Abstract

Two long-period fiber gratings (LPFGs) used to separately suppress the stimulated-Raman-scattering (SRS) in the seed and amplifier of kW-level continuous-wave (CW) MOPA fiber laser are developed in this paper. A process that combines constant-low-temperature and dynamic-high-temperature annealing was employed to reduce the thermal slopes of 10/130 µm (diameter of core/cladding fiber) and 14/250 LPFGs, used in the seed and amplifier respectively, from 0.48 °C/W to 0.04 °C/W and from 0.53 °C/W to 0.038 °C/W. We also proposed a reduced-sensitivity packaging method to effectively reduce the influence of axial-stress, bending, and environmental temperature on LPFGs. Further, we established a kW-level CW MOPA system to test SRS suppression performance of the LPFGs. Experimental results demonstrated that the SRS suppression ratios of the 10/130 and 14/250 LPFGs exceed 97.0% and 99.6%, respectively.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effective suppression of stimulated Raman scattering in half 10  kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings

Meng Wang, Zefeng Wang, Le Liu, Qihao Hu, Hu Xiao, and Xiaojun Xu
Photon. Res. 7(2) 167-171 (2019)

Fabrication of chirped and tilted fiber Bragg gratings and suppression of stimulated Raman scattering in fiber amplifiers

Meng Wang, Yujing Zhang, Zefeng Wang, Junjie Sun, Jianqiu Cao, Jinyong Leng, Xijia Gu, and Xiaojun Xu
Opt. Express 25(2) 1529-1534 (2017)

Suppression of stimulated Raman scattering in a high-power fiber amplifier by inserting long transmission fibers in a seed laser

Tenglong Li, Weiwei Ke, Yi Ma, Yinhong Sun, and Qingsong Gao
J. Opt. Soc. Am. B 36(6) 1457-1465 (2019)

References

  • View by:
  • |
  • |
  • |

  1. I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
    [Crossref]
  2. P. Kah, J. Lu, J. Martikainen, and R. Suoranta, “Remote laser welding with high power fiber laser,” Engineering 05(09), 700–706 (2013).
    [Crossref]
  3. N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 µm,” J. Endourol. 19(1), 25–31 (2005).
    [Crossref]
  4. K. D. Polder and S. Bruce, “Treatment of melasma using a novel 1927-nm fractional thulium fiber laser: a pilot study,” Dermatol. Surg. 38(2 Part 1), 199–206 (2012).
    [Crossref]
  5. Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800–2050nm window,” Opt. Express 21(22), 26450–26455 (2013).
    [Crossref]
  6. W. Shi, Q. Fang, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Fiber laser and their applications [Invited],” Appl. Opt. 53(28), 6554–6568 (2014).
    [Crossref]
  7. W. Liu, P. F. Ma, H. B. Lv, J. M. Xu, P. Zhou, and Z. F. Jiang, “General analysis of SRS-limited high-power fiber lasers and design strategy,” Opt. Express 24(23), 26715–26721 (2016).
    [Crossref]
  8. M. Wang, Y. J. Zhang, Z. F. Wang, J. J. Sun, J. Q. Cao, J. Y. Leng, X. J. Gu, and X. J. Xu, “Fabrication of chirped and tilted fiber Bragg gratings and suppression of stimulated Raman scattering in fiber amplifiers,” Opt. Express 25(2), 1529–1534 (2017).
    [Crossref]
  9. M. Wang, Z. X. Li, L. Liu, Z. F. Wang, X. J. Gu, and X. J. Xu, “Fabrication of chirped and tilted fiber Bragg gratings on large-mode-area doubled-cladding fibers by phase-mask technique,” Appl. Opt. 57(16), 4376–4380 (2018).
    [Crossref]
  10. M. Wang, Z. F. Wang, L. Liu, Q. H. Hu, H. Xiao, and X. J. Xu, “Effective suppression of stimulated Raman scattering in half 10 kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings,” Photonics Res. 7(2), 167–171 (2019).
    [Crossref]
  11. M. Wang, L. Liu, Z. F. Wang, X. M. Xi, and X. J. Xu, “Mitigation of stimulated Raman scattering in kilowatt-level diode-pumped fiber amplifiers with chirped and tilted fiber Bragg gratings,” High Power Laser Sci. Eng. 7, e18 (2019).
    [Crossref]
  12. K. R. Jiao, J. Shu, H. Shen, Z. W. Guan, F. Y. Yang, and R. H. Zhu, “Fabrication of kW-level chirped and tilted fiber Bragg gratings and filtering of stimulated Raman scattering in high-power CW oscillators,” High Power Laser Sci. Eng. 7, e31 (2019).
    [Crossref]
  13. O. Antipov, M. Kuznetsov, D. Alekseev, and V. Tyrtyshnyy, “Influence of a backward reflection on low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers,” Opt. Express 24(13), 14871–14879 (2016).
    [Crossref]
  14. F. Jansen, D. Nodop, C. Jauregui, J. Limpert, and A. Tünnermann, “Modeling the inhibition of stimulated Raman scattering in passive and active fibers by lumped spectral filters in high power fiber laser systems,” Opt. Express 17(18), 16255–16265 (2009).
    [Crossref]
  15. D. Nodop, C. Jauregui, F. Jansen, J. Limpert, and A. Tünnermann, “Suppression of stimulated Raman scattering employing long period gratings in double-clad fiber amplifiers,” Opt. Lett. 35(17), 2982–2984 (2010).
    [Crossref]
  16. D. D. Yang, P. Q. Zhang, J. H. Zeng, X. S. Wang, B. A. Song, and S. X. Dai, “SRI-immune highly sensitive temperature sensor of long-period fiber gratings in Ge-Sb-Se chalcogenide fibers,” J. Lightwave Technol. 35(18), 3974–3979 (2017).
    [Crossref]
  17. D. Barrera, J. Madrigal, and S. Sales, “Long period gratings in multicore optical fibers for directional curvature sensor implementation,” J. Lightwave Technol. 36(4), 1063–1068 (2018).
    [Crossref]
  18. Y. P. Wang, L. M. Xiao, D. N. Wang, and W. Jin, “Highly sensitive long-period fiber grating strain sensor with low temperature sensitivity,” Opt. Lett. 31(23), 3414–3416 (2006).
    [Crossref]
  19. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  20. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A 14(8), 1760–1773 (1997).
    [Crossref]
  21. X. F. Yang, X. Guo, C. Lu, and C. T. Hiang, “Apodized long-period grating with low insertion loss,” Microw. Opt. Techn. Let. 35(4), 283–286 (2002).
    [Crossref]
  22. F. Y. M. Chan and K. S. Chiang, “Analysis of apodized phase-shifted long-period fiber gratings,” Opt. Commun. 244(1-6), 233–243 (2005).
    [Crossref]
  23. L. B. Fu, G. Tan, W. J. Xu, H. L. An, X. M. Cui, X. Z. Lin, and H. D. Liu, “Ultraviolet-initiated reactions of H2 with germanosilicate fibers and H2 concentration dependence of the Bragg wavelength of a fiber grating,” Opt. Lett. 25(8), 527–529 (2000).
    [Crossref]

2019 (3)

M. Wang, Z. F. Wang, L. Liu, Q. H. Hu, H. Xiao, and X. J. Xu, “Effective suppression of stimulated Raman scattering in half 10 kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings,” Photonics Res. 7(2), 167–171 (2019).
[Crossref]

M. Wang, L. Liu, Z. F. Wang, X. M. Xi, and X. J. Xu, “Mitigation of stimulated Raman scattering in kilowatt-level diode-pumped fiber amplifiers with chirped and tilted fiber Bragg gratings,” High Power Laser Sci. Eng. 7, e18 (2019).
[Crossref]

K. R. Jiao, J. Shu, H. Shen, Z. W. Guan, F. Y. Yang, and R. H. Zhu, “Fabrication of kW-level chirped and tilted fiber Bragg gratings and filtering of stimulated Raman scattering in high-power CW oscillators,” High Power Laser Sci. Eng. 7, e31 (2019).
[Crossref]

2018 (2)

2017 (2)

2016 (2)

2014 (1)

2013 (2)

2012 (2)

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

K. D. Polder and S. Bruce, “Treatment of melasma using a novel 1927-nm fractional thulium fiber laser: a pilot study,” Dermatol. Surg. 38(2 Part 1), 199–206 (2012).
[Crossref]

2010 (1)

2009 (1)

2006 (1)

2005 (2)

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 µm,” J. Endourol. 19(1), 25–31 (2005).
[Crossref]

F. Y. M. Chan and K. S. Chiang, “Analysis of apodized phase-shifted long-period fiber gratings,” Opt. Commun. 244(1-6), 233–243 (2005).
[Crossref]

2002 (1)

X. F. Yang, X. Guo, C. Lu, and C. T. Hiang, “Apodized long-period grating with low insertion loss,” Microw. Opt. Techn. Let. 35(4), 283–286 (2002).
[Crossref]

2000 (1)

1997 (2)

Alam, S. U.

Alekseev, D.

An, H. L.

Antipov, O.

Barrera, D.

Bruce, S.

K. D. Polder and S. Bruce, “Treatment of melasma using a novel 1927-nm fractional thulium fiber laser: a pilot study,” Dermatol. Surg. 38(2 Part 1), 199–206 (2012).
[Crossref]

Cao, J. Q.

Chan, F. Y. M.

F. Y. M. Chan and K. S. Chiang, “Analysis of apodized phase-shifted long-period fiber gratings,” Opt. Commun. 244(1-6), 233–243 (2005).
[Crossref]

Chiang, K. S.

F. Y. M. Chan and K. S. Chiang, “Analysis of apodized phase-shifted long-period fiber gratings,” Opt. Commun. 244(1-6), 233–243 (2005).
[Crossref]

Cui, X. M.

Dai, S. X.

Daniel, J. M. O.

Erdogan, T.

Fang, Q.

Fried, N. M.

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 µm,” J. Endourol. 19(1), 25–31 (2005).
[Crossref]

Fu, L. B.

Gu, X. J.

Guan, Z. W.

K. R. Jiao, J. Shu, H. Shen, Z. W. Guan, F. Y. Yang, and R. H. Zhu, “Fabrication of kW-level chirped and tilted fiber Bragg gratings and filtering of stimulated Raman scattering in high-power CW oscillators,” High Power Laser Sci. Eng. 7, e31 (2019).
[Crossref]

Guo, X.

X. F. Yang, X. Guo, C. Lu, and C. T. Hiang, “Apodized long-period grating with low insertion loss,” Microw. Opt. Techn. Let. 35(4), 283–286 (2002).
[Crossref]

Heidt, A. M.

Hiang, C. T.

X. F. Yang, X. Guo, C. Lu, and C. T. Hiang, “Apodized long-period grating with low insertion loss,” Microw. Opt. Techn. Let. 35(4), 283–286 (2002).
[Crossref]

Hu, Q. H.

M. Wang, Z. F. Wang, L. Liu, Q. H. Hu, H. Xiao, and X. J. Xu, “Effective suppression of stimulated Raman scattering in half 10 kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings,” Photonics Res. 7(2), 167–171 (2019).
[Crossref]

Jansen, F.

Jauregui, C.

Jiang, Z. F.

Jiao, K. R.

K. R. Jiao, J. Shu, H. Shen, Z. W. Guan, F. Y. Yang, and R. H. Zhu, “Fabrication of kW-level chirped and tilted fiber Bragg gratings and filtering of stimulated Raman scattering in high-power CW oscillators,” High Power Laser Sci. Eng. 7, e31 (2019).
[Crossref]

Jin, W.

Jung, Y.

Kadwani, P.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Kah, P.

P. Kah, J. Lu, J. Martikainen, and R. Suoranta, “Remote laser welding with high power fiber laser,” Engineering 05(09), 700–706 (2013).
[Crossref]

Kuznetsov, M.

Leng, J. Y.

Li, Z.

Li, Z. X.

Limpert, J.

Lin, X. Z.

Liu, H. D.

Liu, L.

M. Wang, Z. F. Wang, L. Liu, Q. H. Hu, H. Xiao, and X. J. Xu, “Effective suppression of stimulated Raman scattering in half 10 kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings,” Photonics Res. 7(2), 167–171 (2019).
[Crossref]

M. Wang, L. Liu, Z. F. Wang, X. M. Xi, and X. J. Xu, “Mitigation of stimulated Raman scattering in kilowatt-level diode-pumped fiber amplifiers with chirped and tilted fiber Bragg gratings,” High Power Laser Sci. Eng. 7, e18 (2019).
[Crossref]

M. Wang, Z. X. Li, L. Liu, Z. F. Wang, X. J. Gu, and X. J. Xu, “Fabrication of chirped and tilted fiber Bragg gratings on large-mode-area doubled-cladding fibers by phase-mask technique,” Appl. Opt. 57(16), 4376–4380 (2018).
[Crossref]

Liu, W.

Lu, C.

X. F. Yang, X. Guo, C. Lu, and C. T. Hiang, “Apodized long-period grating with low insertion loss,” Microw. Opt. Techn. Let. 35(4), 283–286 (2002).
[Crossref]

Lu, J.

P. Kah, J. Lu, J. Martikainen, and R. Suoranta, “Remote laser welding with high power fiber laser,” Engineering 05(09), 700–706 (2013).
[Crossref]

Lv, H. B.

Ma, P. F.

Madrigal, J.

Martikainen, J.

P. Kah, J. Lu, J. Martikainen, and R. Suoranta, “Remote laser welding with high power fiber laser,” Engineering 05(09), 700–706 (2013).
[Crossref]

Mingareev, I.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Murray, K. E.

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 µm,” J. Endourol. 19(1), 25–31 (2005).
[Crossref]

Nodop, D.

Norwood, R. A.

Olowinsky, A.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Peyghambarian, N.

Polder, K. D.

K. D. Polder and S. Bruce, “Treatment of melasma using a novel 1927-nm fractional thulium fiber laser: a pilot study,” Dermatol. Surg. 38(2 Part 1), 199–206 (2012).
[Crossref]

Richardson, D. J.

Richardson, M.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Sales, S.

Shah, L.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Shen, H.

K. R. Jiao, J. Shu, H. Shen, Z. W. Guan, F. Y. Yang, and R. H. Zhu, “Fabrication of kW-level chirped and tilted fiber Bragg gratings and filtering of stimulated Raman scattering in high-power CW oscillators,” High Power Laser Sci. Eng. 7, e31 (2019).
[Crossref]

Shi, W.

Shu, J.

K. R. Jiao, J. Shu, H. Shen, Z. W. Guan, F. Y. Yang, and R. H. Zhu, “Fabrication of kW-level chirped and tilted fiber Bragg gratings and filtering of stimulated Raman scattering in high-power CW oscillators,” High Power Laser Sci. Eng. 7, e31 (2019).
[Crossref]

Simakov, N.

Song, B. A.

Sun, J. J.

Suoranta, R.

P. Kah, J. Lu, J. Martikainen, and R. Suoranta, “Remote laser welding with high power fiber laser,” Engineering 05(09), 700–706 (2013).
[Crossref]

Tan, G.

Tünnermann, A.

Tyrtyshnyy, V.

Wang, D. N.

Wang, M.

M. Wang, Z. F. Wang, L. Liu, Q. H. Hu, H. Xiao, and X. J. Xu, “Effective suppression of stimulated Raman scattering in half 10 kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings,” Photonics Res. 7(2), 167–171 (2019).
[Crossref]

M. Wang, L. Liu, Z. F. Wang, X. M. Xi, and X. J. Xu, “Mitigation of stimulated Raman scattering in kilowatt-level diode-pumped fiber amplifiers with chirped and tilted fiber Bragg gratings,” High Power Laser Sci. Eng. 7, e18 (2019).
[Crossref]

M. Wang, Z. X. Li, L. Liu, Z. F. Wang, X. J. Gu, and X. J. Xu, “Fabrication of chirped and tilted fiber Bragg gratings on large-mode-area doubled-cladding fibers by phase-mask technique,” Appl. Opt. 57(16), 4376–4380 (2018).
[Crossref]

M. Wang, Y. J. Zhang, Z. F. Wang, J. J. Sun, J. Q. Cao, J. Y. Leng, X. J. Gu, and X. J. Xu, “Fabrication of chirped and tilted fiber Bragg gratings and suppression of stimulated Raman scattering in fiber amplifiers,” Opt. Express 25(2), 1529–1534 (2017).
[Crossref]

Wang, X. S.

Wang, Y. P.

Wang, Z. F.

M. Wang, Z. F. Wang, L. Liu, Q. H. Hu, H. Xiao, and X. J. Xu, “Effective suppression of stimulated Raman scattering in half 10 kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings,” Photonics Res. 7(2), 167–171 (2019).
[Crossref]

M. Wang, L. Liu, Z. F. Wang, X. M. Xi, and X. J. Xu, “Mitigation of stimulated Raman scattering in kilowatt-level diode-pumped fiber amplifiers with chirped and tilted fiber Bragg gratings,” High Power Laser Sci. Eng. 7, e18 (2019).
[Crossref]

M. Wang, Z. X. Li, L. Liu, Z. F. Wang, X. J. Gu, and X. J. Xu, “Fabrication of chirped and tilted fiber Bragg gratings on large-mode-area doubled-cladding fibers by phase-mask technique,” Appl. Opt. 57(16), 4376–4380 (2018).
[Crossref]

M. Wang, Y. J. Zhang, Z. F. Wang, J. J. Sun, J. Q. Cao, J. Y. Leng, X. J. Gu, and X. J. Xu, “Fabrication of chirped and tilted fiber Bragg gratings and suppression of stimulated Raman scattering in fiber amplifiers,” Opt. Express 25(2), 1529–1534 (2017).
[Crossref]

Weirauch, F.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Xi, X. M.

M. Wang, L. Liu, Z. F. Wang, X. M. Xi, and X. J. Xu, “Mitigation of stimulated Raman scattering in kilowatt-level diode-pumped fiber amplifiers with chirped and tilted fiber Bragg gratings,” High Power Laser Sci. Eng. 7, e18 (2019).
[Crossref]

Xiao, H.

M. Wang, Z. F. Wang, L. Liu, Q. H. Hu, H. Xiao, and X. J. Xu, “Effective suppression of stimulated Raman scattering in half 10 kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings,” Photonics Res. 7(2), 167–171 (2019).
[Crossref]

Xiao, L. M.

Xu, J. M.

Xu, W. J.

Xu, X. J.

M. Wang, Z. F. Wang, L. Liu, Q. H. Hu, H. Xiao, and X. J. Xu, “Effective suppression of stimulated Raman scattering in half 10 kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings,” Photonics Res. 7(2), 167–171 (2019).
[Crossref]

M. Wang, L. Liu, Z. F. Wang, X. M. Xi, and X. J. Xu, “Mitigation of stimulated Raman scattering in kilowatt-level diode-pumped fiber amplifiers with chirped and tilted fiber Bragg gratings,” High Power Laser Sci. Eng. 7, e18 (2019).
[Crossref]

M. Wang, Z. X. Li, L. Liu, Z. F. Wang, X. J. Gu, and X. J. Xu, “Fabrication of chirped and tilted fiber Bragg gratings on large-mode-area doubled-cladding fibers by phase-mask technique,” Appl. Opt. 57(16), 4376–4380 (2018).
[Crossref]

M. Wang, Y. J. Zhang, Z. F. Wang, J. J. Sun, J. Q. Cao, J. Y. Leng, X. J. Gu, and X. J. Xu, “Fabrication of chirped and tilted fiber Bragg gratings and suppression of stimulated Raman scattering in fiber amplifiers,” Opt. Express 25(2), 1529–1534 (2017).
[Crossref]

Yang, D. D.

Yang, F. Y.

K. R. Jiao, J. Shu, H. Shen, Z. W. Guan, F. Y. Yang, and R. H. Zhu, “Fabrication of kW-level chirped and tilted fiber Bragg gratings and filtering of stimulated Raman scattering in high-power CW oscillators,” High Power Laser Sci. Eng. 7, e31 (2019).
[Crossref]

Yang, X. F.

X. F. Yang, X. Guo, C. Lu, and C. T. Hiang, “Apodized long-period grating with low insertion loss,” Microw. Opt. Techn. Let. 35(4), 283–286 (2002).
[Crossref]

Zeng, J. H.

Zhang, P. Q.

Zhang, Y. J.

Zhou, P.

Zhu, R. H.

K. R. Jiao, J. Shu, H. Shen, Z. W. Guan, F. Y. Yang, and R. H. Zhu, “Fabrication of kW-level chirped and tilted fiber Bragg gratings and filtering of stimulated Raman scattering in high-power CW oscillators,” High Power Laser Sci. Eng. 7, e31 (2019).
[Crossref]

Zhu, X. S.

Appl. Opt. (2)

Dermatol. Surg. (1)

K. D. Polder and S. Bruce, “Treatment of melasma using a novel 1927-nm fractional thulium fiber laser: a pilot study,” Dermatol. Surg. 38(2 Part 1), 199–206 (2012).
[Crossref]

Engineering (1)

P. Kah, J. Lu, J. Martikainen, and R. Suoranta, “Remote laser welding with high power fiber laser,” Engineering 05(09), 700–706 (2013).
[Crossref]

High Power Laser Sci. Eng. (2)

M. Wang, L. Liu, Z. F. Wang, X. M. Xi, and X. J. Xu, “Mitigation of stimulated Raman scattering in kilowatt-level diode-pumped fiber amplifiers with chirped and tilted fiber Bragg gratings,” High Power Laser Sci. Eng. 7, e18 (2019).
[Crossref]

K. R. Jiao, J. Shu, H. Shen, Z. W. Guan, F. Y. Yang, and R. H. Zhu, “Fabrication of kW-level chirped and tilted fiber Bragg gratings and filtering of stimulated Raman scattering in high-power CW oscillators,” High Power Laser Sci. Eng. 7, e31 (2019).
[Crossref]

J. Endourol. (1)

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 µm,” J. Endourol. 19(1), 25–31 (2005).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. A (1)

Microw. Opt. Techn. Let. (1)

X. F. Yang, X. Guo, C. Lu, and C. T. Hiang, “Apodized long-period grating with low insertion loss,” Microw. Opt. Techn. Let. 35(4), 283–286 (2002).
[Crossref]

Opt. Commun. (1)

F. Y. M. Chan and K. S. Chiang, “Analysis of apodized phase-shifted long-period fiber gratings,” Opt. Commun. 244(1-6), 233–243 (2005).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (1)

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Opt. Lett. (3)

Photonics Res. (1)

M. Wang, Z. F. Wang, L. Liu, Q. H. Hu, H. Xiao, and X. J. Xu, “Effective suppression of stimulated Raman scattering in half 10 kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings,” Photonics Res. 7(2), 167–171 (2019).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1.
Fig. 1. (a) Schematic diagram of the structure of a LPFG and (b) simulated transmission spectrum of a LPFG. The period is 490 µm, the period number is 40, and the index modulation amplitude is 0.00022.
Fig. 2.
Fig. 2. Simulation results: (a) SRS spectrum of the 1080 nm fiber laser and transmission spectra of (b) 10/130 and (c) 14/250 LPFGs with different periods.
Fig. 3.
Fig. 3. Simulation results: transmission spectra of (a) 10/130 LPFGs with different period numbers at a period of 490 µm and index modulation amplitude of 0.00022, (b) 14/250 LPFGs with different period numbers at a period of 485 µm and index modulation amplitude of 0.00042, and influence of the period number on the extinction and FWHM of the (c) 10/130 and (d) 14/250 LPFGs.
Fig. 4.
Fig. 4. Simulation results: transmission spectra of (a) 10/130 LPFGs with different index modulation amplitudes at a period of 490 µm and 40 periods, (b) 14/250 LPFGs with different index modulation amplitudes at a period of 485 µm and 40 periods, and influence of the index modulation amplitudes on the extinction and FWHM of the (c) 10/130 and (d) 14/250 LPFGs.
Fig. 5.
Fig. 5. LPFGs lithography system with the real-time parameter measurement setup.
Fig. 6.
Fig. 6. Transmission spectra of the unapodized LPFGs, (a) 10/130 and (b) 14/250.
Fig. 7.
Fig. 7. Simulation results of the transmission spectra of the (a) 10/130 and (b) 14/250 LPFGs before and after the apodization.
Fig. 8.
Fig. 8. Schematic diagrams of Gaussian apodization of the (a) 10/130 and (c) 14/250 LPFGs; and the transmission spectra of the (b) 10/130 and (d) 14/250 LPFGs after apodization.
Fig. 9.
Fig. 9. Thermal images of the (a) 10/130 and (b) 14/250 LPFGs without annealing.
Fig. 10.
Fig. 10. Temperature variation for high-temperature annealing of the (a) 10/130 LPFG and (c) 14/250 LPFG, and thermal images of the (b) 10/130 LPFG and (d) 14/250 LPFG after annealing.
Fig. 11.
Fig. 11. Spectra of the (a) 10/130 and (b) 14/250 LPFGs after annealing operated at room temperature (22 °C), (c) 10/130 LPFG operated at 30 °C and (d) 14/250 LPFG operated at 60 °C.
Fig. 12.
Fig. 12. Curves of the central wavelength of LPFGs with varying (a) axial stress, (b) bending curvature, and (c) environmental temperature.
Fig. 13.
Fig. 13. Schematic diagram of the reduced-sensitivity packaging structure.
Fig. 14.
Fig. 14. Simulation results: deformation of the LPFG before and after packaging under an axial stress of 6 N. The light orange area represents the grating and the light green area the epoxied regions.
Fig. 15.
Fig. 15. Simulation results: the radial temperature distribution inside the structure before and after its working when the environment temperature is 80 °C and (a) the grating is not heated, (b) the grating is heated to 60 °C. The light red area represents the LPFG, white areas represent the air, light purple areas represent the glass tube, light yellow areas represent the cooling water and the light gray areas represent the packaging housing.
Fig. 16.
Fig. 16. Curves of the change in central wavelengths for the LPFGs after packaged with (a) increasing axial stress, and increasing environmental temperature when (b) the LPFGs are not heated, (c) the 10/130 LPFG is heated to 26 °C and 14/250 LPFG is heated to 60 °C.
Fig. 17.
Fig. 17. 10/130 LPFG evaluation system.
Fig. 18.
Fig. 18. Output spectra of the oscillator (a) without and (b) with the 10/130 LPFG; (c) difference between the output spectra of the system with and without the 10/130 LPFG.
Fig. 19.
Fig. 19. 14/250 MOPA evaluation system.
Fig. 20.
Fig. 20. Output spectra of the MOPA system (a) without and (b) with the 14/250 LPFG; (c) difference between the output spectra of the system with and without the 14/250 LPFG.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

β c o β c l i = 2 π Λ ,
β c o = 2 π n e f f c o λ ,
β c l i = 2 π n e f f c l , i λ .
λ = ( n e f f c o n e f f c l , i ) Λ ,
T = t × exp { ( ln 2 ) × [ 2 × ( z L / 2 ) s × L ] 2 }   ( 0 z L ) ,
2 ( S i ( G e ) O H ) H e a t S i ( G e ) O S i ( G e ) + H 2 O

Metrics