Abstract

A tunable graphene-based hyperbolic metamaterial is designed and numerically investigated in the mid-infrared frequencies. Theoretical analysis proves that by adjusting the chemical potential of graphene from 0.2 eV to 0.8 eV, the reflectance can be blue-shifted up to 2.3 µm. Furthermore, by modifying the number of graphene monolayers in the hyperbolic metamaterial stack, we are able to shift the plasmonic resonance up to 3.6 µm. Elliptic and type II hyperbolic dispersions are shown for three considered structures. Importantly, a blue/red-shift and switching of the reflectance are reported at different incident angles in TE/TM modes. The obtained results clearly show that graphene-based hyperbolic metamaterials with reversibly controlled tunability may be used in the next generation of nonlinear tunable and reversibly switchable devices operating in the mid-IR range.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Super-sensitive tunable planar lens based on graphene hyperbolic metamaterials

Yu Wang, Jianfeng Chen, Wenyao Liang, and Zhi-Yuan Li
Opt. Express 27(17) 24738-24746 (2019)

Graphene-based hyperbolic metamaterials for a tunable subwavelength dark hollow beam

Zhifei Yao, Zengping Su, and Yueke Wang
Appl. Opt. 58(30) 8257-8261 (2019)

Tunable bulk polaritons of graphene-based hyperbolic metamaterials

Liwei Zhang, Zhengren Zhang, Chaoyang Kang, Bei Cheng, Liang Chen, Xuefeng Yang, Jian Wang, Weibing Li, and Baoji Wang
Opt. Express 22(11) 14022-14030 (2014)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Zheludev and Y. X. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref]
  2. I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, Nonlinear, Tunable and Active Metamaterials (Springer Series in Materials Science, 2015).
  3. R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
    [Crossref]
  4. R. Kowerdziej, M. Olifierczuk, and J. Parka, “Thermally induced tunability of terahertz metamaterial by using a specially designed nematic liquid crystal mixture,” Opt. Express 26(3), 2443–2452 (2018).
    [Crossref]
  5. R. Kowerdziej, T. Stańczyk, and J. Parka, “Electromagnetic simulations of tunable terahertz metamaterial infiltrated with highly birefringent nematic liquid crystal,” Liq. Cryst. 42(4), 430–434 (2015).
    [Crossref]
  6. X. Fang, M. L. Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching viacoherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
    [Crossref]
  7. R. Kowerdziej, J. Parka, and J. Krupka, “Experimental study of thermally controlled metamaterial containing a liquid crystal layer at microwave frequencies,” Liq. Cryst. 38(6), 743–747 (2011).
    [Crossref]
  8. S. V. Zhukovsky, T. Ozel, E. Mutlugun, N. Gaponik, A. Eychmuller, A. V. Lavrinenko, H. V. Demir, and S. V. Gaponenko, “Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites,” Opt. Express 22(15), 18290–18298 (2014).
    [Crossref]
  9. X. Liu and D. Y. Lei, “Simultaneous excitation and emission enhancements in upconversion luminescence using plamonic double-resonant gold nanorods,” Sci. Rep. 5(1), 15235 (2015).
    [Crossref]
  10. M. Y. Shalaginov, V. V. Voroboyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudyayaraj, A. V. Klidishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single–photon emission from nitrogen–vacancy enters with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
    [Crossref]
  11. Y. He, S. He, and X. Yang, “Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials,” Opt. Lett. 37(14), 2907–2909 (2012).
    [Crossref]
  12. K. V. Sreekanth, M. Elkabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6(1), 26272 (2016).
    [Crossref]
  13. X. Song, Z. Liu, Y. Xiang, and K. Aydin, “Biaxial hyperbolic metamaterials using anisotropic few-layer black phosphorus,” Opt. Express 26(5), 5469–5477 (2018).
    [Crossref]
  14. Z. Geng, X. Zhang, Z. Fan, X. Lv, and H. Chen, “A Route to Terahertz Metamaterial Biosensor Integrated with Microfuluidics for Liver Cancer Biomarker Testing in Early Stage,” Sci. Rep. 7(1), 16378 (2017).
    [Crossref]
  15. W. Cai and V. M. Shalaev, Optical Metamaterials Fundamentals and Applications (Springer Series, 2010).
  16. L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
    [Crossref]
  17. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  18. P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1(1), 14 (2014).
    [Crossref]
  19. I. I. Smolyaninov and V. N. Smolyaninova, “Hyperbolic metamaterials: Novel physics and applications,” Solid-State Electron. 136, 102–112 (2017).
    [Crossref]
  20. Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Adv. OptoElectron. 2012, 1–9 (2012).
    [Crossref]
  21. V. Caligiuri, R. Dhama, K. V. Sreekanth, G. Strangi, and A. De Luca, “Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies,” Sci. Rep. 6(1), 20002 (2016).
    [Crossref]
  22. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene Plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  23. J. Linder and K. Halterman, “Graphene-based extremely wide-angle tunable metamaterial absorber,” Sci. Rep. 6(1), 31225 (2016).
    [Crossref]
  24. P. Rufangura and C. Sabah, “Graphene-based wideband metamaterial absorber for solar cells application,” J. Nanophotonics 11(3), 036008 (2017).
    [Crossref]
  25. Y. Zhang, T. Li, Q. Chen, H. zhang, J. F. O’Hara, E. Abele, A. J. taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
    [Crossref]
  26. P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6(1), 8969 (2015).
    [Crossref]
  27. H. Meng, L. Wang, G. Liu, X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).
    [Crossref]
  28. A. Vakil and N. Engheta, “One-Atom-Thick IR Metamaterials and Transformation Optics Using Graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref]
  29. M. Habib, A. R. Rashed, E. Ozbay, and H. Caglayan, “Graphene-based tunable plasmon induced transparency in gold strips,” Opt. Mater. Express 8(4), 1069–1074 (2018).
    [Crossref]
  30. W. Zhu, I. D. Rukhlenko, and M. Premarathe, “Graphene metamaterials for optical reflection modulation,” Appl. Phys. Lett. 102(24), 241914 (2013).
    [Crossref]
  31. I. Khromova, A. Andryieuski, and A. Lavrinenko, “Ultrasensitive terahertz/infrared waveguide modulators based on multilayer graphene metamaterialls,” Laser Photonics Rev. 8(6), 916–923 (2014).
    [Crossref]
  32. B. Orazbayev, M. Beruete, and I. Khromova, “Tunable beam steering enable by graphene metamaterials,” Opt. Express 24(8), 8848–8861 (2016).
    [Crossref]
  33. M. A. Othman, C. Guclu, and F. Capolino, “Graphene based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
    [Crossref]
  34. T. Guo, L. Zhu, P.-Y. Chen, and C. Argyropoulos, “Tunable terahertz amplification based on photoexcited active graphene hyperbolic metamaterials [Invited],” Opt. Mater. Express 8(12), 3941–3952 (2018).
    [Crossref]
  35. B. Janaszek, A. Tyszka-Zawadzka, and P. Szczepański, “Control of gain/absorption in tunable hyperbolic metamaterials,” Opt. Express 25(12), 13153–13162 (2017).
    [Crossref]
  36. A. Tyszka-Zawadzka, B. Janaszek, and P. Szczepański, “Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands,” Opt. Express 25(7), 7263–7272 (2017).
    [Crossref]
  37. M. Kieliszczyk, B. Janaszek, A. Tyszka-Zawadzka, and P. Szczepański, “Tunable spectral and spatial filters for the mid-infrared based on hyperbolic metamaterials,” Appl. Opt. 57(5), 1182–1187 (2018).
    [Crossref]
  38. B. Janaszek, A. Tyszka-Zawadzka, and P. Szczepański, “Tunable graphene-based hyperbolic metamaterial operating in SCLU telecom bands,” Opt. Express 24(21), 24129–24136 (2016).
    [Crossref]
  39. K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
    [Crossref]
  40. N. Papasimakis, Z. Luo, Z. X. Shen, F. De Angelis, E. Di Fabrizio, A. E. Nikolaenko, and N. I. Zheludev, “Graphene in a photonic metamaterial,” Opt. Express 18(8), 8353–8359 (2010).
    [Crossref]
  41. M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013).
    [Crossref]
  42. R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in grapheme-based hyperbolic metamaterials for mid-infrared range,” Phys. B 457, 144–148 (2015).
    [Crossref]
  43. E. D. Palik, Handbook of Optical Constant of Solids (Academic Press, 1985).
  44. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  45. V. Barna, R. Caputo, A. De Luca, N. Scaramuzza, G. Strangi, C. Versace, C. Umeton, R. Bartolino, and G. N. Price, “Distributed feedback micro-laser array: helixed liquid crystals embedded in holographically sculptured polymeric microcavities,” Opt. Express 14(7), 2695–2705 (2006).
    [Crossref]
  46. X. Zhou, J. Wenger, F. N. Viscomi, L. Le Cunff, J. Beal, S. Kochtcheev, X. Yang, G. P. Wiederrecht, G. C. des Francs, A. S. Bisht, S. Jradi, R. Caputo, H. V. Demir, R. D. Schaller, J. Plain, A. Vial, X. W. Sun, and R. Bachelot, “Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength,” Nano Lett. 15(11), 7458–7466 (2015).
    [Crossref]
  47. V. Caligiuri, L. Pezzi, A. Veltri, and A. De Luca, “Resonant Gain Singularities in 1D and 3D Metal/Dielectric Multilayered Nanostructures,” ACS Nano 11(1), 1012–1025 (2017).
    [Crossref]
  48. V. Caligiuri, M. Palei, G. Biffi, S. Artyukhin, and R. Krahne, “A Semi-Classical View on Epsilon-Near-Zero Resonant Tunneling Modes in Metal/Insulator/Metal Nanocavities,” Nano Lett. 19(5), 3151–3160 (2019).
    [Crossref]
  49. P. Segovia, G. Marino, A. V. Krasavin, N. Olivier, G. A. Wurtz, P. A. Belov, P. Ginzburg, and A. V. Zayats, “Hyperbolic metamaterial antenna for second-harmonic generation tomography,” Opt. Express 23(24), 30730–30738 (2015).
    [Crossref]

2019 (1)

V. Caligiuri, M. Palei, G. Biffi, S. Artyukhin, and R. Krahne, “A Semi-Classical View on Epsilon-Near-Zero Resonant Tunneling Modes in Metal/Insulator/Metal Nanocavities,” Nano Lett. 19(5), 3151–3160 (2019).
[Crossref]

2018 (5)

2017 (7)

P. Rufangura and C. Sabah, “Graphene-based wideband metamaterial absorber for solar cells application,” J. Nanophotonics 11(3), 036008 (2017).
[Crossref]

H. Meng, L. Wang, G. Liu, X. Xue, Q. Lin, and X. Zhai, “Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region,” Appl. Opt. 56(21), 6022–6027 (2017).
[Crossref]

Z. Geng, X. Zhang, Z. Fan, X. Lv, and H. Chen, “A Route to Terahertz Metamaterial Biosensor Integrated with Microfuluidics for Liver Cancer Biomarker Testing in Early Stage,” Sci. Rep. 7(1), 16378 (2017).
[Crossref]

I. I. Smolyaninov and V. N. Smolyaninova, “Hyperbolic metamaterials: Novel physics and applications,” Solid-State Electron. 136, 102–112 (2017).
[Crossref]

B. Janaszek, A. Tyszka-Zawadzka, and P. Szczepański, “Control of gain/absorption in tunable hyperbolic metamaterials,” Opt. Express 25(12), 13153–13162 (2017).
[Crossref]

A. Tyszka-Zawadzka, B. Janaszek, and P. Szczepański, “Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands,” Opt. Express 25(7), 7263–7272 (2017).
[Crossref]

V. Caligiuri, L. Pezzi, A. Veltri, and A. De Luca, “Resonant Gain Singularities in 1D and 3D Metal/Dielectric Multilayered Nanostructures,” ACS Nano 11(1), 1012–1025 (2017).
[Crossref]

2016 (6)

K. V. Sreekanth, M. Elkabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6(1), 26272 (2016).
[Crossref]

Y. Zhang, T. Li, Q. Chen, H. zhang, J. F. O’Hara, E. Abele, A. J. taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

V. Caligiuri, R. Dhama, K. V. Sreekanth, G. Strangi, and A. De Luca, “Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies,” Sci. Rep. 6(1), 20002 (2016).
[Crossref]

J. Linder and K. Halterman, “Graphene-based extremely wide-angle tunable metamaterial absorber,” Sci. Rep. 6(1), 31225 (2016).
[Crossref]

B. Janaszek, A. Tyszka-Zawadzka, and P. Szczepański, “Tunable graphene-based hyperbolic metamaterial operating in SCLU telecom bands,” Opt. Express 24(21), 24129–24136 (2016).
[Crossref]

B. Orazbayev, M. Beruete, and I. Khromova, “Tunable beam steering enable by graphene metamaterials,” Opt. Express 24(8), 8848–8861 (2016).
[Crossref]

2015 (9)

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6(1), 8969 (2015).
[Crossref]

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

R. Kowerdziej, T. Stańczyk, and J. Parka, “Electromagnetic simulations of tunable terahertz metamaterial infiltrated with highly birefringent nematic liquid crystal,” Liq. Cryst. 42(4), 430–434 (2015).
[Crossref]

R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
[Crossref]

X. Liu and D. Y. Lei, “Simultaneous excitation and emission enhancements in upconversion luminescence using plamonic double-resonant gold nanorods,” Sci. Rep. 5(1), 15235 (2015).
[Crossref]

M. Y. Shalaginov, V. V. Voroboyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudyayaraj, A. V. Klidishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single–photon emission from nitrogen–vacancy enters with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

X. Zhou, J. Wenger, F. N. Viscomi, L. Le Cunff, J. Beal, S. Kochtcheev, X. Yang, G. P. Wiederrecht, G. C. des Francs, A. S. Bisht, S. Jradi, R. Caputo, H. V. Demir, R. D. Schaller, J. Plain, A. Vial, X. W. Sun, and R. Bachelot, “Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength,” Nano Lett. 15(11), 7458–7466 (2015).
[Crossref]

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in grapheme-based hyperbolic metamaterials for mid-infrared range,” Phys. B 457, 144–148 (2015).
[Crossref]

P. Segovia, G. Marino, A. V. Krasavin, N. Olivier, G. A. Wurtz, P. A. Belov, P. Ginzburg, and A. V. Zayats, “Hyperbolic metamaterial antenna for second-harmonic generation tomography,” Opt. Express 23(24), 30730–30738 (2015).
[Crossref]

2014 (4)

I. Khromova, A. Andryieuski, and A. Lavrinenko, “Ultrasensitive terahertz/infrared waveguide modulators based on multilayer graphene metamaterialls,” Laser Photonics Rev. 8(6), 916–923 (2014).
[Crossref]

X. Fang, M. L. Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching viacoherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

S. V. Zhukovsky, T. Ozel, E. Mutlugun, N. Gaponik, A. Eychmuller, A. V. Lavrinenko, H. V. Demir, and S. V. Gaponenko, “Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites,” Opt. Express 22(15), 18290–18298 (2014).
[Crossref]

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1(1), 14 (2014).
[Crossref]

2013 (5)

M. A. Othman, C. Guclu, and F. Capolino, “Graphene based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
[Crossref]

W. Zhu, I. D. Rukhlenko, and M. Premarathe, “Graphene metamaterials for optical reflection modulation,” Appl. Phys. Lett. 102(24), 241914 (2013).
[Crossref]

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013).
[Crossref]

2012 (4)

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Adv. OptoElectron. 2012, 1–9 (2012).
[Crossref]

Y. He, S. He, and X. Yang, “Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials,” Opt. Lett. 37(14), 2907–2909 (2012).
[Crossref]

N. I. Zheludev and Y. X. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene Plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

2011 (2)

A. Vakil and N. Engheta, “One-Atom-Thick IR Metamaterials and Transformation Optics Using Graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

R. Kowerdziej, J. Parka, and J. Krupka, “Experimental study of thermally controlled metamaterial containing a liquid crystal layer at microwave frequencies,” Liq. Cryst. 38(6), 743–747 (2011).
[Crossref]

2010 (1)

2008 (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

2006 (1)

Abele, E.

Y. Zhang, T. Li, Q. Chen, H. zhang, J. F. O’Hara, E. Abele, A. J. taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Akimov, A. V.

M. Y. Shalaginov, V. V. Voroboyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudyayaraj, A. V. Klidishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single–photon emission from nitrogen–vacancy enters with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Alapan, Y.

K. V. Sreekanth, M. Elkabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6(1), 26272 (2016).
[Crossref]

Andryieuski, A.

I. Khromova, A. Andryieuski, and A. Lavrinenko, “Ultrasensitive terahertz/infrared waveguide modulators based on multilayer graphene metamaterialls,” Laser Photonics Rev. 8(6), 916–923 (2014).
[Crossref]

Argyropoulos, C.

Artyukhin, S.

V. Caligiuri, M. Palei, G. Biffi, S. Artyukhin, and R. Krahne, “A Semi-Classical View on Epsilon-Near-Zero Resonant Tunneling Modes in Metal/Insulator/Metal Nanocavities,” Nano Lett. 19(5), 3151–3160 (2019).
[Crossref]

Atkinson, J.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1(1), 14 (2014).
[Crossref]

Aydin, K.

Azad, A. K.

Y. Zhang, T. Li, Q. Chen, H. zhang, J. F. O’Hara, E. Abele, A. J. taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Bachelot, R.

X. Zhou, J. Wenger, F. N. Viscomi, L. Le Cunff, J. Beal, S. Kochtcheev, X. Yang, G. P. Wiederrecht, G. C. des Francs, A. S. Bisht, S. Jradi, R. Caputo, H. V. Demir, R. D. Schaller, J. Plain, A. Vial, X. W. Sun, and R. Bachelot, “Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength,” Nano Lett. 15(11), 7458–7466 (2015).
[Crossref]

Barna, V.

Bartolino, R.

Beal, J.

X. Zhou, J. Wenger, F. N. Viscomi, L. Le Cunff, J. Beal, S. Kochtcheev, X. Yang, G. P. Wiederrecht, G. C. des Francs, A. S. Bisht, S. Jradi, R. Caputo, H. V. Demir, R. D. Schaller, J. Plain, A. Vial, X. W. Sun, and R. Bachelot, “Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength,” Nano Lett. 15(11), 7458–7466 (2015).
[Crossref]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Belov, P. A.

Beruete, M.

Bian, B.

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in grapheme-based hyperbolic metamaterials for mid-infrared range,” Phys. B 457, 144–148 (2015).
[Crossref]

Biffi, G.

V. Caligiuri, M. Palei, G. Biffi, S. Artyukhin, and R. Krahne, “A Semi-Classical View on Epsilon-Near-Zero Resonant Tunneling Modes in Metal/Insulator/Metal Nanocavities,” Nano Lett. 19(5), 3151–3160 (2019).
[Crossref]

Bisht, A. S.

X. Zhou, J. Wenger, F. N. Viscomi, L. Le Cunff, J. Beal, S. Kochtcheev, X. Yang, G. P. Wiederrecht, G. C. des Francs, A. S. Bisht, S. Jradi, R. Caputo, H. V. Demir, R. D. Schaller, J. Plain, A. Vial, X. W. Sun, and R. Bachelot, “Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength,” Nano Lett. 15(11), 7458–7466 (2015).
[Crossref]

Boltasseva, A.

M. Y. Shalaginov, V. V. Voroboyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudyayaraj, A. V. Klidishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single–photon emission from nitrogen–vacancy enters with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Caglayan, H.

Cai, W.

W. Cai and V. M. Shalaev, Optical Metamaterials Fundamentals and Applications (Springer Series, 2010).

Caligiuri, V.

V. Caligiuri, M. Palei, G. Biffi, S. Artyukhin, and R. Krahne, “A Semi-Classical View on Epsilon-Near-Zero Resonant Tunneling Modes in Metal/Insulator/Metal Nanocavities,” Nano Lett. 19(5), 3151–3160 (2019).
[Crossref]

V. Caligiuri, L. Pezzi, A. Veltri, and A. De Luca, “Resonant Gain Singularities in 1D and 3D Metal/Dielectric Multilayered Nanostructures,” ACS Nano 11(1), 1012–1025 (2017).
[Crossref]

V. Caligiuri, R. Dhama, K. V. Sreekanth, G. Strangi, and A. De Luca, “Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies,” Sci. Rep. 6(1), 20002 (2016).
[Crossref]

Capolino, F.

M. A. Othman, C. Guclu, and F. Capolino, “Graphene based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
[Crossref]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013).
[Crossref]

Caputo, R.

X. Zhou, J. Wenger, F. N. Viscomi, L. Le Cunff, J. Beal, S. Kochtcheev, X. Yang, G. P. Wiederrecht, G. C. des Francs, A. S. Bisht, S. Jradi, R. Caputo, H. V. Demir, R. D. Schaller, J. Plain, A. Vial, X. W. Sun, and R. Bachelot, “Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength,” Nano Lett. 15(11), 7458–7466 (2015).
[Crossref]

V. Barna, R. Caputo, A. De Luca, N. Scaramuzza, G. Strangi, C. Versace, C. Umeton, R. Bartolino, and G. N. Price, “Distributed feedback micro-laser array: helixed liquid crystals embedded in holographically sculptured polymeric microcavities,” Opt. Express 14(7), 2695–2705 (2006).
[Crossref]

Chen, H.

Z. Geng, X. Zhang, Z. Fan, X. Lv, and H. Chen, “A Route to Terahertz Metamaterial Biosensor Integrated with Microfuluidics for Liver Cancer Biomarker Testing in Early Stage,” Sci. Rep. 7(1), 16378 (2017).
[Crossref]

Chen, H. T.

Y. Zhang, T. Li, Q. Chen, H. zhang, J. F. O’Hara, E. Abele, A. J. taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Chen, P.-Y.

Chen, Q.

Y. Zhang, T. Li, Q. Chen, H. zhang, J. F. O’Hara, E. Abele, A. J. taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Cortes, C. L.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Adv. OptoElectron. 2012, 1–9 (2012).
[Crossref]

De Angelis, F.

De Luca, A.

V. Caligiuri, L. Pezzi, A. Veltri, and A. De Luca, “Resonant Gain Singularities in 1D and 3D Metal/Dielectric Multilayered Nanostructures,” ACS Nano 11(1), 1012–1025 (2017).
[Crossref]

V. Caligiuri, R. Dhama, K. V. Sreekanth, G. Strangi, and A. De Luca, “Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies,” Sci. Rep. 6(1), 20002 (2016).
[Crossref]

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

V. Barna, R. Caputo, A. De Luca, N. Scaramuzza, G. Strangi, C. Versace, C. Umeton, R. Bartolino, and G. N. Price, “Distributed feedback micro-laser array: helixed liquid crystals embedded in holographically sculptured polymeric microcavities,” Opt. Express 14(7), 2695–2705 (2006).
[Crossref]

Demir, H. V.

X. Zhou, J. Wenger, F. N. Viscomi, L. Le Cunff, J. Beal, S. Kochtcheev, X. Yang, G. P. Wiederrecht, G. C. des Francs, A. S. Bisht, S. Jradi, R. Caputo, H. V. Demir, R. D. Schaller, J. Plain, A. Vial, X. W. Sun, and R. Bachelot, “Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength,” Nano Lett. 15(11), 7458–7466 (2015).
[Crossref]

S. V. Zhukovsky, T. Ozel, E. Mutlugun, N. Gaponik, A. Eychmuller, A. V. Lavrinenko, H. V. Demir, and S. V. Gaponenko, “Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites,” Opt. Express 22(15), 18290–18298 (2014).
[Crossref]

des Francs, G. C.

X. Zhou, J. Wenger, F. N. Viscomi, L. Le Cunff, J. Beal, S. Kochtcheev, X. Yang, G. P. Wiederrecht, G. C. des Francs, A. S. Bisht, S. Jradi, R. Caputo, H. V. Demir, R. D. Schaller, J. Plain, A. Vial, X. W. Sun, and R. Bachelot, “Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength,” Nano Lett. 15(11), 7458–7466 (2015).
[Crossref]

Dhama, R.

V. Caligiuri, R. Dhama, K. V. Sreekanth, G. Strangi, and A. De Luca, “Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies,” Sci. Rep. 6(1), 20002 (2016).
[Crossref]

Di Fabrizio, E.

Elkabbash, M.

K. V. Sreekanth, M. Elkabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6(1), 26272 (2016).
[Crossref]

Engheta, N.

A. Vakil and N. Engheta, “One-Atom-Thick IR Metamaterials and Transformation Optics Using Graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

Eychmuller, A.

Faist, J.

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6(1), 8969 (2015).
[Crossref]

Fan, Z.

Z. Geng, X. Zhang, Z. Fan, X. Lv, and H. Chen, “A Route to Terahertz Metamaterial Biosensor Integrated with Microfuluidics for Liver Cancer Biomarker Testing in Early Stage,” Sci. Rep. 7(1), 16378 (2017).
[Crossref]

Fang, X.

X. Fang, M. L. Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching viacoherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Ferrari, L.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Ferrera, M.

M. Y. Shalaginov, V. V. Voroboyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudyayaraj, A. V. Klidishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single–photon emission from nitrogen–vacancy enters with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Gaponenko, S. V.

Gaponik, N.

Geng, Z.

Z. Geng, X. Zhang, Z. Fan, X. Lv, and H. Chen, “A Route to Terahertz Metamaterial Biosensor Integrated with Microfuluidics for Liver Cancer Biomarker Testing in Early Stage,” Sci. Rep. 7(1), 16378 (2017).
[Crossref]

Ginzburg, P.

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene Plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Guclu, C.

M. A. Othman, C. Guclu, and F. Capolino, “Graphene based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
[Crossref]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013).
[Crossref]

Guo, T.

Guo, Y.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Adv. OptoElectron. 2012, 1–9 (2012).
[Crossref]

Gurkan, U. A.

K. V. Sreekanth, M. Elkabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6(1), 26272 (2016).
[Crossref]

Habib, M.

Halterman, K.

J. Linder and K. Halterman, “Graphene-based extremely wide-angle tunable metamaterial absorber,” Sci. Rep. 6(1), 31225 (2016).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

He, S.

He, Y.

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Irudyayaraj, J.

M. Y. Shalaginov, V. V. Voroboyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudyayaraj, A. V. Klidishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single–photon emission from nitrogen–vacancy enters with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Jacob, Z.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1(1), 14 (2014).
[Crossref]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Adv. OptoElectron. 2012, 1–9 (2012).
[Crossref]

Janaszek, B.

Jaroszewicz, L.

R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
[Crossref]

Jradi, S.

X. Zhou, J. Wenger, F. N. Viscomi, L. Le Cunff, J. Beal, S. Kochtcheev, X. Yang, G. P. Wiederrecht, G. C. des Francs, A. S. Bisht, S. Jradi, R. Caputo, H. V. Demir, R. D. Schaller, J. Plain, A. Vial, X. W. Sun, and R. Bachelot, “Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength,” Nano Lett. 15(11), 7458–7466 (2015).
[Crossref]

Khromova, I.

B. Orazbayev, M. Beruete, and I. Khromova, “Tunable beam steering enable by graphene metamaterials,” Opt. Express 24(8), 8848–8861 (2016).
[Crossref]

I. Khromova, A. Andryieuski, and A. Lavrinenko, “Ultrasensitive terahertz/infrared waveguide modulators based on multilayer graphene metamaterialls,” Laser Photonics Rev. 8(6), 916–923 (2014).
[Crossref]

Kieliszczyk, M.

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Kivshar, Y. S.

I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, Nonlinear, Tunable and Active Metamaterials (Springer Series in Materials Science, 2015).

Kivshar, Y. X.

N. I. Zheludev and Y. X. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref]

Klidishev, A. V.

M. Y. Shalaginov, V. V. Voroboyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudyayaraj, A. V. Klidishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single–photon emission from nitrogen–vacancy enters with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Klimov, V. V.

M. Y. Shalaginov, V. V. Voroboyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudyayaraj, A. V. Klidishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single–photon emission from nitrogen–vacancy enters with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Kochtcheev, S.

X. Zhou, J. Wenger, F. N. Viscomi, L. Le Cunff, J. Beal, S. Kochtcheev, X. Yang, G. P. Wiederrecht, G. C. des Francs, A. S. Bisht, S. Jradi, R. Caputo, H. V. Demir, R. D. Schaller, J. Plain, A. Vial, X. W. Sun, and R. Bachelot, “Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength,” Nano Lett. 15(11), 7458–7466 (2015).
[Crossref]

Kong, X.

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in grapheme-based hyperbolic metamaterials for mid-infrared range,” Phys. B 457, 144–148 (2015).
[Crossref]

Kowerdziej, R.

R. Kowerdziej, M. Olifierczuk, and J. Parka, “Thermally induced tunability of terahertz metamaterial by using a specially designed nematic liquid crystal mixture,” Opt. Express 26(3), 2443–2452 (2018).
[Crossref]

R. Kowerdziej, T. Stańczyk, and J. Parka, “Electromagnetic simulations of tunable terahertz metamaterial infiltrated with highly birefringent nematic liquid crystal,” Liq. Cryst. 42(4), 430–434 (2015).
[Crossref]

R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
[Crossref]

R. Kowerdziej, J. Parka, and J. Krupka, “Experimental study of thermally controlled metamaterial containing a liquid crystal layer at microwave frequencies,” Liq. Cryst. 38(6), 743–747 (2011).
[Crossref]

Krahne, R.

V. Caligiuri, M. Palei, G. Biffi, S. Artyukhin, and R. Krahne, “A Semi-Classical View on Epsilon-Near-Zero Resonant Tunneling Modes in Metal/Insulator/Metal Nanocavities,” Nano Lett. 19(5), 3151–3160 (2019).
[Crossref]

Krasavin, A. V.

Krupka, J.

R. Kowerdziej, J. Parka, and J. Krupka, “Experimental study of thermally controlled metamaterial containing a liquid crystal layer at microwave frequencies,” Liq. Cryst. 38(6), 743–747 (2011).
[Crossref]

Lagutchev, A.

M. Y. Shalaginov, V. V. Voroboyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudyayaraj, A. V. Klidishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single–photon emission from nitrogen–vacancy enters with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Lapine, M.

I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, Nonlinear, Tunable and Active Metamaterials (Springer Series in Materials Science, 2015).

Lavrinenko, A.

I. Khromova, A. Andryieuski, and A. Lavrinenko, “Ultrasensitive terahertz/infrared waveguide modulators based on multilayer graphene metamaterialls,” Laser Photonics Rev. 8(6), 916–923 (2014).
[Crossref]

Lavrinenko, A. V.

Le Cunff, L.

X. Zhou, J. Wenger, F. N. Viscomi, L. Le Cunff, J. Beal, S. Kochtcheev, X. Yang, G. P. Wiederrecht, G. C. des Francs, A. S. Bisht, S. Jradi, R. Caputo, H. V. Demir, R. D. Schaller, J. Plain, A. Vial, X. W. Sun, and R. Bachelot, “Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength,” Nano Lett. 15(11), 7458–7466 (2015).
[Crossref]

Lei, D. Y.

X. Liu and D. Y. Lei, “Simultaneous excitation and emission enhancements in upconversion luminescence using plamonic double-resonant gold nanorods,” Sci. Rep. 5(1), 15235 (2015).
[Crossref]

Lepage, D.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Li, T.

Y. Zhang, T. Li, Q. Chen, H. zhang, J. F. O’Hara, E. Abele, A. J. taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Lin, Q.

Linder, J.

J. Linder and K. Halterman, “Graphene-based extremely wide-angle tunable metamaterial absorber,” Sci. Rep. 6(1), 31225 (2016).
[Crossref]

Liu, G.

Liu, J.

M. Y. Shalaginov, V. V. Voroboyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudyayaraj, A. V. Klidishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single–photon emission from nitrogen–vacancy enters with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Liu, P. Q.

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6(1), 8969 (2015).
[Crossref]

Liu, S.

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in grapheme-based hyperbolic metamaterials for mid-infrared range,” Phys. B 457, 144–148 (2015).
[Crossref]

Liu, X.

X. Liu and D. Y. Lei, “Simultaneous excitation and emission enhancements in upconversion luminescence using plamonic double-resonant gold nanorods,” Sci. Rep. 5(1), 15235 (2015).
[Crossref]

Liu, Z.

X. Song, Z. Liu, Y. Xiang, and K. Aydin, “Biaxial hyperbolic metamaterials using anisotropic few-layer black phosphorus,” Opt. Express 26(5), 5469–5477 (2018).
[Crossref]

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Luo, Z.

Luxmoore, I. J.

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6(1), 8969 (2015).
[Crossref]

Lv, X.

Z. Geng, X. Zhang, Z. Fan, X. Lv, and H. Chen, “A Route to Terahertz Metamaterial Biosensor Integrated with Microfuluidics for Liver Cancer Biomarker Testing in Early Stage,” Sci. Rep. 7(1), 16378 (2017).
[Crossref]

MacDonald, K. F.

X. Fang, M. L. Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching viacoherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Marino, G.

Meng, H.

Mikhailov, S. A.

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6(1), 8969 (2015).
[Crossref]

Mutlugun, E.

Nash, G. R.

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6(1), 8969 (2015).
[Crossref]

Newman, W.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Adv. OptoElectron. 2012, 1–9 (2012).
[Crossref]

Nikolaenko, A. E.

Ning, R.

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in grapheme-based hyperbolic metamaterials for mid-infrared range,” Phys. B 457, 144–148 (2015).
[Crossref]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene Plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

O’Hara, J. F.

Y. Zhang, T. Li, Q. Chen, H. zhang, J. F. O’Hara, E. Abele, A. J. taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Olifierczuk, M.

R. Kowerdziej, M. Olifierczuk, and J. Parka, “Thermally induced tunability of terahertz metamaterial by using a specially designed nematic liquid crystal mixture,” Opt. Express 26(3), 2443–2452 (2018).
[Crossref]

R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
[Crossref]

Olivier, N.

Orazbayev, B.

Othman, M. A.

Othman, M. A. K.

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013).
[Crossref]

Ou, J.-Y.

X. Fang, M. L. Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching viacoherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Ozbay, E.

Ozel, T.

Palei, M.

V. Caligiuri, M. Palei, G. Biffi, S. Artyukhin, and R. Krahne, “A Semi-Classical View on Epsilon-Near-Zero Resonant Tunneling Modes in Metal/Insulator/Metal Nanocavities,” Nano Lett. 19(5), 3151–3160 (2019).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constant of Solids (Academic Press, 1985).

Papasimakis, N.

Parka, J.

R. Kowerdziej, M. Olifierczuk, and J. Parka, “Thermally induced tunability of terahertz metamaterial by using a specially designed nematic liquid crystal mixture,” Opt. Express 26(3), 2443–2452 (2018).
[Crossref]

R. Kowerdziej, T. Stańczyk, and J. Parka, “Electromagnetic simulations of tunable terahertz metamaterial infiltrated with highly birefringent nematic liquid crystal,” Liq. Cryst. 42(4), 430–434 (2015).
[Crossref]

R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
[Crossref]

R. Kowerdziej, J. Parka, and J. Krupka, “Experimental study of thermally controlled metamaterial containing a liquid crystal layer at microwave frequencies,” Liq. Cryst. 38(6), 743–747 (2011).
[Crossref]

Pezzi, L.

V. Caligiuri, L. Pezzi, A. Veltri, and A. De Luca, “Resonant Gain Singularities in 1D and 3D Metal/Dielectric Multilayered Nanostructures,” ACS Nano 11(1), 1012–1025 (2017).
[Crossref]

Plain, J.

X. Zhou, J. Wenger, F. N. Viscomi, L. Le Cunff, J. Beal, S. Kochtcheev, X. Yang, G. P. Wiederrecht, G. C. des Francs, A. S. Bisht, S. Jradi, R. Caputo, H. V. Demir, R. D. Schaller, J. Plain, A. Vial, X. W. Sun, and R. Bachelot, “Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength,” Nano Lett. 15(11), 7458–7466 (2015).
[Crossref]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene Plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Premarathe, M.

W. Zhu, I. D. Rukhlenko, and M. Premarathe, “Graphene metamaterials for optical reflection modulation,” Appl. Phys. Lett. 102(24), 241914 (2013).
[Crossref]

Price, G. N.

Rashed, A. R.

M. Habib, A. R. Rashed, E. Ozbay, and H. Caglayan, “Graphene-based tunable plasmon induced transparency in gold strips,” Opt. Mater. Express 8(4), 1069–1074 (2018).
[Crossref]

K. V. Sreekanth, M. Elkabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6(1), 26272 (2016).
[Crossref]

Rufangura, P.

P. Rufangura and C. Sabah, “Graphene-based wideband metamaterial absorber for solar cells application,” J. Nanophotonics 11(3), 036008 (2017).
[Crossref]

Rukhlenko, I. D.

W. Zhu, I. D. Rukhlenko, and M. Premarathe, “Graphene metamaterials for optical reflection modulation,” Appl. Phys. Lett. 102(24), 241914 (2013).
[Crossref]

Sabah, C.

P. Rufangura and C. Sabah, “Graphene-based wideband metamaterial absorber for solar cells application,” J. Nanophotonics 11(3), 036008 (2017).
[Crossref]

Savostianova, N. A.

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6(1), 8969 (2015).
[Crossref]

Scaramuzza, N.

Schaller, R. D.

X. Zhou, J. Wenger, F. N. Viscomi, L. Le Cunff, J. Beal, S. Kochtcheev, X. Yang, G. P. Wiederrecht, G. C. des Francs, A. S. Bisht, S. Jradi, R. Caputo, H. V. Demir, R. D. Schaller, J. Plain, A. Vial, X. W. Sun, and R. Bachelot, “Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength,” Nano Lett. 15(11), 7458–7466 (2015).
[Crossref]

Segovia, P.

Shadrivov, I. V.

I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, Nonlinear, Tunable and Active Metamaterials (Springer Series in Materials Science, 2015).

Shalaev, V. M.

M. Y. Shalaginov, V. V. Voroboyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudyayaraj, A. V. Klidishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single–photon emission from nitrogen–vacancy enters with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

W. Cai and V. M. Shalaev, Optical Metamaterials Fundamentals and Applications (Springer Series, 2010).

Shalaginov, M. Y.

M. Y. Shalaginov, V. V. Voroboyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudyayaraj, A. V. Klidishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single–photon emission from nitrogen–vacancy enters with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Shekhar, P.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1(1), 14 (2014).
[Crossref]

Shen, Z. X.

Smolyaninov, A. N.

M. Y. Shalaginov, V. V. Voroboyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudyayaraj, A. V. Klidishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single–photon emission from nitrogen–vacancy enters with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Smolyaninov, I. I.

I. I. Smolyaninov and V. N. Smolyaninova, “Hyperbolic metamaterials: Novel physics and applications,” Solid-State Electron. 136, 102–112 (2017).
[Crossref]

Smolyaninova, V. N.

I. I. Smolyaninov and V. N. Smolyaninova, “Hyperbolic metamaterials: Novel physics and applications,” Solid-State Electron. 136, 102–112 (2017).
[Crossref]

Song, X.

Sreekanth, K. V.

K. V. Sreekanth, M. Elkabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6(1), 26272 (2016).
[Crossref]

V. Caligiuri, R. Dhama, K. V. Sreekanth, G. Strangi, and A. De Luca, “Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies,” Sci. Rep. 6(1), 20002 (2016).
[Crossref]

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

Stanczyk, T.

R. Kowerdziej, T. Stańczyk, and J. Parka, “Electromagnetic simulations of tunable terahertz metamaterial infiltrated with highly birefringent nematic liquid crystal,” Liq. Cryst. 42(4), 430–434 (2015).
[Crossref]

Strangi, G.

K. V. Sreekanth, M. Elkabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6(1), 26272 (2016).
[Crossref]

V. Caligiuri, R. Dhama, K. V. Sreekanth, G. Strangi, and A. De Luca, “Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies,” Sci. Rep. 6(1), 20002 (2016).
[Crossref]

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

V. Barna, R. Caputo, A. De Luca, N. Scaramuzza, G. Strangi, C. Versace, C. Umeton, R. Bartolino, and G. N. Price, “Distributed feedback micro-laser array: helixed liquid crystals embedded in holographically sculptured polymeric microcavities,” Opt. Express 14(7), 2695–2705 (2006).
[Crossref]

Sun, X. W.

X. Zhou, J. Wenger, F. N. Viscomi, L. Le Cunff, J. Beal, S. Kochtcheev, X. Yang, G. P. Wiederrecht, G. C. des Francs, A. S. Bisht, S. Jradi, R. Caputo, H. V. Demir, R. D. Schaller, J. Plain, A. Vial, X. W. Sun, and R. Bachelot, “Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength,” Nano Lett. 15(11), 7458–7466 (2015).
[Crossref]

Szczepanski, P.

taylor, A. J.

Y. Zhang, T. Li, Q. Chen, H. zhang, J. F. O’Hara, E. Abele, A. J. taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Tsai, D. P.

X. Fang, M. L. Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching viacoherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Tseng, M. L.

X. Fang, M. L. Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching viacoherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Tyszka-Zawadzka, A.

Umeton, C.

Vakil, A.

A. Vakil and N. Engheta, “One-Atom-Thick IR Metamaterials and Transformation Optics Using Graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

Valmorra, F.

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6(1), 8969 (2015).
[Crossref]

Veltri, A.

V. Caligiuri, L. Pezzi, A. Veltri, and A. De Luca, “Resonant Gain Singularities in 1D and 3D Metal/Dielectric Multilayered Nanostructures,” ACS Nano 11(1), 1012–1025 (2017).
[Crossref]

Versace, C.

Vial, A.

X. Zhou, J. Wenger, F. N. Viscomi, L. Le Cunff, J. Beal, S. Kochtcheev, X. Yang, G. P. Wiederrecht, G. C. des Francs, A. S. Bisht, S. Jradi, R. Caputo, H. V. Demir, R. D. Schaller, J. Plain, A. Vial, X. W. Sun, and R. Bachelot, “Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength,” Nano Lett. 15(11), 7458–7466 (2015).
[Crossref]

Viscomi, F. N.

X. Zhou, J. Wenger, F. N. Viscomi, L. Le Cunff, J. Beal, S. Kochtcheev, X. Yang, G. P. Wiederrecht, G. C. des Francs, A. S. Bisht, S. Jradi, R. Caputo, H. V. Demir, R. D. Schaller, J. Plain, A. Vial, X. W. Sun, and R. Bachelot, “Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength,” Nano Lett. 15(11), 7458–7466 (2015).
[Crossref]

Voroboyov, V. V.

M. Y. Shalaginov, V. V. Voroboyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudyayaraj, A. V. Klidishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single–photon emission from nitrogen–vacancy enters with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Wang, L.

Wenger, J.

X. Zhou, J. Wenger, F. N. Viscomi, L. Le Cunff, J. Beal, S. Kochtcheev, X. Yang, G. P. Wiederrecht, G. C. des Francs, A. S. Bisht, S. Jradi, R. Caputo, H. V. Demir, R. D. Schaller, J. Plain, A. Vial, X. W. Sun, and R. Bachelot, “Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength,” Nano Lett. 15(11), 7458–7466 (2015).
[Crossref]

Wiederrecht, G. P.

X. Zhou, J. Wenger, F. N. Viscomi, L. Le Cunff, J. Beal, S. Kochtcheev, X. Yang, G. P. Wiederrecht, G. C. des Francs, A. S. Bisht, S. Jradi, R. Caputo, H. V. Demir, R. D. Schaller, J. Plain, A. Vial, X. W. Sun, and R. Bachelot, “Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength,” Nano Lett. 15(11), 7458–7466 (2015).
[Crossref]

Wu, C.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Wurtz, G. A.

Xiang, Y.

Xue, X.

Yang, X.

X. Zhou, J. Wenger, F. N. Viscomi, L. Le Cunff, J. Beal, S. Kochtcheev, X. Yang, G. P. Wiederrecht, G. C. des Francs, A. S. Bisht, S. Jradi, R. Caputo, H. V. Demir, R. D. Schaller, J. Plain, A. Vial, X. W. Sun, and R. Bachelot, “Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength,” Nano Lett. 15(11), 7458–7466 (2015).
[Crossref]

Y. He, S. He, and X. Yang, “Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials,” Opt. Lett. 37(14), 2907–2909 (2012).
[Crossref]

Zayats, A. V.

Zhai, X.

zhang, H.

Y. Zhang, T. Li, Q. Chen, H. zhang, J. F. O’Hara, E. Abele, A. J. taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in grapheme-based hyperbolic metamaterials for mid-infrared range,” Phys. B 457, 144–148 (2015).
[Crossref]

Zhang, X.

Z. Geng, X. Zhang, Z. Fan, X. Lv, and H. Chen, “A Route to Terahertz Metamaterial Biosensor Integrated with Microfuluidics for Liver Cancer Biomarker Testing in Early Stage,” Sci. Rep. 7(1), 16378 (2017).
[Crossref]

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Zhang, Y.

Y. Zhang, T. Li, Q. Chen, H. zhang, J. F. O’Hara, E. Abele, A. J. taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

Zheludev, N. I.

X. Fang, M. L. Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching viacoherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

N. I. Zheludev and Y. X. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref]

N. Papasimakis, Z. Luo, Z. X. Shen, F. De Angelis, E. Di Fabrizio, A. E. Nikolaenko, and N. I. Zheludev, “Graphene in a photonic metamaterial,” Opt. Express 18(8), 8353–8359 (2010).
[Crossref]

Zhou, X.

X. Zhou, J. Wenger, F. N. Viscomi, L. Le Cunff, J. Beal, S. Kochtcheev, X. Yang, G. P. Wiederrecht, G. C. des Francs, A. S. Bisht, S. Jradi, R. Caputo, H. V. Demir, R. D. Schaller, J. Plain, A. Vial, X. W. Sun, and R. Bachelot, “Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength,” Nano Lett. 15(11), 7458–7466 (2015).
[Crossref]

Zhu, L.

Zhu, W.

W. Zhu, I. D. Rukhlenko, and M. Premarathe, “Graphene metamaterials for optical reflection modulation,” Appl. Phys. Lett. 102(24), 241914 (2013).
[Crossref]

Zhukovsky, S. V.

ACS Nano (1)

V. Caligiuri, L. Pezzi, A. Veltri, and A. De Luca, “Resonant Gain Singularities in 1D and 3D Metal/Dielectric Multilayered Nanostructures,” ACS Nano 11(1), 1012–1025 (2017).
[Crossref]

Adv. OptoElectron. (1)

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Adv. OptoElectron. 2012, 1–9 (2012).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
[Crossref]

X. Fang, M. L. Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching viacoherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

K. V. Sreekanth, A. De Luca, and G. Strangi, “Negative refraction in graphene-based hyperbolic metamaterials,” Appl. Phys. Lett. 103(2), 023107 (2013).
[Crossref]

W. Zhu, I. D. Rukhlenko, and M. Premarathe, “Graphene metamaterials for optical reflection modulation,” Appl. Phys. Lett. 102(24), 241914 (2013).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Nanophotonics (2)

P. Rufangura and C. Sabah, “Graphene-based wideband metamaterial absorber for solar cells application,” J. Nanophotonics 11(3), 036008 (2017).
[Crossref]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013).
[Crossref]

Laser Photonics Rev. (2)

I. Khromova, A. Andryieuski, and A. Lavrinenko, “Ultrasensitive terahertz/infrared waveguide modulators based on multilayer graphene metamaterialls,” Laser Photonics Rev. 8(6), 916–923 (2014).
[Crossref]

M. Y. Shalaginov, V. V. Voroboyov, J. Liu, M. Ferrera, A. V. Akimov, A. Lagutchev, A. N. Smolyaninov, V. V. Klimov, J. Irudyayaraj, A. V. Klidishev, A. Boltasseva, and V. M. Shalaev, “Enhancement of single–photon emission from nitrogen–vacancy enters with TiN/(Al,Sc)N hyperbolic metamaterial,” Laser Photonics Rev. 9(1), 120–127 (2015).
[Crossref]

Liq. Cryst. (2)

R. Kowerdziej, J. Parka, and J. Krupka, “Experimental study of thermally controlled metamaterial containing a liquid crystal layer at microwave frequencies,” Liq. Cryst. 38(6), 743–747 (2011).
[Crossref]

R. Kowerdziej, T. Stańczyk, and J. Parka, “Electromagnetic simulations of tunable terahertz metamaterial infiltrated with highly birefringent nematic liquid crystal,” Liq. Cryst. 42(4), 430–434 (2015).
[Crossref]

Nano Convergence (1)

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1(1), 14 (2014).
[Crossref]

Nano Lett. (2)

V. Caligiuri, M. Palei, G. Biffi, S. Artyukhin, and R. Krahne, “A Semi-Classical View on Epsilon-Near-Zero Resonant Tunneling Modes in Metal/Insulator/Metal Nanocavities,” Nano Lett. 19(5), 3151–3160 (2019).
[Crossref]

X. Zhou, J. Wenger, F. N. Viscomi, L. Le Cunff, J. Beal, S. Kochtcheev, X. Yang, G. P. Wiederrecht, G. C. des Francs, A. S. Bisht, S. Jradi, R. Caputo, H. V. Demir, R. D. Schaller, J. Plain, A. Vial, X. W. Sun, and R. Bachelot, “Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength,” Nano Lett. 15(11), 7458–7466 (2015).
[Crossref]

Nat. Commun. (1)

P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, and G. R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons,” Nat. Commun. 6(1), 8969 (2015).
[Crossref]

Nat. Mater. (1)

N. I. Zheludev and Y. X. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref]

Nat. Photonics (2)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene Plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Opt. Express (11)

V. Barna, R. Caputo, A. De Luca, N. Scaramuzza, G. Strangi, C. Versace, C. Umeton, R. Bartolino, and G. N. Price, “Distributed feedback micro-laser array: helixed liquid crystals embedded in holographically sculptured polymeric microcavities,” Opt. Express 14(7), 2695–2705 (2006).
[Crossref]

N. Papasimakis, Z. Luo, Z. X. Shen, F. De Angelis, E. Di Fabrizio, A. E. Nikolaenko, and N. I. Zheludev, “Graphene in a photonic metamaterial,” Opt. Express 18(8), 8353–8359 (2010).
[Crossref]

R. Kowerdziej, M. Olifierczuk, and J. Parka, “Thermally induced tunability of terahertz metamaterial by using a specially designed nematic liquid crystal mixture,” Opt. Express 26(3), 2443–2452 (2018).
[Crossref]

M. A. Othman, C. Guclu, and F. Capolino, “Graphene based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614–7632 (2013).
[Crossref]

S. V. Zhukovsky, T. Ozel, E. Mutlugun, N. Gaponik, A. Eychmuller, A. V. Lavrinenko, H. V. Demir, and S. V. Gaponenko, “Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites,” Opt. Express 22(15), 18290–18298 (2014).
[Crossref]

P. Segovia, G. Marino, A. V. Krasavin, N. Olivier, G. A. Wurtz, P. A. Belov, P. Ginzburg, and A. V. Zayats, “Hyperbolic metamaterial antenna for second-harmonic generation tomography,” Opt. Express 23(24), 30730–30738 (2015).
[Crossref]

B. Orazbayev, M. Beruete, and I. Khromova, “Tunable beam steering enable by graphene metamaterials,” Opt. Express 24(8), 8848–8861 (2016).
[Crossref]

B. Janaszek, A. Tyszka-Zawadzka, and P. Szczepański, “Tunable graphene-based hyperbolic metamaterial operating in SCLU telecom bands,” Opt. Express 24(21), 24129–24136 (2016).
[Crossref]

A. Tyszka-Zawadzka, B. Janaszek, and P. Szczepański, “Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands,” Opt. Express 25(7), 7263–7272 (2017).
[Crossref]

B. Janaszek, A. Tyszka-Zawadzka, and P. Szczepański, “Control of gain/absorption in tunable hyperbolic metamaterials,” Opt. Express 25(12), 13153–13162 (2017).
[Crossref]

X. Song, Z. Liu, Y. Xiang, and K. Aydin, “Biaxial hyperbolic metamaterials using anisotropic few-layer black phosphorus,” Opt. Express 26(5), 5469–5477 (2018).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (2)

Phys. B (1)

R. Ning, S. Liu, H. Zhang, B. Bian, and X. Kong, “Tunable absorption in grapheme-based hyperbolic metamaterials for mid-infrared range,” Phys. B 457, 144–148 (2015).
[Crossref]

Prog. Quantum Electron. (1)

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Sci. Rep. (6)

J. Linder and K. Halterman, “Graphene-based extremely wide-angle tunable metamaterial absorber,” Sci. Rep. 6(1), 31225 (2016).
[Crossref]

V. Caligiuri, R. Dhama, K. V. Sreekanth, G. Strangi, and A. De Luca, “Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies,” Sci. Rep. 6(1), 20002 (2016).
[Crossref]

Z. Geng, X. Zhang, Z. Fan, X. Lv, and H. Chen, “A Route to Terahertz Metamaterial Biosensor Integrated with Microfuluidics for Liver Cancer Biomarker Testing in Early Stage,” Sci. Rep. 7(1), 16378 (2017).
[Crossref]

X. Liu and D. Y. Lei, “Simultaneous excitation and emission enhancements in upconversion luminescence using plamonic double-resonant gold nanorods,” Sci. Rep. 5(1), 15235 (2015).
[Crossref]

Y. Zhang, T. Li, Q. Chen, H. zhang, J. F. O’Hara, E. Abele, A. J. taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5(1), 18463 (2016).
[Crossref]

K. V. Sreekanth, M. Elkabbash, Y. Alapan, A. R. Rashed, U. A. Gurkan, and G. Strangi, “A multiband perfect absorber based on hyperbolic metamaterials,” Sci. Rep. 6(1), 26272 (2016).
[Crossref]

Science (1)

A. Vakil and N. Engheta, “One-Atom-Thick IR Metamaterials and Transformation Optics Using Graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

Solid-State Electron. (1)

I. I. Smolyaninov and V. N. Smolyaninova, “Hyperbolic metamaterials: Novel physics and applications,” Solid-State Electron. 136, 102–112 (2017).
[Crossref]

Other (3)

W. Cai and V. M. Shalaev, Optical Metamaterials Fundamentals and Applications (Springer Series, 2010).

I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, Nonlinear, Tunable and Active Metamaterials (Springer Series in Materials Science, 2015).

E. D. Palik, Handbook of Optical Constant of Solids (Academic Press, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Scheme of modeled hyperbolic metamaterial.
Fig. 2.
Fig. 2. Reflectance spectra for different (a) numbers of graphene monolayers and (b) values of chemical potential.
Fig. 3.
Fig. 3. (a) Real part of the permittivity tensor components and (b) transmission-reflectance characteristics as a function of wavelength.
Fig. 4.
Fig. 4. Angular reflectance characteristics for 1MG (a) for the TE mode, and (b) for the TM mode, for 3MG (c) for the TE mode, and (d) for the TM mode, and for 6MG (e) for the TE mode, and (f) for the TM mode.
Fig. 5.
Fig. 5. Spatial reflectance distributions as a function of incident light (θ) vs. wavelength (λ), for 1MG (a) for the TE mode, and (b) for the TM mode, for 3MG (c) for the TE mode, and (d) for the TM mode, and for 6MG (e) for the TE mode, and (f) for the TM mode.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ε = t g ε g + t d ε d t g + t d ,
ε = ε g ε d ( t g + t d ) t g ε d + t d ε g .
ε g = 1 + i σ ( ω , Γ , μ c , T ) ω ε 0 t g ,
σ ( ω , Γ , μ c , T ) = σ i n t r a ( ω , Γ , μ c , T ) + σ i n t e r ( ω , Γ , μ c , T ) ,
σ i n t r a ( ω , Γ , μ c , T ) = i e 2 π 2 ( ω + i 2 Γ ) 0 ξ ( f d ( ξ ) ξ f d ( ξ ) ξ ) d ξ ,
σ i n t e r ( ω , Γ , μ c , T ) = i e 2 ( ω + i 2 Γ ) π 2 0 f d ( ξ ) f d ( ξ ) ( ω + i 2 Γ ) 2 4 ( ξ / ) 2 d ξ ,
f d ( ξ ) 1 exp ( ξ μ c k B T ) + 1 ,
| μ c | = v F π | a 0 ( V g V D ) | ,

Metrics