Abstract

We study the plasmon-enhanced fluorescence of a single semiconducting quantum dot near the apex of a colloidal gold pyramid spatially localized by the elastic forces of the liquid crystal host. The gold pyramid particles were manipulated within the liquid crystal medium by laser tweezers, enabling the self-assembly of a semiconducting quantum dot dispersed in the medium near the apex of the gold pyramid, allowing us to probe the plasmon-exciton interactions. We demonstrate the effect of plasmon coupling on the fluorescence lifetime and the blinking properties of the quantum dot. Our results demonstrate that topological defects around colloidal particles in liquid crystal combined with laser tweezers provide a platform for plasmon exciton interaction studies and potentially could be extended to the scale of composite materials for nanophotonic applications.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Large ordered arrays of single photon sources based on II–VI semiconductor colloidal quantum dot

Qiang Zhang, Cuong Dang, Hayato Urabe, Jing Wang, Shouheng Sun, and Arto Nurmikko
Opt. Express 16(24) 19592-19599 (2008)

Controlling quantum dot emission by plasmonic nanoarrays

R. Guo, S. Derom, A. I. Väkeväinen, R. J. A. van Dijk-Moes, P. Liljeroth, D. Vanmaekelbergh, and P. Törmä
Opt. Express 23(22) 28206-28215 (2015)

Spontaneous emission modulation of colloidal quantum dots via efficient coupling with hybrid plasmonic photonic crystal

X. W. Yuan, L. Shi, Qi Wang, C. Q. Chen, X. H. Liu, L.X. Sun, Bo Zhang, J. Zi, and Wei Lu
Opt. Express 22(19) 23473-23479 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, “Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: optical-gain enhancement via a photonic crystal pseudogap,” Adv. Mater. 18(3), 343–347 (2006).
    [Crossref]
  2. P. H. Ho, D. B. Farmer, G. S. Tulevski, S. J. Han, D. M. Bishop, L. M. Gignac, J. Bucchignano, P. Avouris, and A. L. Falk, “Intrinsically ultra-strong plasmon–exciton interactions in crystallized films of carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 115(50), 12662–12667 (2018).
    [Crossref]
  3. M. J. Romero, J. van de Lagemaat, I. Mora-Sero, G. Rumbles, and M. M. Al-Jassim, “Imaging of resonant quenching of surface plasmons by quantum dots,” Nano lett. 6(12), 2833–2837 (2006).
    [Crossref]
  4. H. Mundoor, G. H. Sheetah, S. Park, P. J. Ackerman, I. I. Smalyukh, and J. van de Lagemaat, “Tuning and switching a plasmonic quantum dot “sandwich” in a nematic line defect,” ACS Nano 12(3), 2580–2590 (2018).
    [Crossref]
  5. S. J. LeBlanc, M. R. McClanahan, M. Jones, and P. J. Moyer, “Enhancement of multiphoton emission from single CdSe quantum dots coupled to gold films,” Nano Lett. 13(4), 1662–1669 (2013).
    [Crossref]
  6. P. J. Ackerman, H. Mundoor, I. I. Smalyukh, and J. van de Lagemaat, “Plasmon–exciton interactions probed using spatial coentrapment of nanoparticles by topological singularities,” ACS Nano 9(12), 12392–12400 (2015).
    [Crossref]
  7. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref]
  8. I. Thomann, B. A. Pinaud, Z. Chen, B. M. Clemens, T. F. Jaramillo, and M. L. Brongersma, “Plasmon enhanced solar-to-fuel energy conversion,” Nano Lett. 11(8), 3440–3446 (2011).
    [Crossref]
  9. A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
    [Crossref]
  10. T. Ozel, P. L. Hernandez-Martinez, E. Mutlugun, O. Akin, S. Nizamoglu, I. Ozge Ozel, Q. Zhang, Q. Xiong, and H. V. Demir, “Observation of selective plasmon-exciton coupling in nonradiative energy transfer: Donor-selective versus acceptor-selective,” Nano Lett. 13(7), 3065–3072 (2013).
    [Crossref]
  11. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [Crossref]
  12. M. Haridas, J. K. Basu, D. J. Gosztola, and G. P. Wiederrecht, “Photoluminescence spectroscopy and lifetime measurements from self-assembled semiconductor-metal nanoparticle hybrid arrays,” Appl. Phys. Lett. 97(8), 083307 (2010).
    [Crossref]
  13. Y. Ofir, B. Samanta, and V. M. Rotello, “Polymer and biopolymer mediated self-assembly of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1814–1825 (2008).
    [Crossref]
  14. S. Srivastava, D. Nykypanchuk, M. Fukuto, J. D. Halverson, A. V. Tkachenko, K. G. Yager, and O. Gang, “Two-dimensional DNA-programmable assembly of nanoparticles at liquid interfaces,” J. Am. Chem. Soc. 136(23), 8323–8332 (2014).
    [Crossref]
  15. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (2nd ed. Clarendo, 1993).
  16. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University, 1995).
  17. B. Senyuk, J. S. Evans, P. Ackerman, T. Lee, P. Manna, L. Vigderman, E. R. Zubarev, J. van de Lagemaat, and I. I. Smalyukh, “Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals,” Nano Lett. 12(2), 955–963 (2012).
    [Crossref]
  18. X. Wang, D. S. Miller, E. Bukusoglu, J. J. de Pablo, and N. L. Abbott, “Topological defects in liquid crystals as templates for molecular self-assembly,” Nat. Mater. 15(1), 106–112 (2016).
    [Crossref]
  19. S. Park, Q. Liu, and I. I. Smalyukh, “Colloidal surfaces with boundaries, apex boojums, and nested elastic self-assembly of nematic colloids,” Phys. Rev. Lett. 117(27), 277801 (2016).
    [Crossref]
  20. Q. Xu, I. Tonks, M. J. Fuerstman, J. C. Love, and G. M. Whitesides, “Fabrication of free-standing metallic pyramidal shells,” Nano Lett. 4(12), 2509–2511 (2004).
    [Crossref]
  21. I. I. Smalyukh, “Liquid crystal colloids,” Annu. Rev. Condens. Matter Phys. 9(1), 207–226 (2018).
    [Crossref]
  22. P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
    [Crossref]
  23. H. Stark, “Physics of colloidal dispersions in nematic liquid crystals,” Phys. Rep. 351(6), 387–474 (2001).
    [Crossref]
  24. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
    [Crossref]
  25. A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
    [Crossref]
  26. J. J. Peterson and D. J. Nesbitt, “Modified power law behavior in quantum dot blinking: A novel role for biexcitons and Auger ionization,” Nano Lett. 9(1), 338–345 (2009).
    [Crossref]
  27. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
    [Crossref]
  28. B. Omogo, J. F. Aldana, and C. D. Heyes, “Radiative and non-radiative lifetime engineering of quantum dots in multiple solvents by surface atom stoichiometry and ligands,” J. Phys. Chem. C 117(5), 2317–2327 (2013).
    [Crossref]
  29. Q.-C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
    [Crossref]
  30. Q. Liu, B. Senyuk, M. Tasinkevych, and I. I. Smalyukh, “Nematic liquid crystal boojums with handles on colloidal handlebodies,” Proc. Natl. Acad. Sci. U. S. A. 110(23), 9231–9236 (2013).
    [Crossref]
  31. H. Mundoor, B. Senyuk, and I. I. Smalyukh, “Triclinic nematic colloidal crystals from competing elastic and electrostatic interactions,” Science 352(6281), 69–73 (2016).
    [Crossref]
  32. Q. Liu, A. Kuzyk, M. Endo, and I. I. Smalyukh, “Colloidal plasmonic DNA-origami with photo-switchable chirality in liquid crystals,” Opt. Lett. 44(11), 2831–2834 (2019).
    [Crossref]

2019 (1)

2018 (3)

I. I. Smalyukh, “Liquid crystal colloids,” Annu. Rev. Condens. Matter Phys. 9(1), 207–226 (2018).
[Crossref]

P. H. Ho, D. B. Farmer, G. S. Tulevski, S. J. Han, D. M. Bishop, L. M. Gignac, J. Bucchignano, P. Avouris, and A. L. Falk, “Intrinsically ultra-strong plasmon–exciton interactions in crystallized films of carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 115(50), 12662–12667 (2018).
[Crossref]

H. Mundoor, G. H. Sheetah, S. Park, P. J. Ackerman, I. I. Smalyukh, and J. van de Lagemaat, “Tuning and switching a plasmonic quantum dot “sandwich” in a nematic line defect,” ACS Nano 12(3), 2580–2590 (2018).
[Crossref]

2016 (3)

X. Wang, D. S. Miller, E. Bukusoglu, J. J. de Pablo, and N. L. Abbott, “Topological defects in liquid crystals as templates for molecular self-assembly,” Nat. Mater. 15(1), 106–112 (2016).
[Crossref]

S. Park, Q. Liu, and I. I. Smalyukh, “Colloidal surfaces with boundaries, apex boojums, and nested elastic self-assembly of nematic colloids,” Phys. Rev. Lett. 117(27), 277801 (2016).
[Crossref]

H. Mundoor, B. Senyuk, and I. I. Smalyukh, “Triclinic nematic colloidal crystals from competing elastic and electrostatic interactions,” Science 352(6281), 69–73 (2016).
[Crossref]

2015 (1)

P. J. Ackerman, H. Mundoor, I. I. Smalyukh, and J. van de Lagemaat, “Plasmon–exciton interactions probed using spatial coentrapment of nanoparticles by topological singularities,” ACS Nano 9(12), 12392–12400 (2015).
[Crossref]

2014 (2)

S. Srivastava, D. Nykypanchuk, M. Fukuto, J. D. Halverson, A. V. Tkachenko, K. G. Yager, and O. Gang, “Two-dimensional DNA-programmable assembly of nanoparticles at liquid interfaces,” J. Am. Chem. Soc. 136(23), 8323–8332 (2014).
[Crossref]

Q.-C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
[Crossref]

2013 (4)

Q. Liu, B. Senyuk, M. Tasinkevych, and I. I. Smalyukh, “Nematic liquid crystal boojums with handles on colloidal handlebodies,” Proc. Natl. Acad. Sci. U. S. A. 110(23), 9231–9236 (2013).
[Crossref]

B. Omogo, J. F. Aldana, and C. D. Heyes, “Radiative and non-radiative lifetime engineering of quantum dots in multiple solvents by surface atom stoichiometry and ligands,” J. Phys. Chem. C 117(5), 2317–2327 (2013).
[Crossref]

T. Ozel, P. L. Hernandez-Martinez, E. Mutlugun, O. Akin, S. Nizamoglu, I. Ozge Ozel, Q. Zhang, Q. Xiong, and H. V. Demir, “Observation of selective plasmon-exciton coupling in nonradiative energy transfer: Donor-selective versus acceptor-selective,” Nano Lett. 13(7), 3065–3072 (2013).
[Crossref]

S. J. LeBlanc, M. R. McClanahan, M. Jones, and P. J. Moyer, “Enhancement of multiphoton emission from single CdSe quantum dots coupled to gold films,” Nano Lett. 13(4), 1662–1669 (2013).
[Crossref]

2012 (1)

B. Senyuk, J. S. Evans, P. Ackerman, T. Lee, P. Manna, L. Vigderman, E. R. Zubarev, J. van de Lagemaat, and I. I. Smalyukh, “Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals,” Nano Lett. 12(2), 955–963 (2012).
[Crossref]

2011 (1)

I. Thomann, B. A. Pinaud, Z. Chen, B. M. Clemens, T. F. Jaramillo, and M. L. Brongersma, “Plasmon enhanced solar-to-fuel energy conversion,” Nano Lett. 11(8), 3440–3446 (2011).
[Crossref]

2010 (4)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref]

M. Haridas, J. K. Basu, D. J. Gosztola, and G. P. Wiederrecht, “Photoluminescence spectroscopy and lifetime measurements from self-assembled semiconductor-metal nanoparticle hybrid arrays,” Appl. Phys. Lett. 97(8), 083307 (2010).
[Crossref]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
[Crossref]

2009 (2)

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[Crossref]

J. J. Peterson and D. J. Nesbitt, “Modified power law behavior in quantum dot blinking: A novel role for biexcitons and Auger ionization,” Nano Lett. 9(1), 338–345 (2009).
[Crossref]

2008 (1)

Y. Ofir, B. Samanta, and V. M. Rotello, “Polymer and biopolymer mediated self-assembly of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1814–1825 (2008).
[Crossref]

2006 (4)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[Crossref]

M. J. Romero, J. van de Lagemaat, I. Mora-Sero, G. Rumbles, and M. M. Al-Jassim, “Imaging of resonant quenching of surface plasmons by quantum dots,” Nano lett. 6(12), 2833–2837 (2006).
[Crossref]

G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, “Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: optical-gain enhancement via a photonic crystal pseudogap,” Adv. Mater. 18(3), 343–347 (2006).
[Crossref]

2004 (1)

Q. Xu, I. Tonks, M. J. Fuerstman, J. C. Love, and G. M. Whitesides, “Fabrication of free-standing metallic pyramidal shells,” Nano Lett. 4(12), 2509–2511 (2004).
[Crossref]

2001 (1)

H. Stark, “Physics of colloidal dispersions in nematic liquid crystals,” Phys. Rep. 351(6), 387–474 (2001).
[Crossref]

1997 (1)

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
[Crossref]

Abbott, N. L.

X. Wang, D. S. Miller, E. Bukusoglu, J. J. de Pablo, and N. L. Abbott, “Topological defects in liquid crystals as templates for molecular self-assembly,” Nat. Mater. 15(1), 106–112 (2016).
[Crossref]

Ackerman, P.

B. Senyuk, J. S. Evans, P. Ackerman, T. Lee, P. Manna, L. Vigderman, E. R. Zubarev, J. van de Lagemaat, and I. I. Smalyukh, “Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals,” Nano Lett. 12(2), 955–963 (2012).
[Crossref]

Ackerman, P. J.

H. Mundoor, G. H. Sheetah, S. Park, P. J. Ackerman, I. I. Smalyukh, and J. van de Lagemaat, “Tuning and switching a plasmonic quantum dot “sandwich” in a nematic line defect,” ACS Nano 12(3), 2580–2590 (2018).
[Crossref]

P. J. Ackerman, H. Mundoor, I. I. Smalyukh, and J. van de Lagemaat, “Plasmon–exciton interactions probed using spatial coentrapment of nanoparticles by topological singularities,” ACS Nano 9(12), 12392–12400 (2015).
[Crossref]

Akin, O.

T. Ozel, P. L. Hernandez-Martinez, E. Mutlugun, O. Akin, S. Nizamoglu, I. Ozge Ozel, Q. Zhang, Q. Xiong, and H. V. Demir, “Observation of selective plasmon-exciton coupling in nonradiative energy transfer: Donor-selective versus acceptor-selective,” Nano Lett. 13(7), 3065–3072 (2013).
[Crossref]

Aldana, J. F.

B. Omogo, J. F. Aldana, and C. D. Heyes, “Radiative and non-radiative lifetime engineering of quantum dots in multiple solvents by surface atom stoichiometry and ligands,” J. Phys. Chem. C 117(5), 2317–2327 (2013).
[Crossref]

Al-Jassim, M. M.

M. J. Romero, J. van de Lagemaat, I. Mora-Sero, G. Rumbles, and M. M. Al-Jassim, “Imaging of resonant quenching of surface plasmons by quantum dots,” Nano lett. 6(12), 2833–2837 (2006).
[Crossref]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref]

Avouris, P.

P. H. Ho, D. B. Farmer, G. S. Tulevski, S. J. Han, D. M. Bishop, L. M. Gignac, J. Bucchignano, P. Avouris, and A. L. Falk, “Intrinsically ultra-strong plasmon–exciton interactions in crystallized films of carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 115(50), 12662–12667 (2018).
[Crossref]

Basu, J. K.

M. Haridas, J. K. Basu, D. J. Gosztola, and G. P. Wiederrecht, “Photoluminescence spectroscopy and lifetime measurements from self-assembled semiconductor-metal nanoparticle hybrid arrays,” Appl. Phys. Lett. 97(8), 083307 (2010).
[Crossref]

Bezel, I. V.

G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, “Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: optical-gain enhancement via a photonic crystal pseudogap,” Adv. Mater. 18(3), 343–347 (2006).
[Crossref]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref]

Bishop, D. M.

P. H. Ho, D. B. Farmer, G. S. Tulevski, S. J. Han, D. M. Bishop, L. M. Gignac, J. Bucchignano, P. Avouris, and A. L. Falk, “Intrinsically ultra-strong plasmon–exciton interactions in crystallized films of carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 115(50), 12662–12667 (2018).
[Crossref]

Brongersma, M. L.

I. Thomann, B. A. Pinaud, Z. Chen, B. M. Clemens, T. F. Jaramillo, and M. L. Brongersma, “Plasmon enhanced solar-to-fuel energy conversion,” Nano Lett. 11(8), 3440–3446 (2011).
[Crossref]

Bryant, G. W.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[Crossref]

Bucchignano, J.

P. H. Ho, D. B. Farmer, G. S. Tulevski, S. J. Han, D. M. Bishop, L. M. Gignac, J. Bucchignano, P. Avouris, and A. L. Falk, “Intrinsically ultra-strong plasmon–exciton interactions in crystallized films of carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 115(50), 12662–12667 (2018).
[Crossref]

Bukusoglu, E.

X. Wang, D. S. Miller, E. Bukusoglu, J. J. de Pablo, and N. L. Abbott, “Topological defects in liquid crystals as templates for molecular self-assembly,” Nat. Mater. 15(1), 106–112 (2016).
[Crossref]

Chaikin, P. M.

P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University, 1995).

Chen, Z.

I. Thomann, B. A. Pinaud, Z. Chen, B. M. Clemens, T. F. Jaramillo, and M. L. Brongersma, “Plasmon enhanced solar-to-fuel energy conversion,” Nano Lett. 11(8), 3440–3446 (2011).
[Crossref]

Clemens, B. M.

I. Thomann, B. A. Pinaud, Z. Chen, B. M. Clemens, T. F. Jaramillo, and M. L. Brongersma, “Plasmon enhanced solar-to-fuel energy conversion,” Nano Lett. 11(8), 3440–3446 (2011).
[Crossref]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Davis, T. J.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[Crossref]

de Gennes, P. G.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (2nd ed. Clarendo, 1993).

de Pablo, J. J.

X. Wang, D. S. Miller, E. Bukusoglu, J. J. de Pablo, and N. L. Abbott, “Topological defects in liquid crystals as templates for molecular self-assembly,” Nat. Mater. 15(1), 106–112 (2016).
[Crossref]

Demir, H. V.

T. Ozel, P. L. Hernandez-Martinez, E. Mutlugun, O. Akin, S. Nizamoglu, I. Ozge Ozel, Q. Zhang, Q. Xiong, and H. V. Demir, “Observation of selective plasmon-exciton coupling in nonradiative energy transfer: Donor-selective versus acceptor-selective,” Nano Lett. 13(7), 3065–3072 (2013).
[Crossref]

El-Sayed, M. A.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
[Crossref]

Endo, M.

Evans, J. S.

B. Senyuk, J. S. Evans, P. Ackerman, T. Lee, P. Manna, L. Vigderman, E. R. Zubarev, J. van de Lagemaat, and I. I. Smalyukh, “Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals,” Nano Lett. 12(2), 955–963 (2012).
[Crossref]

Falk, A. L.

P. H. Ho, D. B. Farmer, G. S. Tulevski, S. J. Han, D. M. Bishop, L. M. Gignac, J. Bucchignano, P. Avouris, and A. L. Falk, “Intrinsically ultra-strong plasmon–exciton interactions in crystallized films of carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 115(50), 12662–12667 (2018).
[Crossref]

Farmer, D. B.

P. H. Ho, D. B. Farmer, G. S. Tulevski, S. J. Han, D. M. Bishop, L. M. Gignac, J. Bucchignano, P. Avouris, and A. L. Falk, “Intrinsically ultra-strong plasmon–exciton interactions in crystallized films of carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 115(50), 12662–12667 (2018).
[Crossref]

Fuerstman, M. J.

Q. Xu, I. Tonks, M. J. Fuerstman, J. C. Love, and G. M. Whitesides, “Fabrication of free-standing metallic pyramidal shells,” Nano Lett. 4(12), 2509–2511 (2004).
[Crossref]

Fukuto, M.

S. Srivastava, D. Nykypanchuk, M. Fukuto, J. D. Halverson, A. V. Tkachenko, K. G. Yager, and O. Gang, “Two-dimensional DNA-programmable assembly of nanoparticles at liquid interfaces,” J. Am. Chem. Soc. 136(23), 8323–8332 (2014).
[Crossref]

Funston, A. M.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[Crossref]

Gang, O.

S. Srivastava, D. Nykypanchuk, M. Fukuto, J. D. Halverson, A. V. Tkachenko, K. G. Yager, and O. Gang, “Two-dimensional DNA-programmable assembly of nanoparticles at liquid interfaces,” J. Am. Chem. Soc. 136(23), 8323–8332 (2014).
[Crossref]

Gignac, L. M.

P. H. Ho, D. B. Farmer, G. S. Tulevski, S. J. Han, D. M. Bishop, L. M. Gignac, J. Bucchignano, P. Avouris, and A. L. Falk, “Intrinsically ultra-strong plasmon–exciton interactions in crystallized films of carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 115(50), 12662–12667 (2018).
[Crossref]

Gosztola, D. J.

M. Haridas, J. K. Basu, D. J. Gosztola, and G. P. Wiederrecht, “Photoluminescence spectroscopy and lifetime measurements from self-assembled semiconductor-metal nanoparticle hybrid arrays,” Appl. Phys. Lett. 97(8), 083307 (2010).
[Crossref]

Govorov, A. O.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[Crossref]

Halverson, J. D.

S. Srivastava, D. Nykypanchuk, M. Fukuto, J. D. Halverson, A. V. Tkachenko, K. G. Yager, and O. Gang, “Two-dimensional DNA-programmable assembly of nanoparticles at liquid interfaces,” J. Am. Chem. Soc. 136(23), 8323–8332 (2014).
[Crossref]

Han, S. J.

P. H. Ho, D. B. Farmer, G. S. Tulevski, S. J. Han, D. M. Bishop, L. M. Gignac, J. Bucchignano, P. Avouris, and A. L. Falk, “Intrinsically ultra-strong plasmon–exciton interactions in crystallized films of carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 115(50), 12662–12667 (2018).
[Crossref]

Haridas, M.

M. Haridas, J. K. Basu, D. J. Gosztola, and G. P. Wiederrecht, “Photoluminescence spectroscopy and lifetime measurements from self-assembled semiconductor-metal nanoparticle hybrid arrays,” Appl. Phys. Lett. 97(8), 083307 (2010).
[Crossref]

Hernandez-Martinez, P. L.

T. Ozel, P. L. Hernandez-Martinez, E. Mutlugun, O. Akin, S. Nizamoglu, I. Ozge Ozel, Q. Zhang, Q. Xiong, and H. V. Demir, “Observation of selective plasmon-exciton coupling in nonradiative energy transfer: Donor-selective versus acceptor-selective,” Nano Lett. 13(7), 3065–3072 (2013).
[Crossref]

Heyes, C. D.

B. Omogo, J. F. Aldana, and C. D. Heyes, “Radiative and non-radiative lifetime engineering of quantum dots in multiple solvents by surface atom stoichiometry and ligands,” J. Phys. Chem. C 117(5), 2317–2327 (2013).
[Crossref]

Ho, P. H.

P. H. Ho, D. B. Farmer, G. S. Tulevski, S. J. Han, D. M. Bishop, L. M. Gignac, J. Bucchignano, P. Avouris, and A. L. Falk, “Intrinsically ultra-strong plasmon–exciton interactions in crystallized films of carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 115(50), 12662–12667 (2018).
[Crossref]

Htoon, H.

G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, “Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: optical-gain enhancement via a photonic crystal pseudogap,” Adv. Mater. 18(3), 343–347 (2006).
[Crossref]

Jain, P. K.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
[Crossref]

Jaramillo, T. F.

I. Thomann, B. A. Pinaud, Z. Chen, B. M. Clemens, T. F. Jaramillo, and M. L. Brongersma, “Plasmon enhanced solar-to-fuel energy conversion,” Nano Lett. 11(8), 3440–3446 (2011).
[Crossref]

Jones, M.

S. J. LeBlanc, M. R. McClanahan, M. Jones, and P. J. Moyer, “Enhancement of multiphoton emission from single CdSe quantum dots coupled to gold films,” Nano Lett. 13(4), 1662–1669 (2013).
[Crossref]

Klimov, V. I.

G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, “Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: optical-gain enhancement via a photonic crystal pseudogap,” Adv. Mater. 18(3), 343–347 (2006).
[Crossref]

Kotov, N. A.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[Crossref]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Kuzyk, A.

LeBlanc, S. J.

S. J. LeBlanc, M. R. McClanahan, M. Jones, and P. J. Moyer, “Enhancement of multiphoton emission from single CdSe quantum dots coupled to gold films,” Nano Lett. 13(4), 1662–1669 (2013).
[Crossref]

Lee, J.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[Crossref]

Lee, T.

B. Senyuk, J. S. Evans, P. Ackerman, T. Lee, P. Manna, L. Vigderman, E. R. Zubarev, J. van de Lagemaat, and I. I. Smalyukh, “Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals,” Nano Lett. 12(2), 955–963 (2012).
[Crossref]

Liu, Q.

Q. Liu, A. Kuzyk, M. Endo, and I. I. Smalyukh, “Colloidal plasmonic DNA-origami with photo-switchable chirality in liquid crystals,” Opt. Lett. 44(11), 2831–2834 (2019).
[Crossref]

S. Park, Q. Liu, and I. I. Smalyukh, “Colloidal surfaces with boundaries, apex boojums, and nested elastic self-assembly of nematic colloids,” Phys. Rev. Lett. 117(27), 277801 (2016).
[Crossref]

Q. Liu, B. Senyuk, M. Tasinkevych, and I. I. Smalyukh, “Nematic liquid crystal boojums with handles on colloidal handlebodies,” Proc. Natl. Acad. Sci. U. S. A. 110(23), 9231–9236 (2013).
[Crossref]

Love, J. C.

Q. Xu, I. Tonks, M. J. Fuerstman, J. C. Love, and G. M. Whitesides, “Fabrication of free-standing metallic pyramidal shells,” Nano Lett. 4(12), 2509–2511 (2004).
[Crossref]

Lubensky, T. C.

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
[Crossref]

P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University, 1995).

Manna, P.

B. Senyuk, J. S. Evans, P. Ackerman, T. Lee, P. Manna, L. Vigderman, E. R. Zubarev, J. van de Lagemaat, and I. I. Smalyukh, “Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals,” Nano Lett. 12(2), 955–963 (2012).
[Crossref]

Maskaly, G. R.

G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, “Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: optical-gain enhancement via a photonic crystal pseudogap,” Adv. Mater. 18(3), 343–347 (2006).
[Crossref]

McClanahan, M. R.

S. J. LeBlanc, M. R. McClanahan, M. Jones, and P. J. Moyer, “Enhancement of multiphoton emission from single CdSe quantum dots coupled to gold films,” Nano Lett. 13(4), 1662–1669 (2013).
[Crossref]

Miller, D. S.

X. Wang, D. S. Miller, E. Bukusoglu, J. J. de Pablo, and N. L. Abbott, “Topological defects in liquid crystals as templates for molecular self-assembly,” Nat. Mater. 15(1), 106–112 (2016).
[Crossref]

Mora-Sero, I.

M. J. Romero, J. van de Lagemaat, I. Mora-Sero, G. Rumbles, and M. M. Al-Jassim, “Imaging of resonant quenching of surface plasmons by quantum dots,” Nano lett. 6(12), 2833–2837 (2006).
[Crossref]

Moyer, P. J.

S. J. LeBlanc, M. R. McClanahan, M. Jones, and P. J. Moyer, “Enhancement of multiphoton emission from single CdSe quantum dots coupled to gold films,” Nano Lett. 13(4), 1662–1669 (2013).
[Crossref]

Mulvaney, P.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[Crossref]

Mundoor, H.

H. Mundoor, G. H. Sheetah, S. Park, P. J. Ackerman, I. I. Smalyukh, and J. van de Lagemaat, “Tuning and switching a plasmonic quantum dot “sandwich” in a nematic line defect,” ACS Nano 12(3), 2580–2590 (2018).
[Crossref]

H. Mundoor, B. Senyuk, and I. I. Smalyukh, “Triclinic nematic colloidal crystals from competing elastic and electrostatic interactions,” Science 352(6281), 69–73 (2016).
[Crossref]

P. J. Ackerman, H. Mundoor, I. I. Smalyukh, and J. van de Lagemaat, “Plasmon–exciton interactions probed using spatial coentrapment of nanoparticles by topological singularities,” ACS Nano 9(12), 12392–12400 (2015).
[Crossref]

Q.-C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
[Crossref]

Mutlugun, E.

T. Ozel, P. L. Hernandez-Martinez, E. Mutlugun, O. Akin, S. Nizamoglu, I. Ozge Ozel, Q. Zhang, Q. Xiong, and H. V. Demir, “Observation of selective plasmon-exciton coupling in nonradiative energy transfer: Donor-selective versus acceptor-selective,” Nano Lett. 13(7), 3065–3072 (2013).
[Crossref]

Nagpal, P.

Q.-C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
[Crossref]

Naik, R. R.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[Crossref]

Nanda, J.

G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, “Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: optical-gain enhancement via a photonic crystal pseudogap,” Adv. Mater. 18(3), 343–347 (2006).
[Crossref]

Nesbitt, D. J.

J. J. Peterson and D. J. Nesbitt, “Modified power law behavior in quantum dot blinking: A novel role for biexcitons and Auger ionization,” Nano Lett. 9(1), 338–345 (2009).
[Crossref]

Nizamoglu, S.

T. Ozel, P. L. Hernandez-Martinez, E. Mutlugun, O. Akin, S. Nizamoglu, I. Ozge Ozel, Q. Zhang, Q. Xiong, and H. V. Demir, “Observation of selective plasmon-exciton coupling in nonradiative energy transfer: Donor-selective versus acceptor-selective,” Nano Lett. 13(7), 3065–3072 (2013).
[Crossref]

Novo, C.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[Crossref]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref]

Nykypanchuk, D.

S. Srivastava, D. Nykypanchuk, M. Fukuto, J. D. Halverson, A. V. Tkachenko, K. G. Yager, and O. Gang, “Two-dimensional DNA-programmable assembly of nanoparticles at liquid interfaces,” J. Am. Chem. Soc. 136(23), 8323–8332 (2014).
[Crossref]

Ofir, Y.

Y. Ofir, B. Samanta, and V. M. Rotello, “Polymer and biopolymer mediated self-assembly of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1814–1825 (2008).
[Crossref]

Omogo, B.

B. Omogo, J. F. Aldana, and C. D. Heyes, “Radiative and non-radiative lifetime engineering of quantum dots in multiple solvents by surface atom stoichiometry and ligands,” J. Phys. Chem. C 117(5), 2317–2327 (2013).
[Crossref]

Ozel, T.

T. Ozel, P. L. Hernandez-Martinez, E. Mutlugun, O. Akin, S. Nizamoglu, I. Ozge Ozel, Q. Zhang, Q. Xiong, and H. V. Demir, “Observation of selective plasmon-exciton coupling in nonradiative energy transfer: Donor-selective versus acceptor-selective,” Nano Lett. 13(7), 3065–3072 (2013).
[Crossref]

Ozge Ozel, I.

T. Ozel, P. L. Hernandez-Martinez, E. Mutlugun, O. Akin, S. Nizamoglu, I. Ozge Ozel, Q. Zhang, Q. Xiong, and H. V. Demir, “Observation of selective plasmon-exciton coupling in nonradiative energy transfer: Donor-selective versus acceptor-selective,” Nano Lett. 13(7), 3065–3072 (2013).
[Crossref]

Park, S.

H. Mundoor, G. H. Sheetah, S. Park, P. J. Ackerman, I. I. Smalyukh, and J. van de Lagemaat, “Tuning and switching a plasmonic quantum dot “sandwich” in a nematic line defect,” ACS Nano 12(3), 2580–2590 (2018).
[Crossref]

S. Park, Q. Liu, and I. I. Smalyukh, “Colloidal surfaces with boundaries, apex boojums, and nested elastic self-assembly of nematic colloids,” Phys. Rev. Lett. 117(27), 277801 (2016).
[Crossref]

Peterson, J. J.

J. J. Peterson and D. J. Nesbitt, “Modified power law behavior in quantum dot blinking: A novel role for biexcitons and Auger ionization,” Nano Lett. 9(1), 338–345 (2009).
[Crossref]

Petruska, M. A.

G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, “Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: optical-gain enhancement via a photonic crystal pseudogap,” Adv. Mater. 18(3), 343–347 (2006).
[Crossref]

Pietryga, J. M.

G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, “Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: optical-gain enhancement via a photonic crystal pseudogap,” Adv. Mater. 18(3), 343–347 (2006).
[Crossref]

Pinaud, B. A.

I. Thomann, B. A. Pinaud, Z. Chen, B. M. Clemens, T. F. Jaramillo, and M. L. Brongersma, “Plasmon enhanced solar-to-fuel energy conversion,” Nano Lett. 11(8), 3440–3446 (2011).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref]

Poulin, P.

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
[Crossref]

Prost, J.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (2nd ed. Clarendo, 1993).

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Ribot, J. C.

Q.-C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
[Crossref]

Romero, M. J.

M. J. Romero, J. van de Lagemaat, I. Mora-Sero, G. Rumbles, and M. M. Al-Jassim, “Imaging of resonant quenching of surface plasmons by quantum dots,” Nano lett. 6(12), 2833–2837 (2006).
[Crossref]

Rotello, V. M.

Y. Ofir, B. Samanta, and V. M. Rotello, “Polymer and biopolymer mediated self-assembly of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1814–1825 (2008).
[Crossref]

Rumbles, G.

M. J. Romero, J. van de Lagemaat, I. Mora-Sero, G. Rumbles, and M. M. Al-Jassim, “Imaging of resonant quenching of surface plasmons by quantum dots,” Nano lett. 6(12), 2833–2837 (2006).
[Crossref]

Samanta, B.

Y. Ofir, B. Samanta, and V. M. Rotello, “Polymer and biopolymer mediated self-assembly of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1814–1825 (2008).
[Crossref]

Schaller, R. D.

G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, “Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: optical-gain enhancement via a photonic crystal pseudogap,” Adv. Mater. 18(3), 343–347 (2006).
[Crossref]

Senyuk, B.

H. Mundoor, B. Senyuk, and I. I. Smalyukh, “Triclinic nematic colloidal crystals from competing elastic and electrostatic interactions,” Science 352(6281), 69–73 (2016).
[Crossref]

Q. Liu, B. Senyuk, M. Tasinkevych, and I. I. Smalyukh, “Nematic liquid crystal boojums with handles on colloidal handlebodies,” Proc. Natl. Acad. Sci. U. S. A. 110(23), 9231–9236 (2013).
[Crossref]

B. Senyuk, J. S. Evans, P. Ackerman, T. Lee, P. Manna, L. Vigderman, E. R. Zubarev, J. van de Lagemaat, and I. I. Smalyukh, “Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals,” Nano Lett. 12(2), 955–963 (2012).
[Crossref]

Sheetah, G. H.

H. Mundoor, G. H. Sheetah, S. Park, P. J. Ackerman, I. I. Smalyukh, and J. van de Lagemaat, “Tuning and switching a plasmonic quantum dot “sandwich” in a nematic line defect,” ACS Nano 12(3), 2580–2590 (2018).
[Crossref]

Singh, V.

Q.-C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
[Crossref]

Skeini, T.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[Crossref]

Slocik, J. M.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[Crossref]

Smalyukh, I. I.

Q. Liu, A. Kuzyk, M. Endo, and I. I. Smalyukh, “Colloidal plasmonic DNA-origami with photo-switchable chirality in liquid crystals,” Opt. Lett. 44(11), 2831–2834 (2019).
[Crossref]

I. I. Smalyukh, “Liquid crystal colloids,” Annu. Rev. Condens. Matter Phys. 9(1), 207–226 (2018).
[Crossref]

H. Mundoor, G. H. Sheetah, S. Park, P. J. Ackerman, I. I. Smalyukh, and J. van de Lagemaat, “Tuning and switching a plasmonic quantum dot “sandwich” in a nematic line defect,” ACS Nano 12(3), 2580–2590 (2018).
[Crossref]

S. Park, Q. Liu, and I. I. Smalyukh, “Colloidal surfaces with boundaries, apex boojums, and nested elastic self-assembly of nematic colloids,” Phys. Rev. Lett. 117(27), 277801 (2016).
[Crossref]

H. Mundoor, B. Senyuk, and I. I. Smalyukh, “Triclinic nematic colloidal crystals from competing elastic and electrostatic interactions,” Science 352(6281), 69–73 (2016).
[Crossref]

P. J. Ackerman, H. Mundoor, I. I. Smalyukh, and J. van de Lagemaat, “Plasmon–exciton interactions probed using spatial coentrapment of nanoparticles by topological singularities,” ACS Nano 9(12), 12392–12400 (2015).
[Crossref]

Q.-C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
[Crossref]

Q. Liu, B. Senyuk, M. Tasinkevych, and I. I. Smalyukh, “Nematic liquid crystal boojums with handles on colloidal handlebodies,” Proc. Natl. Acad. Sci. U. S. A. 110(23), 9231–9236 (2013).
[Crossref]

B. Senyuk, J. S. Evans, P. Ackerman, T. Lee, P. Manna, L. Vigderman, E. R. Zubarev, J. van de Lagemaat, and I. I. Smalyukh, “Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals,” Nano Lett. 12(2), 955–963 (2012).
[Crossref]

Srivastava, S.

S. Srivastava, D. Nykypanchuk, M. Fukuto, J. D. Halverson, A. V. Tkachenko, K. G. Yager, and O. Gang, “Two-dimensional DNA-programmable assembly of nanoparticles at liquid interfaces,” J. Am. Chem. Soc. 136(23), 8323–8332 (2014).
[Crossref]

Stark, H.

H. Stark, “Physics of colloidal dispersions in nematic liquid crystals,” Phys. Rep. 351(6), 387–474 (2001).
[Crossref]

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
[Crossref]

Sun, Q.-C.

Q.-C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
[Crossref]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Tasinkevych, M.

Q. Liu, B. Senyuk, M. Tasinkevych, and I. I. Smalyukh, “Nematic liquid crystal boojums with handles on colloidal handlebodies,” Proc. Natl. Acad. Sci. U. S. A. 110(23), 9231–9236 (2013).
[Crossref]

Thomann, I.

I. Thomann, B. A. Pinaud, Z. Chen, B. M. Clemens, T. F. Jaramillo, and M. L. Brongersma, “Plasmon enhanced solar-to-fuel energy conversion,” Nano Lett. 11(8), 3440–3446 (2011).
[Crossref]

Tkachenko, A. V.

S. Srivastava, D. Nykypanchuk, M. Fukuto, J. D. Halverson, A. V. Tkachenko, K. G. Yager, and O. Gang, “Two-dimensional DNA-programmable assembly of nanoparticles at liquid interfaces,” J. Am. Chem. Soc. 136(23), 8323–8332 (2014).
[Crossref]

Tonks, I.

Q. Xu, I. Tonks, M. J. Fuerstman, J. C. Love, and G. M. Whitesides, “Fabrication of free-standing metallic pyramidal shells,” Nano Lett. 4(12), 2509–2511 (2004).
[Crossref]

Tulevski, G. S.

P. H. Ho, D. B. Farmer, G. S. Tulevski, S. J. Han, D. M. Bishop, L. M. Gignac, J. Bucchignano, P. Avouris, and A. L. Falk, “Intrinsically ultra-strong plasmon–exciton interactions in crystallized films of carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 115(50), 12662–12667 (2018).
[Crossref]

van de Lagemaat, J.

H. Mundoor, G. H. Sheetah, S. Park, P. J. Ackerman, I. I. Smalyukh, and J. van de Lagemaat, “Tuning and switching a plasmonic quantum dot “sandwich” in a nematic line defect,” ACS Nano 12(3), 2580–2590 (2018).
[Crossref]

P. J. Ackerman, H. Mundoor, I. I. Smalyukh, and J. van de Lagemaat, “Plasmon–exciton interactions probed using spatial coentrapment of nanoparticles by topological singularities,” ACS Nano 9(12), 12392–12400 (2015).
[Crossref]

B. Senyuk, J. S. Evans, P. Ackerman, T. Lee, P. Manna, L. Vigderman, E. R. Zubarev, J. van de Lagemaat, and I. I. Smalyukh, “Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals,” Nano Lett. 12(2), 955–963 (2012).
[Crossref]

M. J. Romero, J. van de Lagemaat, I. Mora-Sero, G. Rumbles, and M. M. Al-Jassim, “Imaging of resonant quenching of surface plasmons by quantum dots,” Nano lett. 6(12), 2833–2837 (2006).
[Crossref]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Vigderman, L.

B. Senyuk, J. S. Evans, P. Ackerman, T. Lee, P. Manna, L. Vigderman, E. R. Zubarev, J. van de Lagemaat, and I. I. Smalyukh, “Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals,” Nano Lett. 12(2), 955–963 (2012).
[Crossref]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Wang, X.

X. Wang, D. S. Miller, E. Bukusoglu, J. J. de Pablo, and N. L. Abbott, “Topological defects in liquid crystals as templates for molecular self-assembly,” Nat. Mater. 15(1), 106–112 (2016).
[Crossref]

Weitz, D. A.

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
[Crossref]

Whitesides, G. M.

Q. Xu, I. Tonks, M. J. Fuerstman, J. C. Love, and G. M. Whitesides, “Fabrication of free-standing metallic pyramidal shells,” Nano Lett. 4(12), 2509–2511 (2004).
[Crossref]

Wiederrecht, G. P.

M. Haridas, J. K. Basu, D. J. Gosztola, and G. P. Wiederrecht, “Photoluminescence spectroscopy and lifetime measurements from self-assembled semiconductor-metal nanoparticle hybrid arrays,” Appl. Phys. Lett. 97(8), 083307 (2010).
[Crossref]

Xiong, Q.

T. Ozel, P. L. Hernandez-Martinez, E. Mutlugun, O. Akin, S. Nizamoglu, I. Ozge Ozel, Q. Zhang, Q. Xiong, and H. V. Demir, “Observation of selective plasmon-exciton coupling in nonradiative energy transfer: Donor-selective versus acceptor-selective,” Nano Lett. 13(7), 3065–3072 (2013).
[Crossref]

Xu, Q.

Q. Xu, I. Tonks, M. J. Fuerstman, J. C. Love, and G. M. Whitesides, “Fabrication of free-standing metallic pyramidal shells,” Nano Lett. 4(12), 2509–2511 (2004).
[Crossref]

Yager, K. G.

S. Srivastava, D. Nykypanchuk, M. Fukuto, J. D. Halverson, A. V. Tkachenko, K. G. Yager, and O. Gang, “Two-dimensional DNA-programmable assembly of nanoparticles at liquid interfaces,” J. Am. Chem. Soc. 136(23), 8323–8332 (2014).
[Crossref]

Zhang, Q.

T. Ozel, P. L. Hernandez-Martinez, E. Mutlugun, O. Akin, S. Nizamoglu, I. Ozge Ozel, Q. Zhang, Q. Xiong, and H. V. Demir, “Observation of selective plasmon-exciton coupling in nonradiative energy transfer: Donor-selective versus acceptor-selective,” Nano Lett. 13(7), 3065–3072 (2013).
[Crossref]

Zhang, W.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[Crossref]

Zubarev, E. R.

B. Senyuk, J. S. Evans, P. Ackerman, T. Lee, P. Manna, L. Vigderman, E. R. Zubarev, J. van de Lagemaat, and I. I. Smalyukh, “Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals,” Nano Lett. 12(2), 955–963 (2012).
[Crossref]

ACS Nano (2)

H. Mundoor, G. H. Sheetah, S. Park, P. J. Ackerman, I. I. Smalyukh, and J. van de Lagemaat, “Tuning and switching a plasmonic quantum dot “sandwich” in a nematic line defect,” ACS Nano 12(3), 2580–2590 (2018).
[Crossref]

P. J. Ackerman, H. Mundoor, I. I. Smalyukh, and J. van de Lagemaat, “Plasmon–exciton interactions probed using spatial coentrapment of nanoparticles by topological singularities,” ACS Nano 9(12), 12392–12400 (2015).
[Crossref]

Adv. Mater. (1)

G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, “Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: optical-gain enhancement via a photonic crystal pseudogap,” Adv. Mater. 18(3), 343–347 (2006).
[Crossref]

Annu. Rev. Condens. Matter Phys. (1)

I. I. Smalyukh, “Liquid crystal colloids,” Annu. Rev. Condens. Matter Phys. 9(1), 207–226 (2018).
[Crossref]

Appl. Phys. Lett. (1)

M. Haridas, J. K. Basu, D. J. Gosztola, and G. P. Wiederrecht, “Photoluminescence spectroscopy and lifetime measurements from self-assembled semiconductor-metal nanoparticle hybrid arrays,” Appl. Phys. Lett. 97(8), 083307 (2010).
[Crossref]

Chem. Phys. Lett. (1)

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
[Crossref]

Chem. Soc. Rev. (1)

Y. Ofir, B. Samanta, and V. M. Rotello, “Polymer and biopolymer mediated self-assembly of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1814–1825 (2008).
[Crossref]

J. Am. Chem. Soc. (1)

S. Srivastava, D. Nykypanchuk, M. Fukuto, J. D. Halverson, A. V. Tkachenko, K. G. Yager, and O. Gang, “Two-dimensional DNA-programmable assembly of nanoparticles at liquid interfaces,” J. Am. Chem. Soc. 136(23), 8323–8332 (2014).
[Crossref]

J. Phys. Chem. C (1)

B. Omogo, J. F. Aldana, and C. D. Heyes, “Radiative and non-radiative lifetime engineering of quantum dots in multiple solvents by surface atom stoichiometry and ligands,” J. Phys. Chem. C 117(5), 2317–2327 (2013).
[Crossref]

Nano Lett. (9)

Q.-C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, and P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014).
[Crossref]

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[Crossref]

J. J. Peterson and D. J. Nesbitt, “Modified power law behavior in quantum dot blinking: A novel role for biexcitons and Auger ionization,” Nano Lett. 9(1), 338–345 (2009).
[Crossref]

M. J. Romero, J. van de Lagemaat, I. Mora-Sero, G. Rumbles, and M. M. Al-Jassim, “Imaging of resonant quenching of surface plasmons by quantum dots,” Nano lett. 6(12), 2833–2837 (2006).
[Crossref]

Q. Xu, I. Tonks, M. J. Fuerstman, J. C. Love, and G. M. Whitesides, “Fabrication of free-standing metallic pyramidal shells,” Nano Lett. 4(12), 2509–2511 (2004).
[Crossref]

B. Senyuk, J. S. Evans, P. Ackerman, T. Lee, P. Manna, L. Vigderman, E. R. Zubarev, J. van de Lagemaat, and I. I. Smalyukh, “Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals,” Nano Lett. 12(2), 955–963 (2012).
[Crossref]

S. J. LeBlanc, M. R. McClanahan, M. Jones, and P. J. Moyer, “Enhancement of multiphoton emission from single CdSe quantum dots coupled to gold films,” Nano Lett. 13(4), 1662–1669 (2013).
[Crossref]

I. Thomann, B. A. Pinaud, Z. Chen, B. M. Clemens, T. F. Jaramillo, and M. L. Brongersma, “Plasmon enhanced solar-to-fuel energy conversion,” Nano Lett. 11(8), 3440–3446 (2011).
[Crossref]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[Crossref]

T. Ozel, P. L. Hernandez-Martinez, E. Mutlugun, O. Akin, S. Nizamoglu, I. Ozge Ozel, Q. Zhang, Q. Xiong, and H. V. Demir, “Observation of selective plasmon-exciton coupling in nonradiative energy transfer: Donor-selective versus acceptor-selective,” Nano Lett. 13(7), 3065–3072 (2013).
[Crossref]

Nat. Mater. (2)

X. Wang, D. S. Miller, E. Bukusoglu, J. J. de Pablo, and N. L. Abbott, “Topological defects in liquid crystals as templates for molecular self-assembly,” Nat. Mater. 15(1), 106–112 (2016).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref]

Opt. Lett. (1)

Phys. Rep. (1)

H. Stark, “Physics of colloidal dispersions in nematic liquid crystals,” Phys. Rep. 351(6), 387–474 (2001).
[Crossref]

Phys. Rev. Lett. (2)

S. Park, Q. Liu, and I. I. Smalyukh, “Colloidal surfaces with boundaries, apex boojums, and nested elastic self-assembly of nematic colloids,” Phys. Rev. Lett. 117(27), 277801 (2016).
[Crossref]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (2)

P. H. Ho, D. B. Farmer, G. S. Tulevski, S. J. Han, D. M. Bishop, L. M. Gignac, J. Bucchignano, P. Avouris, and A. L. Falk, “Intrinsically ultra-strong plasmon–exciton interactions in crystallized films of carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A. 115(50), 12662–12667 (2018).
[Crossref]

Q. Liu, B. Senyuk, M. Tasinkevych, and I. I. Smalyukh, “Nematic liquid crystal boojums with handles on colloidal handlebodies,” Proc. Natl. Acad. Sci. U. S. A. 110(23), 9231–9236 (2013).
[Crossref]

Science (3)

H. Mundoor, B. Senyuk, and I. I. Smalyukh, “Triclinic nematic colloidal crystals from competing elastic and electrostatic interactions,” Science 352(6281), 69–73 (2016).
[Crossref]

P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997).
[Crossref]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Other (2)

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (2nd ed. Clarendo, 1993).

P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Colloidal building blocks of GMP-based tip with holonomic control. (a) SEM micrograph of GMPs cluster on a silicon surface. The inset shows a schematic of a GMP with the particle dimensions and base to tip vector q. (b-d) Optical micrographs of a GMP dispersed in LC, as obtained in bright field (b) and polarizing imaging modes without (c) and with retardation plate (d). (e) Schematic representation of the director configuration around a GMP, showing the boojum (red filled disc) and the far-field director n0. Note that there is also a boojum (not shown) in the interior of the pyramid [19]. (f-g) Optical micrographs of a melamine resin sphere dispersed in LC obtained in brightfield (f), and polarizing imaging modes without (g) and with (h) a retardation plate. (i) Schematic representation of director configuration around a melamine resin sphere with tangential boundary conditions, showing n0 and two boojum surface defects.
Fig. 2.
Fig. 2. Colloidal plasmonic superstructures fabricated through self-assembly. (a-d) Experimental sequence of optical micrographs, with elapsed time showing the assembly of a GMP and melamine resin sphere dispersed in LC. The final assembled colloidal structure is shown in (d). (e,f) Optical micrograph of the GMP-melamine sphere assembly obtained in polarized imaging mode without (e) and with (f) retardation plate. (g) Schematic representation of n(r) distortions around GMP-melamine resin sphere assembly showing far field director n0 and two boojums (marked in red). (h) Electric field intensity enhancement map around a GMP at 620 nm simulated using COMSOL Multiphysics. (i) Optical micrograph of the colloidal structure formed by the assembly of GMPs in LC obtained under brightfield microscopy. (j) Schematic representation of an idealized colloidal structure that could be used for plasmonic enhancement beyond what is accessible to a single pyramid; we note that the actual structure of multi-GMP assembly shown in (i) is somewhat different from this idealized assembly due to the complexity of elasticity-mediated interactions, though showing the general principle of how elastic interactions could be used to guide colloidal assembly for these purposes. (k) Electric field intensity enhancement map at 620 nm due to the colloidal assembly of four GMPs in the geometry shown by the schematic in (j).
Fig. 3.
Fig. 3. Plasmonic effects on QD fluorescence. (a,b) Optical micrograph of a GMP dispersed in LC with a QD elastically trapped near the apex when viewed with a red filter under white light illumination (a) and with 473 nm excitation showing the fluorescence from QD (b). (c) Fluorescence decay curve from the QD located at the glass substrate (black square) of the confining cell and near the apex of a GMP dispersed in LC, representing typical fluorescence decay curves collected from two different GMP-QD assemblies (green and blue triangles). Solid curves represent exponential fit to the experimental data.
Fig. 4.
Fig. 4. Fluorescence intermittency of QD without and with the plasmonic enhancement. (a,b) Time trace of the single QD fluorescence, collected with a binning time of 10 ms, for a particle located at the glass substrate of the confining cell (a) and elastically tapped near the apex of the GMP (b). (c,d) Histogram showing the intensity variations of the QD fluorescence for the curves shown in (a) and (b) indicating the “on” and “off” times of the QD fluorescence. (e,f) The probability density analysis of QD fluorescence time traces based on the constant thresholding method representing the sustained “on” (ton) and “off” (toff) times for a QD located at the glass substrate (e) and at the apex of the GMP (f).
Fig. 5.
Fig. 5. Photon antibunching characterization of QD emission. Fluorescence antibunching curves of a single QD located at the surface of the glass substrate forming the LC cell (a) and elastically trapped near the apex of GMP dispersed in LC (b). Faster decay of the QD fluorescence is evident in (b) relative to (a), as revealed by the relatively sharper dip in the antibunching curve shown in (b). Solid lines represent fit to the experimental data.

Metrics