Abstract

It is a challenge to acquire a snapshot image of very high resolutions in both spectral and spatial domain via a single short exposure. In this setting one cannot trade time for spectral resolution, such as via spectral bands scanning. Cameras of color filter arrays (CFA) (e.g., the Bayer mosaic) cannot obtain high spectral resolution. To overcome these difficulties, we propose a new multispectral imaging system that makes random linear broadband measurements of the spectrum via a nanostructured multispectral filter array (MSFA). These MSFA random measurements can be used by sparsity-based recovery algorithms to achieve much higher spectral resolution than conventional CFA cameras, without sacrificing spatial resolution. The key innovation is to jointly exploit both spatial and spectral sparsity properties that are inherent to spectral irradiance of natural objects. Experimental results establish the superior performance of the proposed multispectral imaging system over existing ones.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spatio-spectral binary patterns based on multispectral filter arrays for texture classification

Sofiane Mihoubi, Olivier Losson, Benjamin Mathon, and Ludovic Macaire
J. Opt. Soc. Am. A 35(9) 1532-1542 (2018)

Combining transverse field detectors and color filter arrays to improve multispectral imaging systems

Miguel A. Martínez, Eva M. Valero, Javier Hernández-Andrés, Javier Romero, and Giacomo Langfelder
Appl. Opt. 53(13) C14-C24 (2014)

Hybrid-resolution multispectral imaging using color filter array

Yuri Murakami, Masahiro Yamaguchi, and Nagaaki Ohyama
Opt. Express 20(7) 7173-7183 (2012)

References

  • View by:
  • |
  • |
  • |

  1. B. A. Spiering, “Multispectral imaging system,” U.S. Patent, No. 5,900,942 (1999).
  2. F. König and W. Praefcke, “Practice of multispectral image acquisition,” Proc. SPIE 3409, 34–41 (1998).
    [Crossref]
  3. N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
    [Crossref]
  4. M. Parmar, S. Lansel, and J. Farrell, “An led-based lighting system for acquiring multispectral scenes,” Proc. SPIE 8299, 82990P (2012).
    [Crossref]
  5. M. C. Lin, C. W. Tsai, and C. H. Tien, “Spectral image reconstruction by a tunable led illumination,” Proc. SPIE 8870, 88700C (2013).
    [Crossref]
  6. P. J. Lapray, X. Wang, J. B. Thomas, and P. Gouton, “Multispectral filter arrays: Recent advances and practical implementation,” Sensors 14(11), 21626–21659 (2014).
    [Crossref]
  7. J. Brauers and T. Aach, “A color filter array based multispectral camera,” in Proceedings of Workshop Farbbildverarbeitung, (Ilmenau, 2006), (2006), pp. 5–6.
  8. R. Ramanath, W. E. Snyder, and H. Qi, “Mosaic multispectral focal plane array cameras,” Proc. SPIE 5406, 701–712 (2004).
    [Crossref]
  9. L. Miao, H. Qi, and W. E. Snyder, “A generic method for generating multispectral filter arrays,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2004), pp. 3343–3346.
  10. L. Miao and H. Qi, “The design and evaluation of a generic method for generating mosaicked multispectral filter arrays,” IEEE Trans. on Image Process. 15(9), 2780–2791 (2006).
    [Crossref]
  11. S. W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, and T. Zhang, “Concept of a high-resolution miniature spectrometer using an integrated filter array,” Opt. Lett. 32(6), 632–634 (2007).
    [Crossref]
  12. J. Mercier, T. Townsend, and R. Sundberg, “Utility assessment of a multispectral snapshot lwir imager,” in Proceedings of Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (IEEE, 2010), pp. 1–5.
  13. Y. M. Lu, C. Fredembach, M. Vetterli, and S. Süsstrunk, “Designing color filter arrays for the joint capture of visible and near-infrared images,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2009), pp. 3797–3800.
  14. B. E. Bayer, “Color imaging array,” U.S. Patent, No. 3,971,065 (1976).
  15. S. H. Baek, I. Kim, D. Gutierrez, and M. H. Kim, “Compact single-shot hyperspectral imaging using a prism,” ACM Trans. Graph. 36(6), 1–12 (2017).
    [Crossref]
  16. X. Lin, Y. Liu, J. Wu, and Q. Dai, “Spatial-spectral encoded compressive hyperspectral imaging,” ACM Trans. Graph. 33(6), 1–11 (2014).
    [Crossref]
  17. E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
    [Crossref]
  18. E. J. Candès and J. Romberg, “Quantitative robust uncertainty principles and optimally sparse decompositions,” Found Comput. Math. 6(2), 227–254 (2006).
    [Crossref]
  19. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
    [Crossref]
  20. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
    [Crossref]
  21. M. Gehm, R. John, D. Brady, R. Willett, and T. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15(21), 14013–14027 (2007).
    [Crossref]
  22. A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47(10), B44–B51 (2008).
    [Crossref]
  23. J. Hershey and Z. Zhang, “Multispectral digital camera employing both visible light and non-visible light sensing on a single image sensor,” U.S. Patent, No. 7,460,160 (2008).
  24. H. K. Aggarwal and A. Majumdar, “Multi-spectral demosaicing technique for single-sensor imaging,” in Proceedings of National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (IEEE, 2013), pp. 1–4.
  25. Q. Chen, J. He, X. Shi, and Y. Ma, Application of Surface Plasmon Polaritons in CMOS Digital Imaging (INTECH Open Access Publisher, 2012).
  26. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref]
  27. H. Ghaemi, T. Thio, D. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
    [Crossref]
  28. K. Walls, Q. Chen, S. Collins, D. R. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photon. Technol. Lett. 24(7), 602–604 (2012).
    [Crossref]
  29. Q. Chen and D. R. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18(13), 14056–14062 (2010).
    [Crossref]
  30. Q. Chen, C. Martin, and D. Cumming, “Transfer printing of nanoplasmonic devices onto flexible polymer substrates from a rigid stamp,” Plasmonics 7(4), 755–761 (2012).
    [Crossref]
  31. Q. Chen, D. Das, D. Chitnis, K. Walls, T. Drysdale, S. Collins, and D. Cumming, “A cmos image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
    [Crossref]
  32. Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. Cumming, “Cmos photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett. 24(3), 197–199 (2012).
    [Crossref]
  33. X. Wu and G. Zhai, “On sparse representations of color images,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2011), pp. 1229–1232.
  34. D. Gao, X. Wu, G. Shi, and L. Zhang, “Color demosaicking with an image formation model and adaptive pca,” J. Vis. Commun. Image Represent. 23(7), 1019–1030 (2012).
    [Crossref]
  35. J. A. Tropp, A. C. Gilbert, and M. J. Strauss, “Algorithms for simultaneous sparse approximation,” Signal Process. 86(3), 572–588 (2006).
    [Crossref]
  36. J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local sparse models for image restoration,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2009), pp. 2272–2279.
  37. D. H. Marimont and B. A. Wandell, “Linear models of surface and illuminant spectra,” J. Opt. Soc. Am. A 9(11), 1905–1913 (1992).
    [Crossref]
  38. M. Parmar, S. Lansel, and B. Wandell, “Spatio-spectral reconstruction of the multispectral datacube using sparse recovery,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2008), pp. 473–476.
  39. J. F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding algorithm for matrix completion,” SIAM J. on Optim. 20(4), 1956–1982 (2010).
    [Crossref]
  40. S. Gu, L. Zhang, W. Zuo, and X. Feng, “Weighted nuclear norm minimization with application to image denoising,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 2862–2869.
  41. C. Li, “Compressive sensing for 3d data processing tasks: applications, models and algorithms,” Ph.D. thesis, Rice University (2011).
  42. F. Yasuma, T. Mitsunaga, D. Iso, and S. Nayar, “Generalized assorted pixel camera: Post-capture control of resolution, dynamic range and spectrum,” Tech. rep., Department of Computer Science, Columbia University (2008).
  43. http://www.cs.columbia.edu/CAVE/databases/multispectral/ .

2017 (1)

S. H. Baek, I. Kim, D. Gutierrez, and M. H. Kim, “Compact single-shot hyperspectral imaging using a prism,” ACM Trans. Graph. 36(6), 1–12 (2017).
[Crossref]

2014 (2)

X. Lin, Y. Liu, J. Wu, and Q. Dai, “Spatial-spectral encoded compressive hyperspectral imaging,” ACM Trans. Graph. 33(6), 1–11 (2014).
[Crossref]

P. J. Lapray, X. Wang, J. B. Thomas, and P. Gouton, “Multispectral filter arrays: Recent advances and practical implementation,” Sensors 14(11), 21626–21659 (2014).
[Crossref]

2013 (1)

M. C. Lin, C. W. Tsai, and C. H. Tien, “Spectral image reconstruction by a tunable led illumination,” Proc. SPIE 8870, 88700C (2013).
[Crossref]

2012 (6)

M. Parmar, S. Lansel, and J. Farrell, “An led-based lighting system for acquiring multispectral scenes,” Proc. SPIE 8299, 82990P (2012).
[Crossref]

Q. Chen, C. Martin, and D. Cumming, “Transfer printing of nanoplasmonic devices onto flexible polymer substrates from a rigid stamp,” Plasmonics 7(4), 755–761 (2012).
[Crossref]

Q. Chen, D. Das, D. Chitnis, K. Walls, T. Drysdale, S. Collins, and D. Cumming, “A cmos image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. Cumming, “Cmos photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett. 24(3), 197–199 (2012).
[Crossref]

D. Gao, X. Wu, G. Shi, and L. Zhang, “Color demosaicking with an image formation model and adaptive pca,” J. Vis. Commun. Image Represent. 23(7), 1019–1030 (2012).
[Crossref]

K. Walls, Q. Chen, S. Collins, D. R. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photon. Technol. Lett. 24(7), 602–604 (2012).
[Crossref]

2010 (2)

Q. Chen and D. R. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18(13), 14056–14062 (2010).
[Crossref]

J. F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding algorithm for matrix completion,” SIAM J. on Optim. 20(4), 1956–1982 (2010).
[Crossref]

2008 (2)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47(10), B44–B51 (2008).
[Crossref]

2007 (2)

2006 (5)

L. Miao and H. Qi, “The design and evaluation of a generic method for generating mosaicked multispectral filter arrays,” IEEE Trans. on Image Process. 15(9), 2780–2791 (2006).
[Crossref]

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
[Crossref]

E. J. Candès and J. Romberg, “Quantitative robust uncertainty principles and optimally sparse decompositions,” Found Comput. Math. 6(2), 227–254 (2006).
[Crossref]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
[Crossref]

J. A. Tropp, A. C. Gilbert, and M. J. Strauss, “Algorithms for simultaneous sparse approximation,” Signal Process. 86(3), 572–588 (2006).
[Crossref]

2004 (1)

R. Ramanath, W. E. Snyder, and H. Qi, “Mosaic multispectral focal plane array cameras,” Proc. SPIE 5406, 701–712 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

2000 (1)

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

1998 (2)

F. König and W. Praefcke, “Practice of multispectral image acquisition,” Proc. SPIE 3409, 34–41 (1998).
[Crossref]

H. Ghaemi, T. Thio, D. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

1992 (1)

Aach, T.

J. Brauers and T. Aach, “A color filter array based multispectral camera,” in Proceedings of Workshop Farbbildverarbeitung, (Ilmenau, 2006), (2006), pp. 5–6.

Aggarwal, H. K.

H. K. Aggarwal and A. Majumdar, “Multi-spectral demosaicing technique for single-sensor imaging,” in Proceedings of National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (IEEE, 2013), pp. 1–4.

Bach, F.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local sparse models for image restoration,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2009), pp. 2272–2279.

Baek, S. H.

S. H. Baek, I. Kim, D. Gutierrez, and M. H. Kim, “Compact single-shot hyperspectral imaging using a prism,” ACM Trans. Graph. 36(6), 1–12 (2017).
[Crossref]

Baraniuk, R. G.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Bayer, B. E.

B. E. Bayer, “Color imaging array,” U.S. Patent, No. 3,971,065 (1976).

Brady, D.

Brauers, J.

J. Brauers and T. Aach, “A color filter array based multispectral camera,” in Proceedings of Workshop Farbbildverarbeitung, (Ilmenau, 2006), (2006), pp. 5–6.

Cai, J. F.

J. F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding algorithm for matrix completion,” SIAM J. on Optim. 20(4), 1956–1982 (2010).
[Crossref]

Candès, E. J.

J. F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding algorithm for matrix completion,” SIAM J. on Optim. 20(4), 1956–1982 (2010).
[Crossref]

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
[Crossref]

E. J. Candès and J. Romberg, “Quantitative robust uncertainty principles and optimally sparse decompositions,” Found Comput. Math. 6(2), 227–254 (2006).
[Crossref]

Chen, Q.

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. Cumming, “Cmos photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett. 24(3), 197–199 (2012).
[Crossref]

K. Walls, Q. Chen, S. Collins, D. R. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photon. Technol. Lett. 24(7), 602–604 (2012).
[Crossref]

Q. Chen, C. Martin, and D. Cumming, “Transfer printing of nanoplasmonic devices onto flexible polymer substrates from a rigid stamp,” Plasmonics 7(4), 755–761 (2012).
[Crossref]

Q. Chen, D. Das, D. Chitnis, K. Walls, T. Drysdale, S. Collins, and D. Cumming, “A cmos image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

Q. Chen and D. R. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18(13), 14056–14062 (2010).
[Crossref]

Q. Chen, J. He, X. Shi, and Y. Ma, Application of Surface Plasmon Polaritons in CMOS Digital Imaging (INTECH Open Access Publisher, 2012).

Chen, X.

Chitnis, D.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. Drysdale, S. Collins, and D. Cumming, “A cmos image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. Cumming, “Cmos photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett. 24(3), 197–199 (2012).
[Crossref]

Collins, S.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. Drysdale, S. Collins, and D. Cumming, “A cmos image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. Cumming, “Cmos photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett. 24(3), 197–199 (2012).
[Crossref]

K. Walls, Q. Chen, S. Collins, D. R. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photon. Technol. Lett. 24(7), 602–604 (2012).
[Crossref]

Cumming, D.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. Drysdale, S. Collins, and D. Cumming, “A cmos image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

Q. Chen, C. Martin, and D. Cumming, “Transfer printing of nanoplasmonic devices onto flexible polymer substrates from a rigid stamp,” Plasmonics 7(4), 755–761 (2012).
[Crossref]

Cumming, D. R.

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. Cumming, “Cmos photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett. 24(3), 197–199 (2012).
[Crossref]

K. Walls, Q. Chen, S. Collins, D. R. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photon. Technol. Lett. 24(7), 602–604 (2012).
[Crossref]

Q. Chen and D. R. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18(13), 14056–14062 (2010).
[Crossref]

Dai, Q.

X. Lin, Y. Liu, J. Wu, and Q. Dai, “Spatial-spectral encoded compressive hyperspectral imaging,” ACM Trans. Graph. 33(6), 1–11 (2014).
[Crossref]

Das, D.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. Drysdale, S. Collins, and D. Cumming, “A cmos image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Donoho, D. L.

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
[Crossref]

Drysdale, T.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. Drysdale, S. Collins, and D. Cumming, “A cmos image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

Drysdale, T. D.

K. Walls, Q. Chen, S. Collins, D. R. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photon. Technol. Lett. 24(7), 602–604 (2012).
[Crossref]

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. Cumming, “Cmos photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett. 24(3), 197–199 (2012).
[Crossref]

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

H. Ghaemi, T. Thio, D. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Farrell, J.

M. Parmar, S. Lansel, and J. Farrell, “An led-based lighting system for acquiring multispectral scenes,” Proc. SPIE 8299, 82990P (2012).
[Crossref]

Feng, X.

S. Gu, L. Zhang, W. Zuo, and X. Feng, “Weighted nuclear norm minimization with application to image denoising,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 2862–2869.

Fredembach, C.

Y. M. Lu, C. Fredembach, M. Vetterli, and S. Süsstrunk, “Designing color filter arrays for the joint capture of visible and near-infrared images,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2009), pp. 3797–3800.

Gao, D.

D. Gao, X. Wu, G. Shi, and L. Zhang, “Color demosaicking with an image formation model and adaptive pca,” J. Vis. Commun. Image Represent. 23(7), 1019–1030 (2012).
[Crossref]

Gat, N.

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

Gehm, M.

Ghaemi, H.

H. Ghaemi, T. Thio, D. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Gilbert, A. C.

J. A. Tropp, A. C. Gilbert, and M. J. Strauss, “Algorithms for simultaneous sparse approximation,” Signal Process. 86(3), 572–588 (2006).
[Crossref]

Gouton, P.

P. J. Lapray, X. Wang, J. B. Thomas, and P. Gouton, “Multispectral filter arrays: Recent advances and practical implementation,” Sensors 14(11), 21626–21659 (2014).
[Crossref]

Grupp, D.

H. Ghaemi, T. Thio, D. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Gu, S.

S. Gu, L. Zhang, W. Zuo, and X. Feng, “Weighted nuclear norm minimization with application to image denoising,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 2862–2869.

Gutierrez, D.

S. H. Baek, I. Kim, D. Gutierrez, and M. H. Kim, “Compact single-shot hyperspectral imaging using a prism,” ACM Trans. Graph. 36(6), 1–12 (2017).
[Crossref]

He, J.

Q. Chen, J. He, X. Shi, and Y. Ma, Application of Surface Plasmon Polaritons in CMOS Digital Imaging (INTECH Open Access Publisher, 2012).

Hershey, J.

J. Hershey and Z. Zhang, “Multispectral digital camera employing both visible light and non-visible light sensing on a single image sensor,” U.S. Patent, No. 7,460,160 (2008).

Iso, D.

F. Yasuma, T. Mitsunaga, D. Iso, and S. Nayar, “Generalized assorted pixel camera: Post-capture control of resolution, dynamic range and spectrum,” Tech. rep., Department of Computer Science, Columbia University (2008).

John, R.

Kelly, K. E.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Kim, I.

S. H. Baek, I. Kim, D. Gutierrez, and M. H. Kim, “Compact single-shot hyperspectral imaging using a prism,” ACM Trans. Graph. 36(6), 1–12 (2017).
[Crossref]

Kim, M. H.

S. H. Baek, I. Kim, D. Gutierrez, and M. H. Kim, “Compact single-shot hyperspectral imaging using a prism,” ACM Trans. Graph. 36(6), 1–12 (2017).
[Crossref]

König, F.

F. König and W. Praefcke, “Practice of multispectral image acquisition,” Proc. SPIE 3409, 34–41 (1998).
[Crossref]

Lansel, S.

M. Parmar, S. Lansel, and J. Farrell, “An led-based lighting system for acquiring multispectral scenes,” Proc. SPIE 8299, 82990P (2012).
[Crossref]

M. Parmar, S. Lansel, and B. Wandell, “Spatio-spectral reconstruction of the multispectral datacube using sparse recovery,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2008), pp. 473–476.

Lapray, P. J.

P. J. Lapray, X. Wang, J. B. Thomas, and P. Gouton, “Multispectral filter arrays: Recent advances and practical implementation,” Sensors 14(11), 21626–21659 (2014).
[Crossref]

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Lezec, H.

H. Ghaemi, T. Thio, D. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Li, C.

C. Li, “Compressive sensing for 3d data processing tasks: applications, models and algorithms,” Ph.D. thesis, Rice University (2011).

Li, M.

Lin, M. C.

M. C. Lin, C. W. Tsai, and C. H. Tien, “Spectral image reconstruction by a tunable led illumination,” Proc. SPIE 8870, 88700C (2013).
[Crossref]

Lin, X.

X. Lin, Y. Liu, J. Wu, and Q. Dai, “Spatial-spectral encoded compressive hyperspectral imaging,” ACM Trans. Graph. 33(6), 1–11 (2014).
[Crossref]

Liu, Y.

X. Lin, Y. Liu, J. Wu, and Q. Dai, “Spatial-spectral encoded compressive hyperspectral imaging,” ACM Trans. Graph. 33(6), 1–11 (2014).
[Crossref]

Lu, W.

Lu, Y. M.

Y. M. Lu, C. Fredembach, M. Vetterli, and S. Süsstrunk, “Designing color filter arrays for the joint capture of visible and near-infrared images,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2009), pp. 3797–3800.

Ma, Y.

Q. Chen, J. He, X. Shi, and Y. Ma, Application of Surface Plasmon Polaritons in CMOS Digital Imaging (INTECH Open Access Publisher, 2012).

Mairal, J.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local sparse models for image restoration,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2009), pp. 2272–2279.

Majumdar, A.

H. K. Aggarwal and A. Majumdar, “Multi-spectral demosaicing technique for single-sensor imaging,” in Proceedings of National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (IEEE, 2013), pp. 1–4.

Marimont, D. H.

Martin, C.

Q. Chen, C. Martin, and D. Cumming, “Transfer printing of nanoplasmonic devices onto flexible polymer substrates from a rigid stamp,” Plasmonics 7(4), 755–761 (2012).
[Crossref]

Mercier, J.

J. Mercier, T. Townsend, and R. Sundberg, “Utility assessment of a multispectral snapshot lwir imager,” in Proceedings of Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (IEEE, 2010), pp. 1–5.

Miao, L.

L. Miao and H. Qi, “The design and evaluation of a generic method for generating mosaicked multispectral filter arrays,” IEEE Trans. on Image Process. 15(9), 2780–2791 (2006).
[Crossref]

L. Miao, H. Qi, and W. E. Snyder, “A generic method for generating multispectral filter arrays,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2004), pp. 3343–3346.

Mitsunaga, T.

F. Yasuma, T. Mitsunaga, D. Iso, and S. Nayar, “Generalized assorted pixel camera: Post-capture control of resolution, dynamic range and spectrum,” Tech. rep., Department of Computer Science, Columbia University (2008).

Nayar, S.

F. Yasuma, T. Mitsunaga, D. Iso, and S. Nayar, “Generalized assorted pixel camera: Post-capture control of resolution, dynamic range and spectrum,” Tech. rep., Department of Computer Science, Columbia University (2008).

Parmar, M.

M. Parmar, S. Lansel, and J. Farrell, “An led-based lighting system for acquiring multispectral scenes,” Proc. SPIE 8299, 82990P (2012).
[Crossref]

M. Parmar, S. Lansel, and B. Wandell, “Spatio-spectral reconstruction of the multispectral datacube using sparse recovery,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2008), pp. 473–476.

Ponce, J.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local sparse models for image restoration,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2009), pp. 2272–2279.

Praefcke, W.

F. König and W. Praefcke, “Practice of multispectral image acquisition,” Proc. SPIE 3409, 34–41 (1998).
[Crossref]

Qi, H.

L. Miao and H. Qi, “The design and evaluation of a generic method for generating mosaicked multispectral filter arrays,” IEEE Trans. on Image Process. 15(9), 2780–2791 (2006).
[Crossref]

R. Ramanath, W. E. Snyder, and H. Qi, “Mosaic multispectral focal plane array cameras,” Proc. SPIE 5406, 701–712 (2004).
[Crossref]

L. Miao, H. Qi, and W. E. Snyder, “A generic method for generating multispectral filter arrays,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2004), pp. 3343–3346.

Ramanath, R.

R. Ramanath, W. E. Snyder, and H. Qi, “Mosaic multispectral focal plane array cameras,” Proc. SPIE 5406, 701–712 (2004).
[Crossref]

Romberg, J.

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
[Crossref]

E. J. Candès and J. Romberg, “Quantitative robust uncertainty principles and optimally sparse decompositions,” Found Comput. Math. 6(2), 227–254 (2006).
[Crossref]

Sapiro, G.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local sparse models for image restoration,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2009), pp. 2272–2279.

Schulz, T.

Shen, Z.

J. F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding algorithm for matrix completion,” SIAM J. on Optim. 20(4), 1956–1982 (2010).
[Crossref]

Shi, G.

D. Gao, X. Wu, G. Shi, and L. Zhang, “Color demosaicking with an image formation model and adaptive pca,” J. Vis. Commun. Image Represent. 23(7), 1019–1030 (2012).
[Crossref]

Shi, X.

Q. Chen, J. He, X. Shi, and Y. Ma, Application of Surface Plasmon Polaritons in CMOS Digital Imaging (INTECH Open Access Publisher, 2012).

Snyder, W. E.

R. Ramanath, W. E. Snyder, and H. Qi, “Mosaic multispectral focal plane array cameras,” Proc. SPIE 5406, 701–712 (2004).
[Crossref]

L. Miao, H. Qi, and W. E. Snyder, “A generic method for generating multispectral filter arrays,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2004), pp. 3343–3346.

Spiering, B. A.

B. A. Spiering, “Multispectral imaging system,” U.S. Patent, No. 5,900,942 (1999).

Strauss, M. J.

J. A. Tropp, A. C. Gilbert, and M. J. Strauss, “Algorithms for simultaneous sparse approximation,” Signal Process. 86(3), 572–588 (2006).
[Crossref]

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Sundberg, R.

J. Mercier, T. Townsend, and R. Sundberg, “Utility assessment of a multispectral snapshot lwir imager,” in Proceedings of Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (IEEE, 2010), pp. 1–5.

Süsstrunk, S.

Y. M. Lu, C. Fredembach, M. Vetterli, and S. Süsstrunk, “Designing color filter arrays for the joint capture of visible and near-infrared images,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2009), pp. 3797–3800.

Takhar, D.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Tao, T.

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
[Crossref]

Thio, T.

H. Ghaemi, T. Thio, D. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Thomas, J. B.

P. J. Lapray, X. Wang, J. B. Thomas, and P. Gouton, “Multispectral filter arrays: Recent advances and practical implementation,” Sensors 14(11), 21626–21659 (2014).
[Crossref]

Tien, C. H.

M. C. Lin, C. W. Tsai, and C. H. Tien, “Spectral image reconstruction by a tunable led illumination,” Proc. SPIE 8870, 88700C (2013).
[Crossref]

Townsend, T.

J. Mercier, T. Townsend, and R. Sundberg, “Utility assessment of a multispectral snapshot lwir imager,” in Proceedings of Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (IEEE, 2010), pp. 1–5.

Tropp, J. A.

J. A. Tropp, A. C. Gilbert, and M. J. Strauss, “Algorithms for simultaneous sparse approximation,” Signal Process. 86(3), 572–588 (2006).
[Crossref]

Tsai, C. W.

M. C. Lin, C. W. Tsai, and C. H. Tien, “Spectral image reconstruction by a tunable led illumination,” Proc. SPIE 8870, 88700C (2013).
[Crossref]

Vetterli, M.

Y. M. Lu, C. Fredembach, M. Vetterli, and S. Süsstrunk, “Designing color filter arrays for the joint capture of visible and near-infrared images,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2009), pp. 3797–3800.

Wagadarikar, A.

Walls, K.

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. Cumming, “Cmos photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett. 24(3), 197–199 (2012).
[Crossref]

K. Walls, Q. Chen, S. Collins, D. R. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photon. Technol. Lett. 24(7), 602–604 (2012).
[Crossref]

Q. Chen, D. Das, D. Chitnis, K. Walls, T. Drysdale, S. Collins, and D. Cumming, “A cmos image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

Wandell, B.

M. Parmar, S. Lansel, and B. Wandell, “Spatio-spectral reconstruction of the multispectral datacube using sparse recovery,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2008), pp. 473–476.

Wandell, B. A.

Wang, H.

Wang, S. W.

Wang, X.

P. J. Lapray, X. Wang, J. B. Thomas, and P. Gouton, “Multispectral filter arrays: Recent advances and practical implementation,” Sensors 14(11), 21626–21659 (2014).
[Crossref]

Willett, R.

Wu, J.

X. Lin, Y. Liu, J. Wu, and Q. Dai, “Spatial-spectral encoded compressive hyperspectral imaging,” ACM Trans. Graph. 33(6), 1–11 (2014).
[Crossref]

Wu, X.

D. Gao, X. Wu, G. Shi, and L. Zhang, “Color demosaicking with an image formation model and adaptive pca,” J. Vis. Commun. Image Represent. 23(7), 1019–1030 (2012).
[Crossref]

X. Wu and G. Zhai, “On sparse representations of color images,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2011), pp. 1229–1232.

Xia, C.

Yasuma, F.

F. Yasuma, T. Mitsunaga, D. Iso, and S. Nayar, “Generalized assorted pixel camera: Post-capture control of resolution, dynamic range and spectrum,” Tech. rep., Department of Computer Science, Columbia University (2008).

Zhai, G.

X. Wu and G. Zhai, “On sparse representations of color images,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2011), pp. 1229–1232.

Zhang, L.

D. Gao, X. Wu, G. Shi, and L. Zhang, “Color demosaicking with an image formation model and adaptive pca,” J. Vis. Commun. Image Represent. 23(7), 1019–1030 (2012).
[Crossref]

S. Gu, L. Zhang, W. Zuo, and X. Feng, “Weighted nuclear norm minimization with application to image denoising,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 2862–2869.

Zhang, T.

Zhang, Z.

J. Hershey and Z. Zhang, “Multispectral digital camera employing both visible light and non-visible light sensing on a single image sensor,” U.S. Patent, No. 7,460,160 (2008).

Zheng, W.

Zisserman, A.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local sparse models for image restoration,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2009), pp. 2272–2279.

Zuo, W.

S. Gu, L. Zhang, W. Zuo, and X. Feng, “Weighted nuclear norm minimization with application to image denoising,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 2862–2869.

ACM Trans. Graph. (2)

S. H. Baek, I. Kim, D. Gutierrez, and M. H. Kim, “Compact single-shot hyperspectral imaging using a prism,” ACM Trans. Graph. 36(6), 1–12 (2017).
[Crossref]

X. Lin, Y. Liu, J. Wu, and Q. Dai, “Spatial-spectral encoded compressive hyperspectral imaging,” ACM Trans. Graph. 33(6), 1–11 (2014).
[Crossref]

Appl. Opt. (1)

Found Comput. Math. (1)

E. J. Candès and J. Romberg, “Quantitative robust uncertainty principles and optimally sparse decompositions,” Found Comput. Math. 6(2), 227–254 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (2)

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. Cumming, “Cmos photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett. 24(3), 197–199 (2012).
[Crossref]

K. Walls, Q. Chen, S. Collins, D. R. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photon. Technol. Lett. 24(7), 602–604 (2012).
[Crossref]

IEEE Signal Process. Mag. (1)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

IEEE Trans. Inf. Theory (2)

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
[Crossref]

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489–509 (2006).
[Crossref]

IEEE Trans. on Image Process. (1)

L. Miao and H. Qi, “The design and evaluation of a generic method for generating mosaicked multispectral filter arrays,” IEEE Trans. on Image Process. 15(9), 2780–2791 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Vis. Commun. Image Represent. (1)

D. Gao, X. Wu, G. Shi, and L. Zhang, “Color demosaicking with an image formation model and adaptive pca,” J. Vis. Commun. Image Represent. 23(7), 1019–1030 (2012).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

H. Ghaemi, T. Thio, D. Grupp, T. W. Ebbesen, and H. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Plasmonics (2)

Q. Chen, C. Martin, and D. Cumming, “Transfer printing of nanoplasmonic devices onto flexible polymer substrates from a rigid stamp,” Plasmonics 7(4), 755–761 (2012).
[Crossref]

Q. Chen, D. Das, D. Chitnis, K. Walls, T. Drysdale, S. Collins, and D. Cumming, “A cmos image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

Proc. SPIE (5)

R. Ramanath, W. E. Snyder, and H. Qi, “Mosaic multispectral focal plane array cameras,” Proc. SPIE 5406, 701–712 (2004).
[Crossref]

F. König and W. Praefcke, “Practice of multispectral image acquisition,” Proc. SPIE 3409, 34–41 (1998).
[Crossref]

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

M. Parmar, S. Lansel, and J. Farrell, “An led-based lighting system for acquiring multispectral scenes,” Proc. SPIE 8299, 82990P (2012).
[Crossref]

M. C. Lin, C. W. Tsai, and C. H. Tien, “Spectral image reconstruction by a tunable led illumination,” Proc. SPIE 8870, 88700C (2013).
[Crossref]

Sensors (1)

P. J. Lapray, X. Wang, J. B. Thomas, and P. Gouton, “Multispectral filter arrays: Recent advances and practical implementation,” Sensors 14(11), 21626–21659 (2014).
[Crossref]

SIAM J. on Optim. (1)

J. F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding algorithm for matrix completion,” SIAM J. on Optim. 20(4), 1956–1982 (2010).
[Crossref]

Signal Process. (1)

J. A. Tropp, A. C. Gilbert, and M. J. Strauss, “Algorithms for simultaneous sparse approximation,” Signal Process. 86(3), 572–588 (2006).
[Crossref]

Other (16)

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local sparse models for image restoration,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 2009), pp. 2272–2279.

J. Hershey and Z. Zhang, “Multispectral digital camera employing both visible light and non-visible light sensing on a single image sensor,” U.S. Patent, No. 7,460,160 (2008).

H. K. Aggarwal and A. Majumdar, “Multi-spectral demosaicing technique for single-sensor imaging,” in Proceedings of National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (IEEE, 2013), pp. 1–4.

Q. Chen, J. He, X. Shi, and Y. Ma, Application of Surface Plasmon Polaritons in CMOS Digital Imaging (INTECH Open Access Publisher, 2012).

X. Wu and G. Zhai, “On sparse representations of color images,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2011), pp. 1229–1232.

S. Gu, L. Zhang, W. Zuo, and X. Feng, “Weighted nuclear norm minimization with application to image denoising,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2014), pp. 2862–2869.

C. Li, “Compressive sensing for 3d data processing tasks: applications, models and algorithms,” Ph.D. thesis, Rice University (2011).

F. Yasuma, T. Mitsunaga, D. Iso, and S. Nayar, “Generalized assorted pixel camera: Post-capture control of resolution, dynamic range and spectrum,” Tech. rep., Department of Computer Science, Columbia University (2008).

http://www.cs.columbia.edu/CAVE/databases/multispectral/ .

M. Parmar, S. Lansel, and B. Wandell, “Spatio-spectral reconstruction of the multispectral datacube using sparse recovery,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2008), pp. 473–476.

J. Brauers and T. Aach, “A color filter array based multispectral camera,” in Proceedings of Workshop Farbbildverarbeitung, (Ilmenau, 2006), (2006), pp. 5–6.

J. Mercier, T. Townsend, and R. Sundberg, “Utility assessment of a multispectral snapshot lwir imager,” in Proceedings of Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (IEEE, 2010), pp. 1–5.

Y. M. Lu, C. Fredembach, M. Vetterli, and S. Süsstrunk, “Designing color filter arrays for the joint capture of visible and near-infrared images,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2009), pp. 3797–3800.

B. E. Bayer, “Color imaging array,” U.S. Patent, No. 3,971,065 (1976).

L. Miao, H. Qi, and W. E. Snyder, “A generic method for generating multispectral filter arrays,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2004), pp. 3343–3346.

B. A. Spiering, “Multispectral imaging system,” U.S. Patent, No. 5,900,942 (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. A multispectral filter array and the constituent narrowband filters with the peak wavelength evenly shifted.
Fig. 2.
Fig. 2. A typical multispectral imaging system of spatial multiplexing type.
Fig. 3.
Fig. 3. Concept schematic of nanostructured MSFA with SPP-based broadband filters.
Fig. 4.
Fig. 4. Nine SPP-based broadband filters.
Fig. 5.
Fig. 5. Color image versions of the test set in Table 1.
Fig. 6.
Fig. 6. MSE of each of the 9 spectral bands in the test multispectral image Fig. 5(a).
Fig. 7.
Fig. 7. Recovered spectra of two selected patches in the test multispectral image Fig. 5(d).
Fig. 8.
Fig. 8. Recovered spectra of two selected patches in the test multispectral image Fig. 5(h).
Fig. 9.
Fig. 9. Recovered spectra of two selected patches in the test multispectral image Fig. 5(i).
Fig. 10.
Fig. 10. Recovered spectra of two selected patches in the test multispectral image Fig. 5(k).

Tables (3)

Tables Icon

Table 1. PSNR results of the test set in Fig. 5.

Tables Icon

Table 2. Averaged mutual correlations of the narrow band MSFA method and the proposed random MSFA method (no filter model errors, and σ = 5 ) on the test set in Fig. 5.

Tables Icon

Table 3. MSE results for all 16 images in Fig. 5.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

y i = Λ γ i ( λ ) l ( λ ) x i ( λ ) d λ
y i = k = 1 K Λ k γ i ( λ ) l ( λ ) x i ( λ ) d λ = k = 1 K x k , i Λ k γ i ( λ ) l ( λ ) d λ ,
a k , i = Λ k γ i ( λ ) l ( λ ) d λ ,
y i = k = 1 K a k , i x k , i .
λ p e a k = 2 π ϵ m ϵ d ϵ m + ϵ d ( k | | cos ϕ + i 2 π a x + j 2 π a x ) 2 + ( k | | sin ϕ i 2 π a y + j 2 π a y ) 2 ,
x k , i = τ k , i cos α i + κ k , i η cos s β i ,
x k = ( x k , 1 , x k , 2 , , x k , N ) T = τ k ( g 1 , g 2 , , g N ) T + κ k ( h 1 , h 2 , , h N ) T = τ k g + κ k h ,
D ( x ) = [ 2 x 1 , 2 x 2 , , 2 x K ]
D ( x ) 0 , 2 = # { i | r i 2 0 , i = 1 , 2 , , N } ,
D ( x ) 1 , 2 = i = 1 N r i 2 .
min     D ( x ) 1 , 2 s . t .     y i = k = 1 K a k , i x k , i ,         i = 1 , 2 , , N .
min     D ( x ) 1 , 2 s . t .     y i = k = 1 K a k , i x k , i ,         i = 1 , 2 , , N , R a n k ( x ) R ,
min     D ( x ) 1 , 2 + ω x s . t .     y i = k = 1 K a k , i x k , i ,         i = 1 , 2 , , N .
ρ = 1 N i = 1 N k = 1 K x k , i y k , i k = 1 K x k , i 2 k = 1 K y k , i 2 .

Metrics