Abstract

A novel approach for fabricating liquid crystal (LC) lenses is presented. The approach involves the use of a photocurable prepolymer dispersed in a cell fabricated with vertically aligned substrates. A radial gradient UV irradiation intensity distribution is produced using a radial variable neutral density filter. Under UV irradiation, the prepolymer diffuses and is then polymerized on the substrate surfaces owing to vertical phase separation. After polymerization, the diameter of the self-assembled polymer gravel on the substrates has a radial gradient distribution, causing a radial gradient pretilt angle (RGPA) distribution on the substrates and producing LC lenses. By numerical simulation, RGPA LC lens has significantly lower supplied voltage than conventionally hole-patterned electrode (HPE) LC lens, and higher lens power. In the experiment, the fabricated RGPA LC lens with aperture size of 5 mm possesses a simple planar electrode structure, low operation voltage (< 4 V), small root mean square wavefront error (< 0.08 λ), and acceptable focusing quality. By the overdriving scheme, the switched-off time of the fabricated RGPA LC lens reaches 0.27 s. With the novel approach, low-voltage LC lenses with different optical aperture sizes can be easily fabricated.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Self-assembled polymer gravel array in prepolymer-doped nematic liquid crystals

Che Ju Hsu, Zhi Yu Cui, Chien-Chang Chiu, Fu-Li Hsiao, and Chi Yen Huang
Opt. Mater. Express 7(12) 4374-4385 (2017)

Controlling liquid crystal pretilt angle with photocurable prepolymer and vertically aligned substrate

Che-Ju Hsu, Bao-Long Chen, and Chi-Yen Huang
Opt. Express 24(2) 1463-1471 (2016)

Surface localized polymer aligned liquid crystal lens

Lu Lu, Vassili Sergan, Tony Van Heugten, Dwight Duston, Achintya Bhowmik, and Philip J. Bos
Opt. Express 21(6) 7133-7138 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [Crossref]
  2. J. F. Algorri, N. Bennis, J. Herman, P. Kula, V. Urruchi, and J. M. Sánchez-Pena, “Low aberration and fast switching microlenses based on a novel liquid crystal mixture,” Opt. Express 25(13), 14795–14808 (2017).
    [Crossref]
  3. Y.-H. Lin, Y.-J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
    [Crossref]
  4. J. Algorri, G. Love, and V. Urruchi, “Modal liquid crystal array of optical elements,” Opt. Express 21(21), 24809–24818 (2013).
    [Crossref]
  5. H. Dou, F. Chu, Y.-Q. Guo, L.-L. Tian, Q.-H. Wang, and Y.-B. Sun, “Large aperture liquid crystal lens array using a composited alignment layer,” Opt. Express 26(7), 9254–9262 (2018).
    [Crossref]
  6. T. Galstian, O. Sova, K. Asatryan, V. Presniakov, A. Zohrabyan, and M. Evensen, “Optical camera with liquid crystal autofocus lens,” Opt. Express 25(24), 29945–29964 (2017).
    [Crossref]
  7. T. Galstian, K. Asatryan, V. Presniakov, A. Zohrabyan, A. Tork, A. Bagramyan, S. Careau, M. Thiboutot, and M. Cotovanu, “High optical quality electrically variable liquid crystal lens using an additional floating electrode,” Opt. Lett. 41(14), 3265–3268 (2016).
    [Crossref]
  8. J. F. Algorri, V. U. del Pozo, J. M. Sánchez-Pena, and J. M. Otón, “An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display,” J. Disp. Technol. 10(9), 713–720 (2014).
    [Crossref]
  9. J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical liquid crystal microlens array with rotary optical power and tunable focal length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
    [Crossref]
  10. J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
    [Crossref]
  11. J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Liquid crystal spherical microlens array with high fill factor and optical power,” Opt. Express 25(2), 605–614 (2017).
    [Crossref]
  12. J. Algorri, V. Urruchi, N. Bennis, J. Sánchez-Pena, and J. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
    [Crossref]
  13. M. Loktev, G. Vdovin, N. Klimov, S. Kotova, and A. Naumov, “Modal wavefront correction with liquid crystals: different options,” in Proceedings of SPIE, (International Society for Optics and Photonics, 2005), 163–170.
  14. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
    [Crossref]
  15. H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
    [Crossref]
  16. M. Ye and S. Sato, “Optical Properties of Liquid Crystal Lens of Any Size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
    [Crossref]
  17. O. Sova, V. Reshetnyak, T. Galstian, and K. Asatryan, “Electrically variable liquid crystal lens based on the dielectric dividing principle,” J. Opt. Soc. Am. A 32(5), 803–808 (2015).
    [Crossref]
  18. Y.-Y. Kao, P. C. P. Chao, and C.-W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18(18), 18506–18518 (2010).
    [Crossref]
  19. V. G. Chigrinov, “Photoaligning and photopatterning—A new challenge in liquid crystal photonics,” Crystals 3(1), 149–162 (2013).
    [Crossref]
  20. T. A. Sergan, V. Sergan, R. Herrera, L. Lu, P. J. Bos, and E. V. Sergan, “In situ control of surface molecular order in liquid crystals using a localised polymer network and its application to electro-optical devices,” Liq. Cryst. 40(1), 72–82 (2013).
    [Crossref]
  21. V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett. 486(4-6), 123–125 (2010).
    [Crossref]
  22. L. Lu, T. Sergan, V. Sergan, and P. J. Bos, “Spatial and orientational control of liquid crystal alignment using a surface localized polymer layer,” Appl. Phys. Lett. 101(25), 251912 (2012).
    [Crossref]
  23. L. Weng, P.-C. Liao, C.-C. Lin, T.-L. Ting, W.-H. Hsu, J.-J. Su, and L.-C. Chien, “Anchoring energy enhancement and pretilt angle control of liquid crystal alignment on polymerized surfaces,” AIP Adv. 5(9), 097218 (2015).
    [Crossref]
  24. V. Sergan, T. A. Sergan, P. J. Bos, L. Lu, R. Herrera, and E. V. Sergan, “Control of liquid crystal alignment using surface-localized low-density polymer networks and its applications to electro-optical devices,” J. Mol. Liq. 267, 131–137 (2018).
    [Crossref]
  25. L. Lu, V. Sergan, T. Van Heugten, D. Duston, A. Bhowmik, and P. J. Bos, “Surface localized polymer aligned liquid crystal lens,” Opt. Express 21(6), 7133–7138 (2013).
    [Crossref]
  26. V. Bezruchenko, A. Muravsky, A. Murauski, A. Stankevich, and U. Mahilny, “Tunable liquid crystal lens based on pretilt angle gradient alignment,” Mol. Cryst. Liq. Cryst. 626(1), 222–228 (2016).
    [Crossref]
  27. V. Bezruchenko, U. Mahilny, A. Stankevich, A. A. Muravsky, and A. A. Murauski, “New photo-crosslinkable benzaldehyde polymers for creating liquid crystal lenses,” J. Appl. Spectrosc. 85(4), 704–709 (2018).
    [Crossref]
  28. M.-C. Tseng, F. Fan, C.-Y. Lee, A. Murauski, V. Chigrinov, and H.-S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys. 109(8), 083109 (2011).
    [Crossref]
  29. Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Optical Data Processing and Storage 3(1), 79–88 (2017).
    [Crossref]
  30. J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
    [Crossref]
  31. Y. Ma, A. M. Tam, X. Gan, L. Shi, A. Srivastava, V. Chigrinov, H. Kwok, and J. Zhao, “Fast switching ferroelectric liquid crystal Pancharatnam-Berry lens,” Opt. Express 27(7), 10079–10086 (2019).
    [Crossref]
  32. T. Zhan, Y.-H. Lee, G. Tan, J. Xiong, K. Yin, F. Gou, J. Zou, N. Zhang, D. Zhao, and J. Yang, “Pancharatnam–Berry optical elements for head-up and near-eye displays,” J. Opt. Soc. Am. B 36(5), D52–D65 (2019).
    [Crossref]
  33. S. Moon, C.-K. Lee, S.-W. Nam, C. Jang, G.-Y. Lee, W. Seo, G. Sung, H.-S. Lee, and B. Lee, “Augmented reality near-eye display using Pancharatnam-Berry phase lenses,” Sci. Rep. 9(1), 1–10 (2019).
    [Crossref]
  34. Y. Zhou, Y. Yin, Y. Yuan, T. Lin, H. Huang, L. Yao, X. Wang, A. M. Tam, F. Fan, and S. Wen, “Liquid crystal Pancharatnam-Berry phase lens with spatially separated focuses,” Liq. Cryst. 46(7), 995–1000 (2019).
    [Crossref]
  35. C.-J. Hsu, B.-L. Chen, and C.-Y. Huang, “Controlling liquid crystal pretilt angle with photocurable prepolymer and vertically aligned substrate,” Opt. Express 24(2), 1463–1471 (2016).
    [Crossref]
  36. C. J. Hsu, Z. Y. Cui, C.-C. Chiu, F.-L. Hsiao, and C. Y. Huang, “Self-assembled polymer gravel array in prepolymer-doped nematic liquid crystals,” Opt. Mater. Express 7(12), 4374–4385 (2017).
    [Crossref]
  37. P. Yeh and C. Gu, Optics of liquid crystal displays (John Wiley & Sons, 2009), Vol. 67.
  38. C.-J. Hsu, J.-J. Jhang, and C.-Y. Huang, “Large aperture liquid crystal lens with an imbedded floating ring electrode,” Opt. Express 24(15), 16722–16731 (2016).
    [Crossref]
  39. P. C. Chao, Y. Kao, and C. Hsu, “A new negative liquid crystal lens with multiple ring electrodes in unequal widths,” IEEE Photonics J. 4(1), 250–266 (2012).
    [Crossref]
  40. H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
    [Crossref]
  41. Y.-Y. Kao and P. C.-P. Chao, “A New Dual-Frequency Liquid Crystal Lens with Ring-and-Pie Electrodes and a Driving Scheme to Prevent Disclination Lines and Improve Recovery Time,” Sensors 11(5), 5402–5415 (2011).
    [Crossref]
  42. T. Galstian, K. Asatryan, V. Presniakov, and A. Zohrabyan, “Electrically variable liquid crystal lenses for ophthalmic distance accommodation,” Opt. Express 27(13), 18803–18817 (2019).
    [Crossref]
  43. S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36(20), 4772–4778 (1997).
    [Crossref]
  44. M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6(2), 139–143 (1999).
    [Crossref]
  45. H. Milton, P. Morgan, J. Clamp, and H. Gleeson, “Electronic liquid crystal lenses for the correction of presbyopia,” Opt. Express 22(7), 8035–8040 (2014).
    [Crossref]
  46. N. Hasan, A. Banerjee, H. Kim, and C. H. Mastrangelo, “Tunable-focus lens for adaptive eyeglasses,” Opt. Express 25(2), 1221–1233 (2017).
    [Crossref]

2019 (5)

2018 (3)

V. Sergan, T. A. Sergan, P. J. Bos, L. Lu, R. Herrera, and E. V. Sergan, “Control of liquid crystal alignment using surface-localized low-density polymer networks and its applications to electro-optical devices,” J. Mol. Liq. 267, 131–137 (2018).
[Crossref]

V. Bezruchenko, U. Mahilny, A. Stankevich, A. A. Muravsky, and A. A. Murauski, “New photo-crosslinkable benzaldehyde polymers for creating liquid crystal lenses,” J. Appl. Spectrosc. 85(4), 704–709 (2018).
[Crossref]

H. Dou, F. Chu, Y.-Q. Guo, L.-L. Tian, Q.-H. Wang, and Y.-B. Sun, “Large aperture liquid crystal lens array using a composited alignment layer,” Opt. Express 26(7), 9254–9262 (2018).
[Crossref]

2017 (7)

2016 (5)

C.-J. Hsu, J.-J. Jhang, and C.-Y. Huang, “Large aperture liquid crystal lens with an imbedded floating ring electrode,” Opt. Express 24(15), 16722–16731 (2016).
[Crossref]

C.-J. Hsu, B.-L. Chen, and C.-Y. Huang, “Controlling liquid crystal pretilt angle with photocurable prepolymer and vertically aligned substrate,” Opt. Express 24(2), 1463–1471 (2016).
[Crossref]

V. Bezruchenko, A. Muravsky, A. Murauski, A. Stankevich, and U. Mahilny, “Tunable liquid crystal lens based on pretilt angle gradient alignment,” Mol. Cryst. Liq. Cryst. 626(1), 222–228 (2016).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

T. Galstian, K. Asatryan, V. Presniakov, A. Zohrabyan, A. Tork, A. Bagramyan, S. Careau, M. Thiboutot, and M. Cotovanu, “High optical quality electrically variable liquid crystal lens using an additional floating electrode,” Opt. Lett. 41(14), 3265–3268 (2016).
[Crossref]

2015 (5)

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical liquid crystal microlens array with rotary optical power and tunable focal length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

J. Algorri, V. Urruchi, N. Bennis, J. Sánchez-Pena, and J. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
[Crossref]

O. Sova, V. Reshetnyak, T. Galstian, and K. Asatryan, “Electrically variable liquid crystal lens based on the dielectric dividing principle,” J. Opt. Soc. Am. A 32(5), 803–808 (2015).
[Crossref]

L. Weng, P.-C. Liao, C.-C. Lin, T.-L. Ting, W.-H. Hsu, J.-J. Su, and L.-C. Chien, “Anchoring energy enhancement and pretilt angle control of liquid crystal alignment on polymerized surfaces,” AIP Adv. 5(9), 097218 (2015).
[Crossref]

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
[Crossref]

2014 (2)

H. Milton, P. Morgan, J. Clamp, and H. Gleeson, “Electronic liquid crystal lenses for the correction of presbyopia,” Opt. Express 22(7), 8035–8040 (2014).
[Crossref]

J. F. Algorri, V. U. del Pozo, J. M. Sánchez-Pena, and J. M. Otón, “An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display,” J. Disp. Technol. 10(9), 713–720 (2014).
[Crossref]

2013 (4)

J. Algorri, G. Love, and V. Urruchi, “Modal liquid crystal array of optical elements,” Opt. Express 21(21), 24809–24818 (2013).
[Crossref]

V. G. Chigrinov, “Photoaligning and photopatterning—A new challenge in liquid crystal photonics,” Crystals 3(1), 149–162 (2013).
[Crossref]

T. A. Sergan, V. Sergan, R. Herrera, L. Lu, P. J. Bos, and E. V. Sergan, “In situ control of surface molecular order in liquid crystals using a localised polymer network and its application to electro-optical devices,” Liq. Cryst. 40(1), 72–82 (2013).
[Crossref]

L. Lu, V. Sergan, T. Van Heugten, D. Duston, A. Bhowmik, and P. J. Bos, “Surface localized polymer aligned liquid crystal lens,” Opt. Express 21(6), 7133–7138 (2013).
[Crossref]

2012 (2)

L. Lu, T. Sergan, V. Sergan, and P. J. Bos, “Spatial and orientational control of liquid crystal alignment using a surface localized polymer layer,” Appl. Phys. Lett. 101(25), 251912 (2012).
[Crossref]

P. C. Chao, Y. Kao, and C. Hsu, “A new negative liquid crystal lens with multiple ring electrodes in unequal widths,” IEEE Photonics J. 4(1), 250–266 (2012).
[Crossref]

2011 (2)

M.-C. Tseng, F. Fan, C.-Y. Lee, A. Murauski, V. Chigrinov, and H.-S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys. 109(8), 083109 (2011).
[Crossref]

Y.-Y. Kao and P. C.-P. Chao, “A New Dual-Frequency Liquid Crystal Lens with Ring-and-Pie Electrodes and a Driving Scheme to Prevent Disclination Lines and Improve Recovery Time,” Sensors 11(5), 5402–5415 (2011).
[Crossref]

2010 (2)

V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett. 486(4-6), 123–125 (2010).
[Crossref]

Y.-Y. Kao, P. C. P. Chao, and C.-W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18(18), 18506–18518 (2010).
[Crossref]

2007 (1)

2003 (1)

H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]

2002 (2)

M. Ye and S. Sato, “Optical Properties of Liquid Crystal Lens of Any Size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[Crossref]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

1999 (1)

M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6(2), 139–143 (1999).
[Crossref]

1997 (1)

1979 (1)

S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Algorri, J.

Algorri, J. F.

J. F. Algorri, N. Bennis, J. Herman, P. Kula, V. Urruchi, and J. M. Sánchez-Pena, “Low aberration and fast switching microlenses based on a novel liquid crystal mixture,” Opt. Express 25(13), 14795–14808 (2017).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Liquid crystal spherical microlens array with high fill factor and optical power,” Opt. Express 25(2), 605–614 (2017).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical liquid crystal microlens array with rotary optical power and tunable focal length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

J. F. Algorri, V. U. del Pozo, J. M. Sánchez-Pena, and J. M. Otón, “An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display,” J. Disp. Technol. 10(9), 713–720 (2014).
[Crossref]

Asatryan, K.

Bagramyan, A.

Banerjee, A.

Bennis, N.

J. F. Algorri, N. Bennis, J. Herman, P. Kula, V. Urruchi, and J. M. Sánchez-Pena, “Low aberration and fast switching microlenses based on a novel liquid crystal mixture,” Opt. Express 25(13), 14795–14808 (2017).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Liquid crystal spherical microlens array with high fill factor and optical power,” Opt. Express 25(2), 605–614 (2017).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical liquid crystal microlens array with rotary optical power and tunable focal length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

J. Algorri, V. Urruchi, N. Bennis, J. Sánchez-Pena, and J. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
[Crossref]

Bezruchenko, V.

V. Bezruchenko, U. Mahilny, A. Stankevich, A. A. Muravsky, and A. A. Murauski, “New photo-crosslinkable benzaldehyde polymers for creating liquid crystal lenses,” J. Appl. Spectrosc. 85(4), 704–709 (2018).
[Crossref]

V. Bezruchenko, A. Muravsky, A. Murauski, A. Stankevich, and U. Mahilny, “Tunable liquid crystal lens based on pretilt angle gradient alignment,” Mol. Cryst. Liq. Cryst. 626(1), 222–228 (2016).
[Crossref]

Bhowmik, A.

Bos, P. J.

V. Sergan, T. A. Sergan, P. J. Bos, L. Lu, R. Herrera, and E. V. Sergan, “Control of liquid crystal alignment using surface-localized low-density polymer networks and its applications to electro-optical devices,” J. Mol. Liq. 267, 131–137 (2018).
[Crossref]

T. A. Sergan, V. Sergan, R. Herrera, L. Lu, P. J. Bos, and E. V. Sergan, “In situ control of surface molecular order in liquid crystals using a localised polymer network and its application to electro-optical devices,” Liq. Cryst. 40(1), 72–82 (2013).
[Crossref]

L. Lu, V. Sergan, T. Van Heugten, D. Duston, A. Bhowmik, and P. J. Bos, “Surface localized polymer aligned liquid crystal lens,” Opt. Express 21(6), 7133–7138 (2013).
[Crossref]

L. Lu, T. Sergan, V. Sergan, and P. J. Bos, “Spatial and orientational control of liquid crystal alignment using a surface localized polymer layer,” Appl. Phys. Lett. 101(25), 251912 (2012).
[Crossref]

V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett. 486(4-6), 123–125 (2010).
[Crossref]

Careau, S.

Chao, P. C.

P. C. Chao, Y. Kao, and C. Hsu, “A new negative liquid crystal lens with multiple ring electrodes in unequal widths,” IEEE Photonics J. 4(1), 250–266 (2012).
[Crossref]

Chao, P. C. P.

Chao, P. C.-P.

Y.-Y. Kao and P. C.-P. Chao, “A New Dual-Frequency Liquid Crystal Lens with Ring-and-Pie Electrodes and a Driving Scheme to Prevent Disclination Lines and Improve Recovery Time,” Sensors 11(5), 5402–5415 (2011).
[Crossref]

Chen, B.-L.

Chien, L.-C.

L. Weng, P.-C. Liao, C.-C. Lin, T.-L. Ting, W.-H. Hsu, J.-J. Su, and L.-C. Chien, “Anchoring energy enhancement and pretilt angle control of liquid crystal alignment on polymerized surfaces,” AIP Adv. 5(9), 097218 (2015).
[Crossref]

Chigrinov, V.

Y. Ma, A. M. Tam, X. Gan, L. Shi, A. Srivastava, V. Chigrinov, H. Kwok, and J. Zhao, “Fast switching ferroelectric liquid crystal Pancharatnam-Berry lens,” Opt. Express 27(7), 10079–10086 (2019).
[Crossref]

M.-C. Tseng, F. Fan, C.-Y. Lee, A. Murauski, V. Chigrinov, and H.-S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys. 109(8), 083109 (2011).
[Crossref]

Chigrinov, V. G.

V. G. Chigrinov, “Photoaligning and photopatterning—A new challenge in liquid crystal photonics,” Crystals 3(1), 149–162 (2013).
[Crossref]

Chiu, C.-C.

Chu, F.

Clamp, J.

Cotovanu, M.

Cui, Z. Y.

del Pozo, V. U.

J. F. Algorri, V. U. del Pozo, J. M. Sánchez-Pena, and J. M. Otón, “An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display,” J. Disp. Technol. 10(9), 713–720 (2014).
[Crossref]

Dou, H.

Duston, D.

Escuti, M. J.

Evensen, M.

Fan, F.

Y. Zhou, Y. Yin, Y. Yuan, T. Lin, H. Huang, L. Yao, X. Wang, A. M. Tam, F. Fan, and S. Wen, “Liquid crystal Pancharatnam-Berry phase lens with spatially separated focuses,” Liq. Cryst. 46(7), 995–1000 (2019).
[Crossref]

M.-C. Tseng, F. Fan, C.-Y. Lee, A. Murauski, V. Chigrinov, and H.-S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys. 109(8), 083109 (2011).
[Crossref]

Fox, D. W.

Galstian, T.

Gan, X.

Gauza, S.

Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Optical Data Processing and Storage 3(1), 79–88 (2017).
[Crossref]

Gleeson, H.

Gou, F.

T. Zhan, Y.-H. Lee, G. Tan, J. Xiong, K. Yin, F. Gou, J. Zou, N. Zhang, D. Zhao, and J. Yang, “Pancharatnam–Berry optical elements for head-up and near-eye displays,” J. Opt. Soc. Am. B 36(5), D52–D65 (2019).
[Crossref]

Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Optical Data Processing and Storage 3(1), 79–88 (2017).
[Crossref]

Gu, C.

P. Yeh and C. Gu, Optics of liquid crystal displays (John Wiley & Sons, 2009), Vol. 67.

Guo, Y.-Q.

Hasan, N.

Herman, J.

Herrera, R.

V. Sergan, T. A. Sergan, P. J. Bos, L. Lu, R. Herrera, and E. V. Sergan, “Control of liquid crystal alignment using surface-localized low-density polymer networks and its applications to electro-optical devices,” J. Mol. Liq. 267, 131–137 (2018).
[Crossref]

T. A. Sergan, V. Sergan, R. Herrera, L. Lu, P. J. Bos, and E. V. Sergan, “In situ control of surface molecular order in liquid crystals using a localised polymer network and its application to electro-optical devices,” Liq. Cryst. 40(1), 72–82 (2013).
[Crossref]

Honma, M.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6(2), 139–143 (1999).
[Crossref]

Hsiao, F.-L.

Hsu, C.

P. C. Chao, Y. Kao, and C. Hsu, “A new negative liquid crystal lens with multiple ring electrodes in unequal widths,” IEEE Photonics J. 4(1), 250–266 (2012).
[Crossref]

Hsu, C. J.

Hsu, C.-J.

Hsu, W.-H.

L. Weng, P.-C. Liao, C.-C. Lin, T.-L. Ting, W.-H. Hsu, J.-J. Su, and L.-C. Chien, “Anchoring energy enhancement and pretilt angle control of liquid crystal alignment on polymerized surfaces,” AIP Adv. 5(9), 097218 (2015).
[Crossref]

Hsueh, C.-W.

Huang, C. Y.

Huang, C.-Y.

Huang, H.

Y. Zhou, Y. Yin, Y. Yuan, T. Lin, H. Huang, L. Yao, X. Wang, A. M. Tam, F. Fan, and S. Wen, “Liquid crystal Pancharatnam-Berry phase lens with spatially separated focuses,” Liq. Cryst. 46(7), 995–1000 (2019).
[Crossref]

Ito, H.

Jang, C.

S. Moon, C.-K. Lee, S.-W. Nam, C. Jang, G.-Y. Lee, W. Seo, G. Sung, H.-S. Lee, and B. Lee, “Augmented reality near-eye display using Pancharatnam-Berry phase lenses,” Sci. Rep. 9(1), 1–10 (2019).
[Crossref]

Jhang, J.-J.

Kao, Y.

P. C. Chao, Y. Kao, and C. Hsu, “A new negative liquid crystal lens with multiple ring electrodes in unequal widths,” IEEE Photonics J. 4(1), 250–266 (2012).
[Crossref]

Kao, Y.-Y.

Y.-Y. Kao and P. C.-P. Chao, “A New Dual-Frequency Liquid Crystal Lens with Ring-and-Pie Electrodes and a Driving Scheme to Prevent Disclination Lines and Improve Recovery Time,” Sensors 11(5), 5402–5415 (2011).
[Crossref]

Y.-Y. Kao, P. C. P. Chao, and C.-W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18(18), 18506–18518 (2010).
[Crossref]

Kim, H.

Kim, J.

Klimov, N.

M. Loktev, G. Vdovin, N. Klimov, S. Kotova, and A. Naumov, “Modal wavefront correction with liquid crystals: different options,” in Proceedings of SPIE, (International Society for Optics and Photonics, 2005), 163–170.

Kotova, S.

M. Loktev, G. Vdovin, N. Klimov, S. Kotova, and A. Naumov, “Modal wavefront correction with liquid crystals: different options,” in Proceedings of SPIE, (International Society for Optics and Photonics, 2005), 163–170.

Kudenov, M. W.

Kula, P.

Kwok, H.

Kwok, H.-S.

M.-C. Tseng, F. Fan, C.-Y. Lee, A. Murauski, V. Chigrinov, and H.-S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys. 109(8), 083109 (2011).
[Crossref]

Lee, B.

S. Moon, C.-K. Lee, S.-W. Nam, C. Jang, G.-Y. Lee, W. Seo, G. Sung, H.-S. Lee, and B. Lee, “Augmented reality near-eye display using Pancharatnam-Berry phase lenses,” Sci. Rep. 9(1), 1–10 (2019).
[Crossref]

Lee, C.-K.

S. Moon, C.-K. Lee, S.-W. Nam, C. Jang, G.-Y. Lee, W. Seo, G. Sung, H.-S. Lee, and B. Lee, “Augmented reality near-eye display using Pancharatnam-Berry phase lenses,” Sci. Rep. 9(1), 1–10 (2019).
[Crossref]

Lee, C.-Y.

M.-C. Tseng, F. Fan, C.-Y. Lee, A. Murauski, V. Chigrinov, and H.-S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys. 109(8), 083109 (2011).
[Crossref]

Lee, G.-Y.

S. Moon, C.-K. Lee, S.-W. Nam, C. Jang, G.-Y. Lee, W. Seo, G. Sung, H.-S. Lee, and B. Lee, “Augmented reality near-eye display using Pancharatnam-Berry phase lenses,” Sci. Rep. 9(1), 1–10 (2019).
[Crossref]

Lee, H.-S.

S. Moon, C.-K. Lee, S.-W. Nam, C. Jang, G.-Y. Lee, W. Seo, G. Sung, H.-S. Lee, and B. Lee, “Augmented reality near-eye display using Pancharatnam-Berry phase lenses,” Sci. Rep. 9(1), 1–10 (2019).
[Crossref]

Lee, Y.-H.

T. Zhan, Y.-H. Lee, G. Tan, J. Xiong, K. Yin, F. Gou, J. Zou, N. Zhang, D. Zhao, and J. Yang, “Pancharatnam–Berry optical elements for head-up and near-eye displays,” J. Opt. Soc. Am. B 36(5), D52–D65 (2019).
[Crossref]

Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Optical Data Processing and Storage 3(1), 79–88 (2017).
[Crossref]

Li, Y.

Liao, P.-C.

L. Weng, P.-C. Liao, C.-C. Lin, T.-L. Ting, W.-H. Hsu, J.-J. Su, and L.-C. Chien, “Anchoring energy enhancement and pretilt angle control of liquid crystal alignment on polymerized surfaces,” AIP Adv. 5(9), 097218 (2015).
[Crossref]

Lin, C.-C.

L. Weng, P.-C. Liao, C.-C. Lin, T.-L. Ting, W.-H. Hsu, J.-J. Su, and L.-C. Chien, “Anchoring energy enhancement and pretilt angle control of liquid crystal alignment on polymerized surfaces,” AIP Adv. 5(9), 097218 (2015).
[Crossref]

Lin, T.

Y. Zhou, Y. Yin, Y. Yuan, T. Lin, H. Huang, L. Yao, X. Wang, A. M. Tam, F. Fan, and S. Wen, “Liquid crystal Pancharatnam-Berry phase lens with spatially separated focuses,” Liq. Cryst. 46(7), 995–1000 (2019).
[Crossref]

Lin, Y.-H.

Y.-H. Lin, Y.-J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
[Crossref]

Liu, G.

Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Optical Data Processing and Storage 3(1), 79–88 (2017).
[Crossref]

Loktev, M.

M. Loktev, G. Vdovin, N. Klimov, S. Kotova, and A. Naumov, “Modal wavefront correction with liquid crystals: different options,” in Proceedings of SPIE, (International Society for Optics and Photonics, 2005), 163–170.

Love, G.

Lu, L.

V. Sergan, T. A. Sergan, P. J. Bos, L. Lu, R. Herrera, and E. V. Sergan, “Control of liquid crystal alignment using surface-localized low-density polymer networks and its applications to electro-optical devices,” J. Mol. Liq. 267, 131–137 (2018).
[Crossref]

L. Lu, V. Sergan, T. Van Heugten, D. Duston, A. Bhowmik, and P. J. Bos, “Surface localized polymer aligned liquid crystal lens,” Opt. Express 21(6), 7133–7138 (2013).
[Crossref]

T. A. Sergan, V. Sergan, R. Herrera, L. Lu, P. J. Bos, and E. V. Sergan, “In situ control of surface molecular order in liquid crystals using a localised polymer network and its application to electro-optical devices,” Liq. Cryst. 40(1), 72–82 (2013).
[Crossref]

L. Lu, T. Sergan, V. Sergan, and P. J. Bos, “Spatial and orientational control of liquid crystal alignment using a surface localized polymer layer,” Appl. Phys. Lett. 101(25), 251912 (2012).
[Crossref]

Ma, Y.

Mahilny, U.

V. Bezruchenko, U. Mahilny, A. Stankevich, A. A. Muravsky, and A. A. Murauski, “New photo-crosslinkable benzaldehyde polymers for creating liquid crystal lenses,” J. Appl. Spectrosc. 85(4), 704–709 (2018).
[Crossref]

V. Bezruchenko, A. Muravsky, A. Murauski, A. Stankevich, and U. Mahilny, “Tunable liquid crystal lens based on pretilt angle gradient alignment,” Mol. Cryst. Liq. Cryst. 626(1), 222–228 (2016).
[Crossref]

Mastrangelo, C. H.

Masuda, S.

Milton, H.

Miskiewicz, M. N.

Moon, S.

S. Moon, C.-K. Lee, S.-W. Nam, C. Jang, G.-Y. Lee, W. Seo, G. Sung, H.-S. Lee, and B. Lee, “Augmented reality near-eye display using Pancharatnam-Berry phase lenses,” Sci. Rep. 9(1), 1–10 (2019).
[Crossref]

Morawiak, P.

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Liquid crystal spherical microlens array with high fill factor and optical power,” Opt. Express 25(2), 605–614 (2017).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

Morgan, P.

Murauski, A.

V. Bezruchenko, A. Muravsky, A. Murauski, A. Stankevich, and U. Mahilny, “Tunable liquid crystal lens based on pretilt angle gradient alignment,” Mol. Cryst. Liq. Cryst. 626(1), 222–228 (2016).
[Crossref]

M.-C. Tseng, F. Fan, C.-Y. Lee, A. Murauski, V. Chigrinov, and H.-S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys. 109(8), 083109 (2011).
[Crossref]

Murauski, A. A.

V. Bezruchenko, U. Mahilny, A. Stankevich, A. A. Muravsky, and A. A. Murauski, “New photo-crosslinkable benzaldehyde polymers for creating liquid crystal lenses,” J. Appl. Spectrosc. 85(4), 704–709 (2018).
[Crossref]

Muravsky, A.

V. Bezruchenko, A. Muravsky, A. Murauski, A. Stankevich, and U. Mahilny, “Tunable liquid crystal lens based on pretilt angle gradient alignment,” Mol. Cryst. Liq. Cryst. 626(1), 222–228 (2016).
[Crossref]

Muravsky, A. A.

V. Bezruchenko, U. Mahilny, A. Stankevich, A. A. Muravsky, and A. A. Murauski, “New photo-crosslinkable benzaldehyde polymers for creating liquid crystal lenses,” J. Appl. Spectrosc. 85(4), 704–709 (2018).
[Crossref]

Nam, S.-W.

S. Moon, C.-K. Lee, S.-W. Nam, C. Jang, G.-Y. Lee, W. Seo, G. Sung, H.-S. Lee, and B. Lee, “Augmented reality near-eye display using Pancharatnam-Berry phase lenses,” Sci. Rep. 9(1), 1–10 (2019).
[Crossref]

Naumov, A.

M. Loktev, G. Vdovin, N. Klimov, S. Kotova, and A. Naumov, “Modal wavefront correction with liquid crystals: different options,” in Proceedings of SPIE, (International Society for Optics and Photonics, 2005), 163–170.

Nose, T.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6(2), 139–143 (1999).
[Crossref]

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36(20), 4772–4778 (1997).
[Crossref]

Oh, C.

Otón, J.

Otón, J. M.

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Liquid crystal spherical microlens array with high fill factor and optical power,” Opt. Express 25(2), 605–614 (2017).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical liquid crystal microlens array with rotary optical power and tunable focal length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

J. F. Algorri, V. U. del Pozo, J. M. Sánchez-Pena, and J. M. Otón, “An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display,” J. Disp. Technol. 10(9), 713–720 (2014).
[Crossref]

Peng, F.

Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Optical Data Processing and Storage 3(1), 79–88 (2017).
[Crossref]

Presniakov, V.

Ren, H.

H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref]

H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]

Reshetnyak, V.

Sánchez-Pena, J.

Sánchez-Pena, J. M.

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Liquid crystal spherical microlens array with high fill factor and optical power,” Opt. Express 25(2), 605–614 (2017).
[Crossref]

J. F. Algorri, N. Bennis, J. Herman, P. Kula, V. Urruchi, and J. M. Sánchez-Pena, “Low aberration and fast switching microlenses based on a novel liquid crystal mixture,” Opt. Express 25(13), 14795–14808 (2017).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical liquid crystal microlens array with rotary optical power and tunable focal length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

J. F. Algorri, V. U. del Pozo, J. M. Sánchez-Pena, and J. M. Otón, “An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display,” J. Disp. Technol. 10(9), 713–720 (2014).
[Crossref]

Sato, S.

M. Ye and S. Sato, “Optical Properties of Liquid Crystal Lens of Any Size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[Crossref]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6(2), 139–143 (1999).
[Crossref]

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36(20), 4772–4778 (1997).
[Crossref]

S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Seo, W.

S. Moon, C.-K. Lee, S.-W. Nam, C. Jang, G.-Y. Lee, W. Seo, G. Sung, H.-S. Lee, and B. Lee, “Augmented reality near-eye display using Pancharatnam-Berry phase lenses,” Sci. Rep. 9(1), 1–10 (2019).
[Crossref]

Sergan, E. V.

V. Sergan, T. A. Sergan, P. J. Bos, L. Lu, R. Herrera, and E. V. Sergan, “Control of liquid crystal alignment using surface-localized low-density polymer networks and its applications to electro-optical devices,” J. Mol. Liq. 267, 131–137 (2018).
[Crossref]

T. A. Sergan, V. Sergan, R. Herrera, L. Lu, P. J. Bos, and E. V. Sergan, “In situ control of surface molecular order in liquid crystals using a localised polymer network and its application to electro-optical devices,” Liq. Cryst. 40(1), 72–82 (2013).
[Crossref]

Sergan, T.

L. Lu, T. Sergan, V. Sergan, and P. J. Bos, “Spatial and orientational control of liquid crystal alignment using a surface localized polymer layer,” Appl. Phys. Lett. 101(25), 251912 (2012).
[Crossref]

Sergan, T. A.

V. Sergan, T. A. Sergan, P. J. Bos, L. Lu, R. Herrera, and E. V. Sergan, “Control of liquid crystal alignment using surface-localized low-density polymer networks and its applications to electro-optical devices,” J. Mol. Liq. 267, 131–137 (2018).
[Crossref]

T. A. Sergan, V. Sergan, R. Herrera, L. Lu, P. J. Bos, and E. V. Sergan, “In situ control of surface molecular order in liquid crystals using a localised polymer network and its application to electro-optical devices,” Liq. Cryst. 40(1), 72–82 (2013).
[Crossref]

V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett. 486(4-6), 123–125 (2010).
[Crossref]

Sergan, V.

V. Sergan, T. A. Sergan, P. J. Bos, L. Lu, R. Herrera, and E. V. Sergan, “Control of liquid crystal alignment using surface-localized low-density polymer networks and its applications to electro-optical devices,” J. Mol. Liq. 267, 131–137 (2018).
[Crossref]

L. Lu, V. Sergan, T. Van Heugten, D. Duston, A. Bhowmik, and P. J. Bos, “Surface localized polymer aligned liquid crystal lens,” Opt. Express 21(6), 7133–7138 (2013).
[Crossref]

T. A. Sergan, V. Sergan, R. Herrera, L. Lu, P. J. Bos, and E. V. Sergan, “In situ control of surface molecular order in liquid crystals using a localised polymer network and its application to electro-optical devices,” Liq. Cryst. 40(1), 72–82 (2013).
[Crossref]

L. Lu, T. Sergan, V. Sergan, and P. J. Bos, “Spatial and orientational control of liquid crystal alignment using a surface localized polymer layer,” Appl. Phys. Lett. 101(25), 251912 (2012).
[Crossref]

Sergan, V. V.

V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett. 486(4-6), 123–125 (2010).
[Crossref]

Shi, L.

Sova, O.

Srivastava, A.

Stankevich, A.

V. Bezruchenko, U. Mahilny, A. Stankevich, A. A. Muravsky, and A. A. Murauski, “New photo-crosslinkable benzaldehyde polymers for creating liquid crystal lenses,” J. Appl. Spectrosc. 85(4), 704–709 (2018).
[Crossref]

V. Bezruchenko, A. Muravsky, A. Murauski, A. Stankevich, and U. Mahilny, “Tunable liquid crystal lens based on pretilt angle gradient alignment,” Mol. Cryst. Liq. Cryst. 626(1), 222–228 (2016).
[Crossref]

Su, J.-J.

L. Weng, P.-C. Liao, C.-C. Lin, T.-L. Ting, W.-H. Hsu, J.-J. Su, and L.-C. Chien, “Anchoring energy enhancement and pretilt angle control of liquid crystal alignment on polymerized surfaces,” AIP Adv. 5(9), 097218 (2015).
[Crossref]

Sun, Y.-B.

Sung, G.

S. Moon, C.-K. Lee, S.-W. Nam, C. Jang, G.-Y. Lee, W. Seo, G. Sung, H.-S. Lee, and B. Lee, “Augmented reality near-eye display using Pancharatnam-Berry phase lenses,” Sci. Rep. 9(1), 1–10 (2019).
[Crossref]

Tabiryan, N. V.

Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Optical Data Processing and Storage 3(1), 79–88 (2017).
[Crossref]

Takahashi, S.

Tam, A. M.

Y. Zhou, Y. Yin, Y. Yuan, T. Lin, H. Huang, L. Yao, X. Wang, A. M. Tam, F. Fan, and S. Wen, “Liquid crystal Pancharatnam-Berry phase lens with spatially separated focuses,” Liq. Cryst. 46(7), 995–1000 (2019).
[Crossref]

Y. Ma, A. M. Tam, X. Gan, L. Shi, A. Srivastava, V. Chigrinov, H. Kwok, and J. Zhao, “Fast switching ferroelectric liquid crystal Pancharatnam-Berry lens,” Opt. Express 27(7), 10079–10086 (2019).
[Crossref]

Tan, G.

T. Zhan, Y.-H. Lee, G. Tan, J. Xiong, K. Yin, F. Gou, J. Zou, N. Zhang, D. Zhao, and J. Yang, “Pancharatnam–Berry optical elements for head-up and near-eye displays,” J. Opt. Soc. Am. B 36(5), D52–D65 (2019).
[Crossref]

Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Optical Data Processing and Storage 3(1), 79–88 (2017).
[Crossref]

Thiboutot, M.

Tian, L.-L.

Ting, T.-L.

L. Weng, P.-C. Liao, C.-C. Lin, T.-L. Ting, W.-H. Hsu, J.-J. Su, and L.-C. Chien, “Anchoring energy enhancement and pretilt angle control of liquid crystal alignment on polymerized surfaces,” AIP Adv. 5(9), 097218 (2015).
[Crossref]

Tork, A.

Tseng, M.-C.

M.-C. Tseng, F. Fan, C.-Y. Lee, A. Murauski, V. Chigrinov, and H.-S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys. 109(8), 083109 (2011).
[Crossref]

Urruchi, V.

Van Heugten, T.

Vdovin, G.

M. Loktev, G. Vdovin, N. Klimov, S. Kotova, and A. Naumov, “Modal wavefront correction with liquid crystals: different options,” in Proceedings of SPIE, (International Society for Optics and Photonics, 2005), 163–170.

Wang, B.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

Wang, Q.-H.

Wang, X.

Y. Zhou, Y. Yin, Y. Yuan, T. Lin, H. Huang, L. Yao, X. Wang, A. M. Tam, F. Fan, and S. Wen, “Liquid crystal Pancharatnam-Berry phase lens with spatially separated focuses,” Liq. Cryst. 46(7), 995–1000 (2019).
[Crossref]

Wang, Y.-J.

Y.-H. Lin, Y.-J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
[Crossref]

Wen, S.

Y. Zhou, Y. Yin, Y. Yuan, T. Lin, H. Huang, L. Yao, X. Wang, A. M. Tam, F. Fan, and S. Wen, “Liquid crystal Pancharatnam-Berry phase lens with spatially separated focuses,” Liq. Cryst. 46(7), 995–1000 (2019).
[Crossref]

Weng, L.

L. Weng, P.-C. Liao, C.-C. Lin, T.-L. Ting, W.-H. Hsu, J.-J. Su, and L.-C. Chien, “Anchoring energy enhancement and pretilt angle control of liquid crystal alignment on polymerized surfaces,” AIP Adv. 5(9), 097218 (2015).
[Crossref]

Weng, Y.

Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Optical Data Processing and Storage 3(1), 79–88 (2017).
[Crossref]

Wu, B.

Wu, S.-T.

Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Optical Data Processing and Storage 3(1), 79–88 (2017).
[Crossref]

H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref]

H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]

Xiong, J.

Yang, J.

Yao, L.

Y. Zhou, Y. Yin, Y. Yuan, T. Lin, H. Huang, L. Yao, X. Wang, A. M. Tam, F. Fan, and S. Wen, “Liquid crystal Pancharatnam-Berry phase lens with spatially separated focuses,” Liq. Cryst. 46(7), 995–1000 (2019).
[Crossref]

Ye, M.

M. Ye and S. Sato, “Optical Properties of Liquid Crystal Lens of Any Size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[Crossref]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

Yeh, P.

P. Yeh and C. Gu, Optics of liquid crystal displays (John Wiley & Sons, 2009), Vol. 67.

Yin, K.

Yin, Y.

Y. Zhou, Y. Yin, Y. Yuan, T. Lin, H. Huang, L. Yao, X. Wang, A. M. Tam, F. Fan, and S. Wen, “Liquid crystal Pancharatnam-Berry phase lens with spatially separated focuses,” Liq. Cryst. 46(7), 995–1000 (2019).
[Crossref]

Yuan, Y.

Y. Zhou, Y. Yin, Y. Yuan, T. Lin, H. Huang, L. Yao, X. Wang, A. M. Tam, F. Fan, and S. Wen, “Liquid crystal Pancharatnam-Berry phase lens with spatially separated focuses,” Liq. Cryst. 46(7), 995–1000 (2019).
[Crossref]

Zhan, T.

T. Zhan, Y.-H. Lee, G. Tan, J. Xiong, K. Yin, F. Gou, J. Zou, N. Zhang, D. Zhao, and J. Yang, “Pancharatnam–Berry optical elements for head-up and near-eye displays,” J. Opt. Soc. Am. B 36(5), D52–D65 (2019).
[Crossref]

Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Optical Data Processing and Storage 3(1), 79–88 (2017).
[Crossref]

Zhang, N.

Zhao, D.

Zhao, J.

Zhou, Y.

Y. Zhou, Y. Yin, Y. Yuan, T. Lin, H. Huang, L. Yao, X. Wang, A. M. Tam, F. Fan, and S. Wen, “Liquid crystal Pancharatnam-Berry phase lens with spatially separated focuses,” Liq. Cryst. 46(7), 995–1000 (2019).
[Crossref]

Zohrabyan, A.

Zou, J.

AIP Adv. (1)

L. Weng, P.-C. Liao, C.-C. Lin, T.-L. Ting, W.-H. Hsu, J.-J. Su, and L.-C. Chien, “Anchoring energy enhancement and pretilt angle control of liquid crystal alignment on polymerized surfaces,” AIP Adv. 5(9), 097218 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

L. Lu, T. Sergan, V. Sergan, and P. J. Bos, “Spatial and orientational control of liquid crystal alignment using a surface localized polymer layer,” Appl. Phys. Lett. 101(25), 251912 (2012).
[Crossref]

H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82(1), 22–24 (2003).
[Crossref]

Chem. Phys. Lett. (1)

V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett. 486(4-6), 123–125 (2010).
[Crossref]

Crystals (1)

V. G. Chigrinov, “Photoaligning and photopatterning—A new challenge in liquid crystal photonics,” Crystals 3(1), 149–162 (2013).
[Crossref]

IEEE Electron Device Lett. (1)

J. F. Algorri, V. Urruchi, N. Bennis, J. M. Sánchez-Pena, and J. M. Otón, “Cylindrical liquid crystal microlens array with rotary optical power and tunable focal length,” IEEE Electron Device Lett. 36(6), 582–584 (2015).
[Crossref]

IEEE Photonics J. (1)

P. C. Chao, Y. Kao, and C. Hsu, “A new negative liquid crystal lens with multiple ring electrodes in unequal widths,” IEEE Photonics J. 4(1), 250–266 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Integral imaging capture system with tunable field of view based on liquid crystal microlenses,” IEEE Photonics Technol. Lett. 28(17), 1854–1857 (2016).
[Crossref]

J. Appl. Phys. (1)

M.-C. Tseng, F. Fan, C.-Y. Lee, A. Murauski, V. Chigrinov, and H.-S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys. 109(8), 083109 (2011).
[Crossref]

J. Appl. Spectrosc. (1)

V. Bezruchenko, U. Mahilny, A. Stankevich, A. A. Muravsky, and A. A. Murauski, “New photo-crosslinkable benzaldehyde polymers for creating liquid crystal lenses,” J. Appl. Spectrosc. 85(4), 704–709 (2018).
[Crossref]

J. Disp. Technol. (1)

J. F. Algorri, V. U. del Pozo, J. M. Sánchez-Pena, and J. M. Otón, “An autostereoscopic device for mobile applications based on a liquid crystal microlens array and an OLED display,” J. Disp. Technol. 10(9), 713–720 (2014).
[Crossref]

J. Mol. Liq. (1)

V. Sergan, T. A. Sergan, P. J. Bos, L. Lu, R. Herrera, and E. V. Sergan, “Control of liquid crystal alignment using surface-localized low-density polymer networks and its applications to electro-optical devices,” J. Mol. Liq. 267, 131–137 (2018).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (3)

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

M. Ye and S. Sato, “Optical Properties of Liquid Crystal Lens of Any Size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[Crossref]

S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Liq. Cryst. (2)

T. A. Sergan, V. Sergan, R. Herrera, L. Lu, P. J. Bos, and E. V. Sergan, “In situ control of surface molecular order in liquid crystals using a localised polymer network and its application to electro-optical devices,” Liq. Cryst. 40(1), 72–82 (2013).
[Crossref]

Y. Zhou, Y. Yin, Y. Yuan, T. Lin, H. Huang, L. Yao, X. Wang, A. M. Tam, F. Fan, and S. Wen, “Liquid crystal Pancharatnam-Berry phase lens with spatially separated focuses,” Liq. Cryst. 46(7), 995–1000 (2019).
[Crossref]

Liq. Cryst. Rev. (1)

Y.-H. Lin, Y.-J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

V. Bezruchenko, A. Muravsky, A. Murauski, A. Stankevich, and U. Mahilny, “Tunable liquid crystal lens based on pretilt angle gradient alignment,” Mol. Cryst. Liq. Cryst. 626(1), 222–228 (2016).
[Crossref]

Opt. Express (15)

H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref]

Y.-Y. Kao, P. C. P. Chao, and C.-W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18(18), 18506–18518 (2010).
[Crossref]

L. Lu, V. Sergan, T. Van Heugten, D. Duston, A. Bhowmik, and P. J. Bos, “Surface localized polymer aligned liquid crystal lens,” Opt. Express 21(6), 7133–7138 (2013).
[Crossref]

J. Algorri, G. Love, and V. Urruchi, “Modal liquid crystal array of optical elements,” Opt. Express 21(21), 24809–24818 (2013).
[Crossref]

H. Milton, P. Morgan, J. Clamp, and H. Gleeson, “Electronic liquid crystal lenses for the correction of presbyopia,” Opt. Express 22(7), 8035–8040 (2014).
[Crossref]

J. Algorri, V. Urruchi, N. Bennis, J. Sánchez-Pena, and J. Otón, “Tunable liquid crystal cylindrical micro-optical array for aberration compensation,” Opt. Express 23(11), 13899–13915 (2015).
[Crossref]

C.-J. Hsu, J.-J. Jhang, and C.-Y. Huang, “Large aperture liquid crystal lens with an imbedded floating ring electrode,” Opt. Express 24(15), 16722–16731 (2016).
[Crossref]

J. F. Algorri, V. Urruchi, N. Bennis, P. Morawiak, J. M. Sánchez-Pena, and J. M. Otón, “Liquid crystal spherical microlens array with high fill factor and optical power,” Opt. Express 25(2), 605–614 (2017).
[Crossref]

N. Hasan, A. Banerjee, H. Kim, and C. H. Mastrangelo, “Tunable-focus lens for adaptive eyeglasses,” Opt. Express 25(2), 1221–1233 (2017).
[Crossref]

J. F. Algorri, N. Bennis, J. Herman, P. Kula, V. Urruchi, and J. M. Sánchez-Pena, “Low aberration and fast switching microlenses based on a novel liquid crystal mixture,” Opt. Express 25(13), 14795–14808 (2017).
[Crossref]

T. Galstian, O. Sova, K. Asatryan, V. Presniakov, A. Zohrabyan, and M. Evensen, “Optical camera with liquid crystal autofocus lens,” Opt. Express 25(24), 29945–29964 (2017).
[Crossref]

Y. Ma, A. M. Tam, X. Gan, L. Shi, A. Srivastava, V. Chigrinov, H. Kwok, and J. Zhao, “Fast switching ferroelectric liquid crystal Pancharatnam-Berry lens,” Opt. Express 27(7), 10079–10086 (2019).
[Crossref]

T. Galstian, K. Asatryan, V. Presniakov, and A. Zohrabyan, “Electrically variable liquid crystal lenses for ophthalmic distance accommodation,” Opt. Express 27(13), 18803–18817 (2019).
[Crossref]

C.-J. Hsu, B.-L. Chen, and C.-Y. Huang, “Controlling liquid crystal pretilt angle with photocurable prepolymer and vertically aligned substrate,” Opt. Express 24(2), 1463–1471 (2016).
[Crossref]

H. Dou, F. Chu, Y.-Q. Guo, L.-L. Tian, Q.-H. Wang, and Y.-B. Sun, “Large aperture liquid crystal lens array using a composited alignment layer,” Opt. Express 26(7), 9254–9262 (2018).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Opt. Rev. (1)

M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6(2), 139–143 (1999).
[Crossref]

Optica (1)

Optical Data Processing and Storage (1)

Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Optical Data Processing and Storage 3(1), 79–88 (2017).
[Crossref]

Sci. Rep. (1)

S. Moon, C.-K. Lee, S.-W. Nam, C. Jang, G.-Y. Lee, W. Seo, G. Sung, H.-S. Lee, and B. Lee, “Augmented reality near-eye display using Pancharatnam-Berry phase lenses,” Sci. Rep. 9(1), 1–10 (2019).
[Crossref]

Sensors (1)

Y.-Y. Kao and P. C.-P. Chao, “A New Dual-Frequency Liquid Crystal Lens with Ring-and-Pie Electrodes and a Driving Scheme to Prevent Disclination Lines and Improve Recovery Time,” Sensors 11(5), 5402–5415 (2011).
[Crossref]

Other (2)

P. Yeh and C. Gu, Optics of liquid crystal displays (John Wiley & Sons, 2009), Vol. 67.

M. Loktev, G. Vdovin, N. Klimov, S. Kotova, and A. Naumov, “Modal wavefront correction with liquid crystals: different options,” in Proceedings of SPIE, (International Society for Optics and Photonics, 2005), 163–170.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Structure scheme of (a) conventional HPE and (b) RGPA LC lenses. Inset indicates the pretilt angle distribution of RGPA LC lens defined in the calculation; calculated voltage drops in the LC layer for the (c) conventional HPE LC lens at 200 V and (d) RGPA LC lens at 1.5 V; calculated interference fringes of the (e) conventional HPE LC lens at 200 V and the (f) RGPA LC lens at 1.5 V.
Fig. 2.
Fig. 2. Schematic diagram (a) before and (b) after UV irradiation through an RVND filter.
Fig. 3.
Fig. 3. SEM images at points (a) A and (b) B of the substrate.
Fig. 4.
Fig. 4. Measured interference fringes of the fabricated RGPA LC lens at (a) 0, (b) 1, (c) 2, (d) 3, and (e) 4 V; calculated interference fringes of the fabricated RGPA LC lens at (f) 0, (g) 1, (h) 2, (i) 3, and (j) 4 V.
Fig. 5.
Fig. 5. T–V curves in the OA center and OA periphery of the fabricated RGPA LC lens.
Fig. 6.
Fig. 6. Focal lengths as a function of supplied voltage.
Fig. 7.
Fig. 7. (a) Phase retardations and (b) RMS errors of the fabricated RGPA LC lens at various supplied voltages.
Fig. 8.
Fig. 8. (a) Transmission spectra of the fabricated RGPA LC lens cell and conventional homogeneous LC cell. Imaging performances (b) without RGPA LC lens, and with the fabricated RGPA LC lens at (c) 0 V and (d)1 V.

Tables (1)

Tables Icon

Table 1. Dynamic response of the RGPA LC lens.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

f = 1 2 k 11 ( n ^ ) 2 + 1 2 k 22 ( n ^ × n ^ ) 2 + 1 2 k 33 ( n ^ × × n ^ ) 2 1 2 ε 0 Δ ε ( n ^ E ) 2 ,
n ^ = ( c o s θ c o s ϕ , c o s θ s i n ϕ , s i n θ ) ,
γ 1 θ t { f θ d d x [ f θ x ] d d y [ f θ y ] d d z [ f θ z ] } ,
γ 1 ϕ t { f ϕ d d x [ f ϕ x ] d d y [ f ϕ y ] d d z [ f ϕ z ] } ,
D = 0 ,
T =  1 2 s i n 2 ( Γ 2 ) ,
Γ  =  2 π ( n e f f n o ) d λ ,
f = r 2 2 N λ ,
N A r f ,
d F W H M = 0.52 λ N A ,

Metrics