Kifle, J. M. Serres, X. Mateos, M. Aguiló, F. Díaz, E. Vilejshikova, N. Kuleshov, and A. Pavlyuk, “Efficient continuous-wave in-band pumped Nd:KY(MoO4)2 laser,” Laser Phys. Lett. 15(6), 065002 (2018).
[Crossref]

Kisel, V. E.

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, E. B. and A, and A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[Crossref]

Klevtsov, P. V.

P. V. Klevtsov and R. F. Klevtsova, “Polymorphism of the double molybdates and tungstates of mono-and trivalent metals with the composition M+R3+(EO4)2,” J. Struct. Chem. 18(3), 339–355 (1977).
[Crossref]

A. A. Kaminskii, P. V. Klevtsov, and A. A. Pavlyuk, “Stimulated emission from KY(MoO4)2-Nd3+ crystal laser,” Phys. Status Solidi A 1(3), K91–K94 (1970).
[Crossref]

Klevtsova, R. F.

P. V. Klevtsov and R. F. Klevtsova, “Polymorphism of the double molybdates and tungstates of mono-and trivalent metals with the composition M+R3+(EO4)2,” J. Struct. Chem. 18(3), 339–355 (1977).
[Crossref]

R. F. Klevtsova and S. V. Borisov, “X-ray structural study of the double molybdate KY(MoO4)2,” Sov. Phys. Dokl. 12, 1095 (1968) [Transl. from Dokl. Akad. Nauk SSSR 177(6), 1333–1336 (1967)].

Kornienko, A.

P. Loiko, L. Zhang, J. M. Serres, Y. Wang, M. Aguiló, F. Díaz, Z. Lin, H. Lin, G. Zhang, E. Vilejshikova, E. Dunina, A. Kornienko, L. Fomicheva, V. Petrov, U. Griebner, W. Chen, and X. Mateos, “Monoclinic Tm:MgWO4 crystal: Crystal-field analysis, tunable and vibronic laser demonstration,” J. Alloys Compd. 763, 581–591 (2018).
[Crossref]

A. Volokitina, P. Loiko, E. Vilejshikova, X. Mateos, E. Dunina, A. Kornienko, N. Kuleshov, and A. Pavlyuk, “Eu3+:KY(MoO4)2: A novel anisotropic red-emitting material with a layered structure,” J. Alloys Compd. 762, 786–796 (2018).
[Crossref]

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, E. B. and A, and A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[Crossref]

Kuleshov, N.

A. Volokitina, P. Loiko, E. Vilejshikova, X. Mateos, E. Dunina, A. Kornienko, N. Kuleshov, and A. Pavlyuk, “Eu3+:KY(MoO4)2: A novel anisotropic red-emitting material with a layered structure,” J. Alloys Compd. 762, 786–796 (2018).
[Crossref]

P. Loiko, E. Kifle, J. M. Serres, X. Mateos, M. Aguiló, F. Díaz, E. Vilejshikova, N. Kuleshov, and A. Pavlyuk, “Efficient continuous-wave in-band pumped Nd:KY(MoO4)2 laser,” Laser Phys. Lett. 15(6), 065002 (2018).
[Crossref]

J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3 W of output power,” Opt. Lett. 39(14), 4247–4250 (2014).
[Crossref]

Kuleshov, N. V.

M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
[Crossref]

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, E. B. and A, and A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[Crossref]

Labuda, L.

J. Hanuza and L. Łabuda, “Polarized Raman and infrared spectra of a multilayer KY (MoO4)2 crystal,” J. Raman Spectrosc. 11(4), 231–237 (1981).
[Crossref]

Laroche, M.

Li, L.

A. A. Kaminskii, S. E. Sarkisov, and L. Li, “Investigation of stimulated emission in the 4F3/2→ 4I13/2 transition of Nd3+ ions in crystals (III),” Phys. Status Solidi A 15(2), K141–K144 (1973).
[Crossref]

Li, Y.

Lin, H.

P. Loiko, L. Zhang, J. M. Serres, Y. Wang, M. Aguiló, F. Díaz, Z. Lin, H. Lin, G. Zhang, E. Vilejshikova, E. Dunina, A. Kornienko, L. Fomicheva, V. Petrov, U. Griebner, W. Chen, and X. Mateos, “Monoclinic Tm:MgWO4 crystal: Crystal-field analysis, tunable and vibronic laser demonstration,” J. Alloys Compd. 763, 581–591 (2018).
[Crossref]

Lin, Y.

H. Zhu, Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101(6), 063109 (2007).
[Crossref]

Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “Polarized spectral characteristics of Nd3+:KY(MoO4)2 crystal with perfect cleavage planes: a promising microchip gain medium,” J. Opt. Soc. Am. B 24(3), 496–503 (2007).
[Crossref]

Lin, Z.

P. Loiko, L. Zhang, J. M. Serres, Y. Wang, M. Aguiló, F. Díaz, Z. Lin, H. Lin, G. Zhang, E. Vilejshikova, E. Dunina, A. Kornienko, L. Fomicheva, V. Petrov, U. Griebner, W. Chen, and X. Mateos, “Monoclinic Tm:MgWO4 crystal: Crystal-field analysis, tunable and vibronic laser demonstration,” J. Alloys Compd. 763, 581–591 (2018).
[Crossref]

Liu, J.

J. Liu, W. Han, X. Chen, D. Zhong, B. Teng, C. Wang, and Y. Li, “Spectroscopic properties and continuous-wave laser operation of Yb:LuPO4 crystal,” Opt. Lett. 39(20), 5881–5884 (2014).
[Crossref]

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42(10), 1008–1015 (2006).
[Crossref]

Loiko, P.

P. Loiko, R. Thouroude, R. Soulard, L. Guillemot, G. Brasse, B. Guichardaz, A. Braud, A. Hideur, M. Laroche, H. Gilles, and P. Camy, “In-band pumping of Tm:LiYF4 channel waveguide: a power scaling strategy for ∼2 µm waveguide lasers,” Opt. Lett. 44(12), 3010–3013 (2019).
[Crossref]

P. Loiko, E. Kifle, J. M. Serres, X. Mateos, M. Aguiló, F. Díaz, E. Vilejshikova, N. Kuleshov, and A. Pavlyuk, “Efficient continuous-wave in-band pumped Nd:KY(MoO4)2 laser,” Laser Phys. Lett. 15(6), 065002 (2018).
[Crossref]

P. Loiko, L. Zhang, J. M. Serres, Y. Wang, M. Aguiló, F. Díaz, Z. Lin, H. Lin, G. Zhang, E. Vilejshikova, E. Dunina, A. Kornienko, L. Fomicheva, V. Petrov, U. Griebner, W. Chen, and X. Mateos, “Monoclinic Tm:MgWO4 crystal: Crystal-field analysis, tunable and vibronic laser demonstration,” J. Alloys Compd. 763, 581–591 (2018).
[Crossref]

A. Volokitina, P. Loiko, E. Vilejshikova, X. Mateos, E. Dunina, A. Kornienko, N. Kuleshov, and A. Pavlyuk, “Eu3+:KY(MoO4)2: A novel anisotropic red-emitting material with a layered structure,” J. Alloys Compd. 762, 786–796 (2018).
[Crossref]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
[Crossref]

J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3 W of output power,” Opt. Lett. 39(14), 4247–4250 (2014).
[Crossref]

Loiko, P. A.

M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
[Crossref]

Luo, Z.

Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “Polarized spectral characteristics of Nd3+:KY(MoO4)2 crystal with perfect cleavage planes: a promising microchip gain medium,” J. Opt. Soc. Am. B 24(3), 496–503 (2007).
[Crossref]

H. Zhu, Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101(6), 063109 (2007).
[Crossref]

Macalik, L.

J. Hanuza and L. Macalik, “Polarized IR and Raman spectra of orthorhombic KLn(MoO4)2 crystals (Ln = Y, Dy, Ho, Er, Tm, Yb, Lu),” Spectrochim. Acta A: Mol. Spectr. 38(1), 61–72 (1982).
[Crossref]

Mackenzie, J. I.

S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Mateos, X.

P. Loiko, E. Kifle, J. M. Serres, X. Mateos, M. Aguiló, F. Díaz, E. Vilejshikova, N. Kuleshov, and A. Pavlyuk, “Efficient continuous-wave in-band pumped Nd:KY(MoO4)2 laser,” Laser Phys. Lett. 15(6), 065002 (2018).
[Crossref]

P. Loiko, L. Zhang, J. M. Serres, Y. Wang, M. Aguiló, F. Díaz, Z. Lin, H. Lin, G. Zhang, E. Vilejshikova, E. Dunina, A. Kornienko, L. Fomicheva, V. Petrov, U. Griebner, W. Chen, and X. Mateos, “Monoclinic Tm:MgWO4 crystal: Crystal-field analysis, tunable and vibronic laser demonstration,” J. Alloys Compd. 763, 581–591 (2018).
[Crossref]

A. Volokitina, P. Loiko, E. Vilejshikova, X. Mateos, E. Dunina, A. Kornienko, N. Kuleshov, and A. Pavlyuk, “Eu3+:KY(MoO4)2: A novel anisotropic red-emitting material with a layered structure,” J. Alloys Compd. 762, 786–796 (2018).
[Crossref]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
[Crossref]

J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3 W of output power,” Opt. Lett. 39(14), 4247–4250 (2014).
[Crossref]

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42(10), 1008–1015 (2006).
[Crossref]

Pavlyuk, A.

P. Loiko, E. Kifle, J. M. Serres, X. Mateos, M. Aguiló, F. Díaz, E. Vilejshikova, N. Kuleshov, and A. Pavlyuk, “Efficient continuous-wave in-band pumped Nd:KY(MoO4)2 laser,” Laser Phys. Lett. 15(6), 065002 (2018).
[Crossref]

A. Volokitina, P. Loiko, E. Vilejshikova, X. Mateos, E. Dunina, A. Kornienko, N. Kuleshov, and A. Pavlyuk, “Eu3+:KY(MoO4)2: A novel anisotropic red-emitting material with a layered structure,” J. Alloys Compd. 762, 786–796 (2018).
[Crossref]

Pavlyuk, A. A.

M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
[Crossref]

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, E. B. and A, and A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[Crossref]

A. A. Kaminskii, P. V. Klevtsov, and A. A. Pavlyuk, “Stimulated emission from KY(MoO4)2-Nd3+ crystal laser,” Phys. Status Solidi A 1(3), K91–K94 (1970).
[Crossref]

Petrov, V.

P. Loiko, L. Zhang, J. M. Serres, Y. Wang, M. Aguiló, F. Díaz, Z. Lin, H. Lin, G. Zhang, E. Vilejshikova, E. Dunina, A. Kornienko, L. Fomicheva, V. Petrov, U. Griebner, W. Chen, and X. Mateos, “Monoclinic Tm:MgWO4 crystal: Crystal-field analysis, tunable and vibronic laser demonstration,” J. Alloys Compd. 763, 581–591 (2018).
[Crossref]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
[Crossref]

J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3 W of output power,” Opt. Lett. 39(14), 4247–4250 (2014).
[Crossref]

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42(10), 1008–1015 (2006).
[Crossref]

Pollnau, M.

Pujol, M. C.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42(10), 1008–1015 (2006).
[Crossref]

Rico, M. C. M.

Ò. Silvestre, M. C. M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87(4), 707–716 (2007).
[Crossref]

Rivier, S.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Rotermund, F.

Sarkisov, S. E.

A. A. Kaminskii, S. E. Sarkisov, and L. Li, “Investigation of stimulated emission in the 4F3/2→ 4I13/2 transition of Nd3+ ions in crystals (III),” Phys. Status Solidi A 15(2), K141–K144 (1973).
[Crossref]

Serres, J. M.

P. Loiko, L. Zhang, J. M. Serres, Y. Wang, M. Aguiló, F. Díaz, Z. Lin, H. Lin, G. Zhang, E. Vilejshikova, E. Dunina, A. Kornienko, L. Fomicheva, V. Petrov, U. Griebner, W. Chen, and X. Mateos, “Monoclinic Tm:MgWO4 crystal: Crystal-field analysis, tunable and vibronic laser demonstration,” J. Alloys Compd. 763, 581–591 (2018).
[Crossref]

P. Loiko, E. Kifle, J. M. Serres, X. Mateos, M. Aguiló, F. Díaz, E. Vilejshikova, N. Kuleshov, and A. Pavlyuk, “Efficient continuous-wave in-band pumped Nd:KY(MoO4)2 laser,” Laser Phys. Lett. 15(6), 065002 (2018).
[Crossref]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
[Crossref]

J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3 W of output power,” Opt. Lett. 39(14), 4247–4250 (2014).
[Crossref]

Sheperd, D. P.

S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Shlegel, V. N.

Y. A. Borovlev, N. V. Ivannikova, V. N. Shlegel, Y. V. Vasiliev, and V. A. Gusev, “Progress in growth of large sized BGO crystals by the low-thermal-gradient Czochralski technique,” J. Cryst. Growth 229(1-4), 305–311 (2001).
[Crossref]

Silvestre, O.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Silvestre, Ò.

Ò. Silvestre, M. C. M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87(4), 707–716 (2007).
[Crossref]

So, S.

S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Solé, R. M.

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Soulard, R.

Tan, Q.

Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “Polarized spectral characteristics of Nd3+:KY(MoO4)2 crystal with perfect cleavage planes: a promising microchip gain medium,” J. Opt. Soc. Am. B 24(3), 496–503 (2007).
[Crossref]

H. Zhu, Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101(6), 063109 (2007).
[Crossref]

Teng, B.

Thouroude, R.

Troshin, A. E.

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, E. B. and A, and A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[Crossref]

van Dalfsen, K.

Vasiliev, Y. V.

Y. A. Borovlev, N. V. Ivannikova, V. N. Shlegel, Y. V. Vasiliev, and V. A. Gusev, “Progress in growth of large sized BGO crystals by the low-thermal-gradient Czochralski technique,” J. Cryst. Growth 229(1-4), 305–311 (2001).
[Crossref]

Verdun, H. R.

A. A. Kaminskii and H. R. Verdun, “New high power, high efficient quasi-CW and CW single-mode KY(MoO4)2:Nd3+ laser end-pumped by a GaAlAs laser-diode array,” Phys. Status Solidi A 138(1), K49–K53 (1993).
[Crossref]

Viera, G.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42(10), 1008–1015 (2006).
[Crossref]

Vilejshikova, E.

P. Loiko, E. Kifle, J. M. Serres, X. Mateos, M. Aguiló, F. Díaz, E. Vilejshikova, N. Kuleshov, and A. Pavlyuk, “Efficient continuous-wave in-band pumped Nd:KY(MoO4)2 laser,” Laser Phys. Lett. 15(6), 065002 (2018).
[Crossref]

P. Loiko, L. Zhang, J. M. Serres, Y. Wang, M. Aguiló, F. Díaz, Z. Lin, H. Lin, G. Zhang, E. Vilejshikova, E. Dunina, A. Kornienko, L. Fomicheva, V. Petrov, U. Griebner, W. Chen, and X. Mateos, “Monoclinic Tm:MgWO4 crystal: Crystal-field analysis, tunable and vibronic laser demonstration,” J. Alloys Compd. 763, 581–591 (2018).
[Crossref]

A. Volokitina, P. Loiko, E. Vilejshikova, X. Mateos, E. Dunina, A. Kornienko, N. Kuleshov, and A. Pavlyuk, “Eu3+:KY(MoO4)2: A novel anisotropic red-emitting material with a layered structure,” J. Alloys Compd. 762, 786–796 (2018).
[Crossref]

Volokitina, A.

A. Volokitina, P. Loiko, E. Vilejshikova, X. Mateos, E. Dunina, A. Kornienko, N. Kuleshov, and A. Pavlyuk, “Eu3+:KY(MoO4)2: A novel anisotropic red-emitting material with a layered structure,” J. Alloys Compd. 762, 786–796 (2018).
[Crossref]

Wang, C.

Wang, Y.

P. Loiko, L. Zhang, J. M. Serres, Y. Wang, M. Aguiló, F. Díaz, Z. Lin, H. Lin, G. Zhang, E. Vilejshikova, E. Dunina, A. Kornienko, L. Fomicheva, V. Petrov, U. Griebner, W. Chen, and X. Mateos, “Monoclinic Tm:MgWO4 crystal: Crystal-field analysis, tunable and vibronic laser demonstration,” J. Alloys Compd. 763, 581–591 (2018).
[Crossref]

Yasukevich, A. S.

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, E. B. and A, and A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[Crossref]

Yumashev, K.

Yumashev, K. V.

M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
[Crossref]

Zhang, G.

P. Loiko, L. Zhang, J. M. Serres, Y. Wang, M. Aguiló, F. Díaz, Z. Lin, H. Lin, G. Zhang, E. Vilejshikova, E. Dunina, A. Kornienko, L. Fomicheva, V. Petrov, U. Griebner, W. Chen, and X. Mateos, “Monoclinic Tm:MgWO4 crystal: Crystal-field analysis, tunable and vibronic laser demonstration,” J. Alloys Compd. 763, 581–591 (2018).
[Crossref]

Zhang, L.

P. Loiko, L. Zhang, J. M. Serres, Y. Wang, M. Aguiló, F. Díaz, Z. Lin, H. Lin, G. Zhang, E. Vilejshikova, E. Dunina, A. Kornienko, L. Fomicheva, V. Petrov, U. Griebner, W. Chen, and X. Mateos, “Monoclinic Tm:MgWO4 crystal: Crystal-field analysis, tunable and vibronic laser demonstration,” J. Alloys Compd. 763, 581–591 (2018).
[Crossref]

Zhong, D.

Zhu, H.

H. Zhu, Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101(6), 063109 (2007).
[Crossref]

Appl. Phys. B (4)

A. E. Troshin, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, E. B. Dunina, E. B. and A, and A. Kornienko, “Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 86(2), 287–292 (2007).
[Crossref]

Ò. Silvestre, M. C. M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87(4), 707–716 (2007).
[Crossref]

M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
[Crossref]

S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

IEEE J. Quantum Electron. (2)

B. Aull and H. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18(5), 925–930 (1982).
[Crossref]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, “Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42(10), 1008–1015 (2006).
[Crossref]

J. Alloys Compd. (2)

A. Volokitina, P. Loiko, E. Vilejshikova, X. Mateos, E. Dunina, A. Kornienko, N. Kuleshov, and A. Pavlyuk, “Eu3+:KY(MoO4)2: A novel anisotropic red-emitting material with a layered structure,” J. Alloys Compd. 762, 786–796 (2018).
[Crossref]

P. Loiko, L. Zhang, J. M. Serres, Y. Wang, M. Aguiló, F. Díaz, Z. Lin, H. Lin, G. Zhang, E. Vilejshikova, E. Dunina, A. Kornienko, L. Fomicheva, V. Petrov, U. Griebner, W. Chen, and X. Mateos, “Monoclinic Tm:MgWO4 crystal: Crystal-field analysis, tunable and vibronic laser demonstration,” J. Alloys Compd. 763, 581–591 (2018).
[Crossref]

J. Appl. Phys. (1)

H. Zhu, Y. Chen, Y. Lin, X. Gong, Q. Tan, Z. Luo, and Y. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101(6), 063109 (2007).
[Crossref]

J. Cryst. Growth (1)

Y. A. Borovlev, N. V. Ivannikova, V. N. Shlegel, Y. V. Vasiliev, and V. A. Gusev, “Progress in growth of large sized BGO crystals by the low-thermal-gradient Czochralski technique,” J. Cryst. Growth 229(1-4), 305–311 (2001).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Raman Spectrosc. (1)

J. Hanuza and L. Łabuda, “Polarized Raman and infrared spectra of a multilayer KY (MoO4)2 crystal,” J. Raman Spectrosc. 11(4), 231–237 (1981).
[Crossref]

J. Struct. Chem. (1)

P. V. Klevtsov and R. F. Klevtsova, “Polymorphism of the double molybdates and tungstates of mono-and trivalent metals with the composition M+R3+(EO4)2,” J. Struct. Chem. 18(3), 339–355 (1977).
[Crossref]

Laser Photonics Rev. (1)

V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Laser Phys. Lett. (1)

P. Loiko, E. Kifle, J. M. Serres, X. Mateos, M. Aguiló, F. Díaz, E. Vilejshikova, N. Kuleshov, and A. Pavlyuk, “Efficient continuous-wave in-band pumped Nd:KY(MoO4)2 laser,” Laser Phys. Lett. 15(6), 065002 (2018).
[Crossref]

Opt. Lett. (4)

Phys. Status Solidi A (3)

A. A. Kaminskii, P. V. Klevtsov, and A. A. Pavlyuk, “Stimulated emission from KY(MoO4)2-Nd3+ crystal laser,” Phys. Status Solidi A 1(3), K91–K94 (1970).
[Crossref]

A. A. Kaminskii, S. E. Sarkisov, and L. Li, “Investigation of stimulated emission in the 4F3/2→ 4I13/2 transition of Nd3+ ions in crystals (III),” Phys. Status Solidi A 15(2), K141–K144 (1973).
[Crossref]

A. A. Kaminskii and H. R. Verdun, “New high power, high efficient quasi-CW and CW single-mode KY(MoO4)2:Nd3+ laser end-pumped by a GaAlAs laser-diode array,” Phys. Status Solidi A 138(1), K49–K53 (1993).
[Crossref]

Quantum Electron. (1)

A. A. Kaminskii and S. N. Bagayev, “Ribbon and sheet miniature crystal laser,” Quantum Electron. 24(12), 1029–1030 (1994).
[Crossref]

Sov. Phys. Dokl. (1)

R. F. Klevtsova and S. V. Borisov, “X-ray structural study of the double molybdate KY(MoO4)2,” Sov. Phys. Dokl. 12, 1095 (1968) [Transl. from Dokl. Akad. Nauk SSSR 177(6), 1333–1336 (1967)].

Spectrochim. Acta A: Mol. Spectr. (1)

J. Hanuza and L. Macalik, “Polarized IR and Raman spectra of orthorhombic KLn(MoO4)2 crystals (Ln = Y, Dy, Ho, Er, Tm, Yb, Lu),” Spectrochim. Acta A: Mol. Spectr. 38(1), 61–72 (1982).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Photograph of the as-grown 3 at.% Tm:KY(MoO4)2 crystal boule. The growth direction is along the [100] axis (vertical); (b) Scanning Electron Microscope (SEM) image of the side surface of a cleaved single-crystal film indicating the crystallographic directions.
Fig. 2.
Fig. 2. (a) Rietveld refinement of the X-ray powder diffraction (XRD) pattern of the 3 at.% Tm:KY(MoO4)2 crystal; numbers indicate the Miller’s indices (hkl) (sp. gr. Pbna); (b) Polarized Raman spectra of the Tm:KY(MoO4)2 crystal for the a(ij)a geometries, where i, j = b or c (Porto’s notations), λexc = 488 nm.
Fig. 3.
Fig. 3. Absorption of the Tm:KY(MoO4)2 crystal: (a) full absorption spectrum; (b) absorption cross-sections, σabs, for the 3H63F4 and 3H4 transitions for polarizations E || b and E || c.
Fig. 4.
Fig. 4. Emission properties of the Tm:KY(MoO4)2 crystal: (a) stimulated-emission (SE) cross-sections, σSE, for the 3F43H6 transition, light polarizations are E || a, b, c; (b) luminescence decay curve from the 3F4 state, λexc = 800 nm, λlum = 1860nm.
Fig. 5.
Fig. 5. Gain cross-sections, σgain = σSE – (1 – β)σabs, for the 3F43H6 transition of Tm3+ in KY(MoO4)2: β = N2(3F4)/NTm is the inversion ratio, the light polarization is E || b.
Fig. 6.
Fig. 6. (a) Scheme of the diode-pumped microchip Tm:KY(MoO4)2 lasers: LD – laser diode, PM – pump mirror, OC – output coupler, F – cut-off filter; (b) photograph of the laser.
Fig. 7.
Fig. 7. Diode-pumped laser performance of (100)-oriented cleaved (a,b) thin-film (t = 70 µm) and (c,d) crystal-plate (t = 700 µm) 3 at.% Tm:KY(MoO4)2 crystal: (a,c) input-output dependences, η – slope efficiency; (b,d) typical spectra of the laser emission measured at maximum Pabs. The laser polarization is E || b.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ SE i ( λ ) = λ 5 8 π n 2 τ rad c W i ( λ ) ( 1 / 3 ) i = a , b , c λ W i ( λ ) d λ ,

Metrics