Abstract

We report on an ytterbium-free erbium-doped aluminophosphosilicate all-fiber laser, producing an output power of 25 W at a wavelength of 1584 nm with a slope efficiency of 30% with respect to the 976 nm absorbed pump power. The simple cavity design proposed takes advantage of fiber Bragg gratings written directly in the gain fiber. The single-mode erbium-doped aluminophosphosilicate fiber was fabricated in-house and was doped with 0.06 mol.% of Er2O3, 1.77 mol.% of Al2O3 and 1.04 mol.% of P2O5. The incorporation of aluminium and phosphorus into the fiber core allowed for an increased concentration of erbium without inducing significant clustering, while keeping the numerical aperture low to ensure a single-mode laser operation.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
20 W splice-free erbium-doped all-fiber laser operating at 1610 nm

Louis-Philippe Pleau, Pascal Paradis, Jean-Simon Freniére, Mathieu Huneault, Samuel Gouin, Salah Mohammed Aljamimi, Yigit Ozan Aydin, Simon Duval, Jean-Christophe Gauthier, Joé Habel, Frédéric Jobin, Frédéric Maes, Louis-Rafaël Robichaud, Nicolas Grégoire, Steeve Morency, and Martin Bernier
Opt. Express 26(17) 22378-22388 (2018)

Multi-kW Yb-doped aluminophosphosilicate fiber

Shuang Liu, Huan Zhan, Kun Peng, Yuwei Li, Shihao Sun, Jiali Jiang, Li Ni, Xiaolong Wang, Juan Yu, Lei Jiang, Rihong Zhu, Jianjun Wang, Feng Jing, and Aoxiang Lin
Opt. Mater. Express 8(8) 2114-2124 (2018)

Fabrication of Yb/Ce/P co-doped fluoroaluminosilicate fiber with excellent photodarkening suppression and kW-level laser performance

Rui Liu, Dapeng Yan, Ming Chen, Jianming Wang, Jianhong Shi, and Qixin Zhu
Opt. Mater. Express 10(3) 777-786 (2020)

References

  • View by:
  • |
  • |
  • |

  1. G. Ziegelberger, “Icnirp guidelines on limits of exposure to laser radiation of wavelengths between 180 nm and 1,000, µm,” Health Phys. 105(3), 271–295 (2013).
    [Crossref]
  2. R. Frehlich, S. M. Hannon, and S. W. Henderson, “Coherent doppler lidar measurements of winds in the weak signal regime,” Appl. Opt. 36(15), 3491–3499 (1997).
    [Crossref]
  3. H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
    [Crossref]
  4. M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93 µm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett. 33(12), 1336–1338 (2008).
    [Crossref]
  5. E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5(1), 73–75 (1993).
    [Crossref]
  6. H. Lin, Y. Feng, Y. Feng, P. Barua, J. K. Sahu, and J. Nilsson, “656 w er-doped, yb-free large-core fiber laser,” Opt. Lett. 43(13), 3080–3083 (2018).
    [Crossref]
  7. M. A. Jebali, J.-N. Maran, and S. LaRochelle, “264 w output power at 1585 nm in erayb codoped fiber laser using in-band pumping,” Opt. Lett. 39(13), 3974–3977 (2014).
    [Crossref]
  8. Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-w continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
    [Crossref]
  9. P. Scrivener, E. Tarbox, and P. Maton, “Narrow linewidth tunable operation of er/sup 3+/-doped single-mode fibre laser,” Electron. Lett. 25(8), 549–550 (1989).
    [Crossref]
  10. G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nilsson, and D. N. Payne, “Fabrication and characterization of yb3+: Er3+ phosphosilicate fibers for lasers,” J. Lightwave Technol. 16(11), 1990–2001 (1998).
    [Crossref]
  11. F. Funabiki, T. Kamiya, and H. Hosono, “Doping effects in amorphous oxides,” J. Ceram. Soc. Jpn. 120(1407), 447–457 (2012).
    [Crossref]
  12. I. Savelii, L. Bigot, B. Capoen, C. Gonnet, C. Chanéac, E. Burova, A. Pastouret, H. El-Hamzaoui, and M. Bouazaoui, “Benefit of rare-earth “smart doping” and material nanostructuring for the next generation of er-doped fibers,” Nanoscale Res. Lett. 12(1), 206 (2017).
    [Crossref]
  13. M. E. Likhachev, M. M. Bubnov, K. V. Zotov, D. S. Lipatov, M. V. Yashkov, and A. N. Guryanov, “Effect of the alpo 4 join on the pump-to-signal conversion efficiency in heavily er-doped fibers,” Opt. Lett. 34(21), 3355–3357 (2009).
    [Crossref]
  14. T. Aboud, “Aluminophosphosilicate glasses as an alternative source for microporous materials of technically attractive compositions and morphological characteristics,” in Mechanical and Electrical Technology VII, vol. 799of Applied Mechanics and Materials (Trans Tech Publications Ltd, 2015), pp. 145–152.
  15. S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kw 20/400 yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photonics J. 10(5), 1–8 (2018).
    [Crossref]
  16. L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performace cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42(5), 432–436 (2012).
    [Crossref]
  17. L.-P. Pleau, P. Paradis, J.-S. Freniére, M. Huneault, S. Gouin, S. M. Aljamimi, Y. O. Aydin, S. Duval, J.-C. Gauthier, J. Habel, F. Jobin, F. Maes, L.-R. Robichaud, N. Grégoire, S. Morency, and M. Bernier, “20 w splice-free erbium-doped all-fiber laser operating at 1610 nm,” Opt. Express 26(17), 22378–22388 (2018).
    [Crossref]
  18. W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of er3+ doped silica fibers,” IEEE J. Quantum Electron. 27(4), 1004–1010 (1991).
    [Crossref]
  19. J. Nilsson, B. Jaskorzynska, and P. Blixt, “Implications of fair-induced quenching for erbium-doped fiber amplifiers,” in Optical Amplifiers and Their Applications, (Optical Society of America, 1993), p. MD19.
  20. M. Bernier, F. Trépanier, J. Carrier, and R. Vallée, “High mechanical strength fiber bragg gratings made with infrared femtosecond pulses and a phase mask,” Opt. Lett. 39(12), 3646–3649 (2014).
    [Crossref]
  21. W. Loh, B. Samson, L. Dong, G. Cowle, and K. Hsu, “High performance single frequency fiber grating-based erbium: ytterbium-codoped fiber lasers,” J. Lightwave Technol. 16(1), 114–118 (1998).
    [Crossref]
  22. S. Kuhn, S. Hein, C. Hupel, J. Nold, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Modelling the refractive index behavior of al,p-doped sio2, fabricated by means of all-solution doping, in the vicinity of al:p = 1:1,” Opt. Mater. Express 8(5), 1328–1340 (2018).
    [Crossref]
  23. M. Bernier, R. Vallée, B. Morasse, C. Desrosiers, A. Saliminia, and Y. Sheng, “Ytterbium fiber laser based on first-order fiber bragg gratings written with 400nm femtosecond pulses and a phase-mask,” Opt. Express 17(21), 18887–18893 (2009).
    [Crossref]
  24. G. Skolianos, A. Arora, M. Bernier, and M. J. F. Digonnet, “Slowing down light to 300 km/s in a deuterium-loaded fiber bragg grating,” Opt. Lett. 40(7), 1524–1527 (2015).
    [Crossref]

2018 (4)

2017 (1)

I. Savelii, L. Bigot, B. Capoen, C. Gonnet, C. Chanéac, E. Burova, A. Pastouret, H. El-Hamzaoui, and M. Bouazaoui, “Benefit of rare-earth “smart doping” and material nanostructuring for the next generation of er-doped fibers,” Nanoscale Res. Lett. 12(1), 206 (2017).
[Crossref]

2015 (1)

2014 (2)

2013 (1)

G. Ziegelberger, “Icnirp guidelines on limits of exposure to laser radiation of wavelengths between 180 nm and 1,000, µm,” Health Phys. 105(3), 271–295 (2013).
[Crossref]

2012 (2)

F. Funabiki, T. Kamiya, and H. Hosono, “Doping effects in amorphous oxides,” J. Ceram. Soc. Jpn. 120(1407), 447–457 (2012).
[Crossref]

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performace cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42(5), 432–436 (2012).
[Crossref]

2011 (1)

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

2009 (2)

2008 (1)

2007 (1)

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-w continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

1998 (2)

1997 (1)

1993 (1)

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

1991 (1)

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of er3+ doped silica fibers,” IEEE J. Quantum Electron. 27(4), 1004–1010 (1991).
[Crossref]

1989 (1)

P. Scrivener, E. Tarbox, and P. Maton, “Narrow linewidth tunable operation of er/sup 3+/-doped single-mode fibre laser,” Electron. Lett. 25(8), 549–550 (1989).
[Crossref]

Aboud, T.

T. Aboud, “Aluminophosphosilicate glasses as an alternative source for microporous materials of technically attractive compositions and morphological characteristics,” in Mechanical and Electrical Technology VII, vol. 799of Applied Mechanics and Materials (Trans Tech Publications Ltd, 2015), pp. 145–152.

Aljamimi, S. M.

Arora, A.

Aydin, Y. O.

Barnes, W. L.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of er3+ doped silica fibers,” IEEE J. Quantum Electron. 27(4), 1004–1010 (1991).
[Crossref]

Barua, P.

Bayon, J.-F.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

Bernier, M.

Bigot, L.

I. Savelii, L. Bigot, B. Capoen, C. Gonnet, C. Chanéac, E. Burova, A. Pastouret, H. El-Hamzaoui, and M. Bouazaoui, “Benefit of rare-earth “smart doping” and material nanostructuring for the next generation of er-doped fibers,” Nanoscale Res. Lett. 12(1), 206 (2017).
[Crossref]

Blixt, P.

J. Nilsson, B. Jaskorzynska, and P. Blixt, “Implications of fair-induced quenching for erbium-doped fiber amplifiers,” in Optical Amplifiers and Their Applications, (Optical Society of America, 1993), p. MD19.

Bouazaoui, M.

I. Savelii, L. Bigot, B. Capoen, C. Gonnet, C. Chanéac, E. Burova, A. Pastouret, H. El-Hamzaoui, and M. Bouazaoui, “Benefit of rare-earth “smart doping” and material nanostructuring for the next generation of er-doped fibers,” Nanoscale Res. Lett. 12(1), 206 (2017).
[Crossref]

Bubnov, M. M.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performace cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42(5), 432–436 (2012).
[Crossref]

M. E. Likhachev, M. M. Bubnov, K. V. Zotov, D. S. Lipatov, M. V. Yashkov, and A. N. Guryanov, “Effect of the alpo 4 join on the pump-to-signal conversion efficiency in heavily er-doped fibers,” Opt. Lett. 34(21), 3355–3357 (2009).
[Crossref]

Burova, E.

I. Savelii, L. Bigot, B. Capoen, C. Gonnet, C. Chanéac, E. Burova, A. Pastouret, H. El-Hamzaoui, and M. Bouazaoui, “Benefit of rare-earth “smart doping” and material nanostructuring for the next generation of er-doped fibers,” Nanoscale Res. Lett. 12(1), 206 (2017).
[Crossref]

Caplen, J. E.

Capoen, B.

I. Savelii, L. Bigot, B. Capoen, C. Gonnet, C. Chanéac, E. Burova, A. Pastouret, H. El-Hamzaoui, and M. Bouazaoui, “Benefit of rare-earth “smart doping” and material nanostructuring for the next generation of er-doped fibers,” Nanoscale Res. Lett. 12(1), 206 (2017).
[Crossref]

Carrier, J.

Chanéac, C.

I. Savelii, L. Bigot, B. Capoen, C. Gonnet, C. Chanéac, E. Burova, A. Pastouret, H. El-Hamzaoui, and M. Bouazaoui, “Benefit of rare-earth “smart doping” and material nanostructuring for the next generation of er-doped fibers,” Nanoscale Res. Lett. 12(1), 206 (2017).
[Crossref]

Chernov, A. I.

Codemard, C. A.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-w continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Cowle, G.

Delevaque, E.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

Desrosiers, C.

Dianov, E. M.

Digonnet, M. J. F.

Dong, L.

Duval, S.

Eberhardt, R.

Elgala, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

El-Hamzaoui, H.

I. Savelii, L. Bigot, B. Capoen, C. Gonnet, C. Chanéac, E. Burova, A. Pastouret, H. El-Hamzaoui, and M. Bouazaoui, “Benefit of rare-earth “smart doping” and material nanostructuring for the next generation of er-doped fibers,” Nanoscale Res. Lett. 12(1), 206 (2017).
[Crossref]

Feng, Y.

Frehlich, R.

Freniére, J.-S.

Funabiki, F.

F. Funabiki, T. Kamiya, and H. Hosono, “Doping effects in amorphous oxides,” J. Ceram. Soc. Jpn. 120(1407), 447–457 (2012).
[Crossref]

Gauthier, J.-C.

Georges, T.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

Gonnet, C.

I. Savelii, L. Bigot, B. Capoen, C. Gonnet, C. Chanéac, E. Burova, A. Pastouret, H. El-Hamzaoui, and M. Bouazaoui, “Benefit of rare-earth “smart doping” and material nanostructuring for the next generation of er-doped fibers,” Nanoscale Res. Lett. 12(1), 206 (2017).
[Crossref]

Gouin, S.

Grégoire, N.

Guryanov, A. N.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performace cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42(5), 432–436 (2012).
[Crossref]

M. E. Likhachev, M. M. Bubnov, K. V. Zotov, D. S. Lipatov, M. V. Yashkov, and A. N. Guryanov, “Effect of the alpo 4 join on the pump-to-signal conversion efficiency in heavily er-doped fibers,” Opt. Lett. 34(21), 3355–3357 (2009).
[Crossref]

Haarlammert, N.

Haas, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Habel, J.

Hannon, S. M.

Harker, A.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-w continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Hein, S.

Henderson, S. W.

Hickey, L.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-w continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Horley, R.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-w continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Hosono, H.

F. Funabiki, T. Kamiya, and H. Hosono, “Doping effects in amorphous oxides,” J. Ceram. Soc. Jpn. 120(1407), 447–457 (2012).
[Crossref]

Hsu, K.

Huneault, M.

Hupel, C.

Jaskorzynska, B.

J. Nilsson, B. Jaskorzynska, and P. Blixt, “Implications of fair-induced quenching for erbium-doped fiber amplifiers,” in Optical Amplifiers and Their Applications, (Optical Society of America, 1993), p. MD19.

Jebali, M. A.

Jeong, Y.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-w continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Jiang, L.

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kw 20/400 yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photonics J. 10(5), 1–8 (2018).
[Crossref]

Jing, F.

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kw 20/400 yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photonics J. 10(5), 1–8 (2018).
[Crossref]

Jobin, F.

Kamiya, T.

F. Funabiki, T. Kamiya, and H. Hosono, “Doping effects in amorphous oxides,” J. Ceram. Soc. Jpn. 120(1407), 447–457 (2012).
[Crossref]

Konov, V. I.

Kotov, L. V.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performace cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42(5), 432–436 (2012).
[Crossref]

Kuhn, S.

Laming, R. I.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of er3+ doped silica fibers,” IEEE J. Quantum Electron. 27(4), 1004–1010 (1991).
[Crossref]

Lamouler, P.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

LaRochelle, S.

Li, Y.

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kw 20/400 yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photonics J. 10(5), 1–8 (2018).
[Crossref]

Likhachev, M. E.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performace cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42(5), 432–436 (2012).
[Crossref]

M. E. Likhachev, M. M. Bubnov, K. V. Zotov, D. S. Lipatov, M. V. Yashkov, and A. N. Guryanov, “Effect of the alpo 4 join on the pump-to-signal conversion efficiency in heavily er-doped fibers,” Opt. Lett. 34(21), 3355–3357 (2009).
[Crossref]

Lin, A.

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kw 20/400 yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photonics J. 10(5), 1–8 (2018).
[Crossref]

Lin, H.

Lipatov, D. S.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performace cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42(5), 432–436 (2012).
[Crossref]

M. E. Likhachev, M. M. Bubnov, K. V. Zotov, D. S. Lipatov, M. V. Yashkov, and A. N. Guryanov, “Effect of the alpo 4 join on the pump-to-signal conversion efficiency in heavily er-doped fibers,” Opt. Lett. 34(21), 3355–3357 (2009).
[Crossref]

Liu, S.

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kw 20/400 yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photonics J. 10(5), 1–8 (2018).
[Crossref]

Lobach, A. S.

Loh, W.

Lovelady, M.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-w continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Maes, F.

Maran, J.-N.

Maton, P.

P. Scrivener, E. Tarbox, and P. Maton, “Narrow linewidth tunable operation of er/sup 3+/-doped single-mode fibre laser,” Electron. Lett. 25(8), 549–550 (1989).
[Crossref]

Medvedkov, O. I.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performace cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42(5), 432–436 (2012).
[Crossref]

Mesleh, R.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Minelly, J. D.

Monerie, M.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

Morasse, B.

Morency, S.

Morkel, P. R.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of er3+ doped silica fibers,” IEEE J. Quantum Electron. 27(4), 1004–1010 (1991).
[Crossref]

Ni, L.

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kw 20/400 yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photonics J. 10(5), 1–8 (2018).
[Crossref]

Nilsson, J.

H. Lin, Y. Feng, Y. Feng, P. Barua, J. K. Sahu, and J. Nilsson, “656 w er-doped, yb-free large-core fiber laser,” Opt. Lett. 43(13), 3080–3083 (2018).
[Crossref]

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-w continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nilsson, and D. N. Payne, “Fabrication and characterization of yb3+: Er3+ phosphosilicate fibers for lasers,” J. Lightwave Technol. 16(11), 1990–2001 (1998).
[Crossref]

J. Nilsson, B. Jaskorzynska, and P. Blixt, “Implications of fair-induced quenching for erbium-doped fiber amplifiers,” in Optical Amplifiers and Their Applications, (Optical Society of America, 1993), p. MD19.

Nold, J.

Obraztsova, E. D.

Paradis, P.

Pastouret, A.

I. Savelii, L. Bigot, B. Capoen, C. Gonnet, C. Chanéac, E. Burova, A. Pastouret, H. El-Hamzaoui, and M. Bouazaoui, “Benefit of rare-earth “smart doping” and material nanostructuring for the next generation of er-doped fibers,” Nanoscale Res. Lett. 12(1), 206 (2017).
[Crossref]

Payne, D. N.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-w continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nilsson, and D. N. Payne, “Fabrication and characterization of yb3+: Er3+ phosphosilicate fibers for lasers,” J. Lightwave Technol. 16(11), 1990–2001 (1998).
[Crossref]

Peng, K.

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kw 20/400 yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photonics J. 10(5), 1–8 (2018).
[Crossref]

Piper, A.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-w continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Pleau, L.-P.

Robichaud, L.-R.

Sahu, J. K.

H. Lin, Y. Feng, Y. Feng, P. Barua, J. K. Sahu, and J. Nilsson, “656 w er-doped, yb-free large-core fiber laser,” Opt. Lett. 43(13), 3080–3083 (2018).
[Crossref]

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-w continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Saliminia, A.

Samson, B.

Savelii, I.

I. Savelii, L. Bigot, B. Capoen, C. Gonnet, C. Chanéac, E. Burova, A. Pastouret, H. El-Hamzaoui, and M. Bouazaoui, “Benefit of rare-earth “smart doping” and material nanostructuring for the next generation of er-doped fibers,” Nanoscale Res. Lett. 12(1), 206 (2017).
[Crossref]

Schreiber, T.

Scrivener, P.

P. Scrivener, E. Tarbox, and P. Maton, “Narrow linewidth tunable operation of er/sup 3+/-doped single-mode fibre laser,” Electron. Lett. 25(8), 549–550 (1989).
[Crossref]

Sheng, Y.

Skolianos, G.

Solodyankin, M. A.

Tarbox, E.

P. Scrivener, E. Tarbox, and P. Maton, “Narrow linewidth tunable operation of er/sup 3+/-doped single-mode fibre laser,” Electron. Lett. 25(8), 549–550 (1989).
[Crossref]

Tarbox, E. J.

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of er3+ doped silica fibers,” IEEE J. Quantum Electron. 27(4), 1004–1010 (1991).
[Crossref]

Tausenev, A. V.

Trépanier, F.

Tünnermann, A.

Turner, P. W.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-w continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Vallée, R.

Vechkanov, N. N.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performace cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42(5), 432–436 (2012).
[Crossref]

Vienne, G. G.

Wang, J.

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kw 20/400 yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photonics J. 10(5), 1–8 (2018).
[Crossref]

Wang, X.

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kw 20/400 yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photonics J. 10(5), 1–8 (2018).
[Crossref]

Wang, Y.

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kw 20/400 yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photonics J. 10(5), 1–8 (2018).
[Crossref]

Yashkov, M. V.

Yoo, S.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-w continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

Yu, J.

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kw 20/400 yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photonics J. 10(5), 1–8 (2018).
[Crossref]

Zhan, H.

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kw 20/400 yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photonics J. 10(5), 1–8 (2018).
[Crossref]

Zhu, R.

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kw 20/400 yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photonics J. 10(5), 1–8 (2018).
[Crossref]

Ziegelberger, G.

G. Ziegelberger, “Icnirp guidelines on limits of exposure to laser radiation of wavelengths between 180 nm and 1,000, µm,” Health Phys. 105(3), 271–295 (2013).
[Crossref]

Zotov, K. V.

Appl. Opt. (1)

Electron. Lett. (1)

P. Scrivener, E. Tarbox, and P. Maton, “Narrow linewidth tunable operation of er/sup 3+/-doped single-mode fibre laser,” Electron. Lett. 25(8), 549–550 (1989).
[Crossref]

Health Phys. (1)

G. Ziegelberger, “Icnirp guidelines on limits of exposure to laser radiation of wavelengths between 180 nm and 1,000, µm,” Health Phys. 105(3), 271–295 (2013).
[Crossref]

IEEE Commun. Mag. (1)

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of er3+ doped silica fibers,” IEEE J. Quantum Electron. 27(4), 1004–1010 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-w continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13(3), 573–579 (2007).
[Crossref]

IEEE Photonics J. (1)

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kw 20/400 yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photonics J. 10(5), 1–8 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

J. Ceram. Soc. Jpn. (1)

F. Funabiki, T. Kamiya, and H. Hosono, “Doping effects in amorphous oxides,” J. Ceram. Soc. Jpn. 120(1407), 447–457 (2012).
[Crossref]

J. Lightwave Technol. (2)

Nanoscale Res. Lett. (1)

I. Savelii, L. Bigot, B. Capoen, C. Gonnet, C. Chanéac, E. Burova, A. Pastouret, H. El-Hamzaoui, and M. Bouazaoui, “Benefit of rare-earth “smart doping” and material nanostructuring for the next generation of er-doped fibers,” Nanoscale Res. Lett. 12(1), 206 (2017).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Opt. Mater. Express (1)

Quantum Electron. (1)

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performace cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42(5), 432–436 (2012).
[Crossref]

Other (2)

T. Aboud, “Aluminophosphosilicate glasses as an alternative source for microporous materials of technically attractive compositions and morphological characteristics,” in Mechanical and Electrical Technology VII, vol. 799of Applied Mechanics and Materials (Trans Tech Publications Ltd, 2015), pp. 145–152.

J. Nilsson, B. Jaskorzynska, and P. Blixt, “Implications of fair-induced quenching for erbium-doped fiber amplifiers,” in Optical Amplifiers and Their Applications, (Optical Society of America, 1993), p. MD19.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Optical microscope picture of the cross-section of the aluminophosphosilicate fiber.
Fig. 2.
Fig. 2. (a) Measured cross section of absorption and emission around the signal wavelength. (b) Measured luminescence decay of the $^4\textrm {I}_{13/2}$ excited level.
Fig. 3.
Fig. 3. (a) Simulation of the output power signal at 1584 nm as a function of the fiber length and the output coupler’s reflectivity for an input power of 120 W. (b) Simulation of the efficiency with respect to the absorbed pump power ($\eta _{absorbed}$) as a function of the fiber length and the output coupler’s reflectivity.
Fig. 4.
Fig. 4. Schematic of the Er$^{3+}$- APS all-fiber laser cavity operating at 1584 nm. The HR (high-reflectivity) and LR (low-reflectivity) FBGs reflect respectively 99.9% and 1% of the laser signal. LD: Laser diode. RCPS: residual cladding pump stripper.
Fig. 5.
Fig. 5. Transmission spectra of the FBGs written in the fiber laser cavity.
Fig. 6.
Fig. 6. (a) Laser output power obtained as a function of absorbed pump power along with the numerical modeling. (b) Spectrum of the laser signal at three different powers.
Fig. 7.
Fig. 7. Measurement of the beam quality for both axis.
Fig. 8.
Fig. 8. Stability curve of the laser operating at 20 W. The close-up figure shows the power obtained during the warm-up.
Fig. 9.
Fig. 9. Output power at 1584 nm as a function of the fiber length for an output coupler of 1 and 4 %. Solid lines represent simulation results, while dots account for experimental data.
Fig. 10.
Fig. 10. Simulation of the laser output power at 1584 nm with respect to the launched pump power at 976 nm for the proposed cavity and for the cavity presented in this paper.

Tables (1)

Tables Icon

Table 1. Parameters of the APS fiber compared to our previous work.

Metrics