Abstract

We investigated the optical binding force in a plasmonic heterodimer structure consisting of two nano-disks. It is found that when illuminated by a tightly focused radially polarized beam (RPB), the plasmon modes of the two nano-disks are strongly hybridized, forming bonding/antibonding modes. An interesting observation of this setup is that the direction of the optical binding force can be controlled by changing the wavelength of illumination, the location of the dimer, the diameter of the nano-disks, and the dimer gap size. Further analysis yields that the inhomogeneous polarization state of RPB can be utilized to readily control the bonding type of plasmon modes and distribute the underlying local field confined in the gap (the periphery) of the dimer, leading to a positive (negative) optical binding force. Our findings provide a clear strategy to engineer optical binding forces via changes in device geometry and its illumination profile. Thus, we envision a significant role for our device in emerging nanophotonics structures.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reversal of optical binding force by Fano resonance in plasmonic nanorod heterodimer

Q. Zhang, J. J. Xiao, X. M. Zhang, Y. Yao, and H. Liu
Opt. Express 21(5) 6601-6608 (2013)

Chiral and plasmonic hybrid dimer pair: reversal of both near- and far-field optical binding forces

Naima Binte Ahsan, Rafia Shamim, M. R. C. Mahdy, Saikat Chandra Das, Hamim Mahmud Rivy, Chaity Islam Dolon, Maruf Hossain, and K. M. Faisal
J. Opt. Soc. Am. B 37(5) 1273-1282 (2020)

Enhanced optical magnetism for reversed optical binding forces between silicon nanoparticles in the visible region

Taka-aki Yano, Yuta Tsuchimoto, Remo Proietti Zaccaria, Andrea Toma, Alejandro Portela, and Masahiko Hara
Opt. Express 25(1) 431-439 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59(23), 2631–2634 (1987).
    [Crossref]
  2. A. Pralle, E. Florin, E. H. K. Stelzer, and J. K. H. Horber, “Local viscosity probed by photonic force microscopy,” Appl. Phys. A 66(7), S71–S73 (1998).
    [Crossref]
  3. W. J. Greenleaf, M. T. Woodside, E. A. Abbondanzieri, and S. M. Block, “Passive all-optical force clamp for high-resolution laser trapping,” Phys. Rev. Lett. 95(20), 208102 (2005).
    [Crossref]
  4. R. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
    [Crossref]
  5. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
    [Crossref]
  6. A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U. S. A. 102(5), 1280–1284 (2005).
    [Crossref]
  7. R. A. Nome, M. J. Guffey, N. F. Scherer, and S. K. Gray, “Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers,” J. Phys. Chem. A 113(16), 4408–4415 (2009).
    [Crossref]
  8. J. Ng, R. Tang, and C. T. Chan, “Electrodynamics study of plasmonic bonding and antibonding forces in a bisphere,” Phys. Rev. B 77(19), 195407 (2008).
    [Crossref]
  9. V. D. Miljkovic, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Kall, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C 114(16), 7472–7479 (2010).
    [Crossref]
  10. V. Demergis and E. Florin, “Ultrastrong optical binding of metallic nanoparticles,” Nano Lett. 12(11), 5756–5760 (2012).
    [Crossref]
  11. M. R. C. Mahdy, M. Danesh, T. Zhang, W. Ding, H. M. Rivy, A. B. Chowdhury, and M. Q. Mehmood, “Plasmonic Spherical Heterodimers: Reversal of Optical Binding Force Based on the Forced Breaking of Symmetry,” Sci. Rep. 8(1), 3164 (2018).
    [Crossref]
  12. E. Xifreperez, G. D. A. Fj, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103(10), 103902 (2009).
    [Crossref]
  13. T. Yano, Y. Tsuchimoto, R. P. Zaccaria, A. Toma, A. Portela, and M. Hara, “Enhanced optical magnetism for reversed optical binding forces between silicon nanoparticles in the visible region,” Opt. Express 25(1), 431–439 (2017).
    [Crossref]
  14. S. S. Satter, M. R. C. Mahdy, M. A. R. Ohi, F. Islam, and H. M. Rivy, “Plasmonic cube tetramers over substrates: reversal of binding force as the effect of fano resonance and light polarization,” J. Phys. Chem. C 122(36), 20923–20934 (2018).
    [Crossref]
  15. Q. Zhang and J. J. Xiao, “Multiple reversals of optical binding force in plasmonic disk-ring nanostructures with dipole-multipole Fano resonances,” Opt. Lett. 38(20), 4240–4243 (2013).
    [Crossref]
  16. H. Liu, J. Ng, S. Wang, Z. H. Hang, C. T. Chan, and S. Zhu, “Strong plasmon coupling between two gold nanospheres on a gold slab,” New J. Phys. 13(7), 073040 (2011).
    [Crossref]
  17. H. Xu and M. Kall, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
    [Crossref]
  18. Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, and H. Xu, “Ultrasensitive Size-Selection of Plasmonic Nanoparticles by Fano Interference Optical Force,” ACS Nano 8(1), 701–708 (2014).
    [Crossref]
  19. R. Zhao, P. Tassin, T. Koschny, and C. M. Soukoulis, “Optical forces in nanowire pairs and metamaterials,” Opt. Express 18(25), 25665–25676 (2010).
    [Crossref]
  20. W.-H. Huang, S.-F. Li, H.-T. Xu, Z.-X. Xiang, Y.-B. Long, and H.-D. Deng, “Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity,” Opt. Express 26(5), 6202–6213 (2018).
    [Crossref]
  21. M. R. C. Mahdy, T. Zhang, M. Danesh, and W. Ding, “Substrate and Fano Resonance Effects on the Reversal of Optical Binding Force between Plasmonic Cube Dimers,” Sci. Rep. 7(1), 6938 (2017).
    [Crossref]
  22. Q. Zhang, J. Xiao, X. Zhang, Y. Yao, and H. Liu, “Reversal of optical binding force by Fano resonance in plasmonic nanorod heterodimer,” Opt. Express 21(5), 6601–6608 (2013).
    [Crossref]
  23. T. V. Raziman and O. J. F. Martin, “Internal optical forces in plasmonic nanostructures,” Opt. Express 23(15), 20143–20157 (2015).
    [Crossref]
  24. F. Xiao, W. Shang, W. Zhu, L. Han, M. Premaratne, T. Mei, and J. Zhao, “Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer,” Photonics Res. 6(3), 157–161 (2018).
    [Crossref]
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1991).
  26. T. V. Raziman and O. J. F. Martin, “Does the real part contain all the physical information,” J. Opt. 18(9), 095002 (2016).
    [Crossref]
  27. F. Xiao, Y. Ren, W. Shang, W. Zhu, L. Han, H. Lu, T. Mei, M. Premaratne, and Z. Jianlin, “Sub-10 nm particle trapping enabled by a plasmonic dark mode,” Opt. Lett. 43(14), 3413–3416 (2018).
    [Crossref]
  28. F. Xiao, S. Cao, W. Shang, W. Zhu, L. Han, T. Mei, M. Premaratne, and J. Zhao, “Enhanced second-harmonic generation assisted by breathing mode in a multi-resonant plasmonic trimer,” Opt. Lett. 44(15), 3813–3816 (2019).
    [Crossref]
  29. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref]
  30. A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012).
    [Crossref]
  31. P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
    [Crossref]
  32. F. Xiao, G. Wang, X. Gan, W. Shang, S. Cao, W. Zhu, T. Mei, M. Premaratne, and J. Zhao, “Selective excitation of a three-dimensionally oriented single plasmonic dipole,” Photonics Res. 7(6), 693–698 (2019).
    [Crossref]
  33. V. Myroshnychenko, J. Rodriguezfernandez, I. Pastorizasantos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Lizmarzan, and F. J. G. De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
    [Crossref]
  34. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
    [Crossref]

2019 (2)

F. Xiao, S. Cao, W. Shang, W. Zhu, L. Han, T. Mei, M. Premaratne, and J. Zhao, “Enhanced second-harmonic generation assisted by breathing mode in a multi-resonant plasmonic trimer,” Opt. Lett. 44(15), 3813–3816 (2019).
[Crossref]

F. Xiao, G. Wang, X. Gan, W. Shang, S. Cao, W. Zhu, T. Mei, M. Premaratne, and J. Zhao, “Selective excitation of a three-dimensionally oriented single plasmonic dipole,” Photonics Res. 7(6), 693–698 (2019).
[Crossref]

2018 (5)

F. Xiao, Y. Ren, W. Shang, W. Zhu, L. Han, H. Lu, T. Mei, M. Premaratne, and Z. Jianlin, “Sub-10 nm particle trapping enabled by a plasmonic dark mode,” Opt. Lett. 43(14), 3413–3416 (2018).
[Crossref]

W.-H. Huang, S.-F. Li, H.-T. Xu, Z.-X. Xiang, Y.-B. Long, and H.-D. Deng, “Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity,” Opt. Express 26(5), 6202–6213 (2018).
[Crossref]

F. Xiao, W. Shang, W. Zhu, L. Han, M. Premaratne, T. Mei, and J. Zhao, “Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer,” Photonics Res. 6(3), 157–161 (2018).
[Crossref]

M. R. C. Mahdy, M. Danesh, T. Zhang, W. Ding, H. M. Rivy, A. B. Chowdhury, and M. Q. Mehmood, “Plasmonic Spherical Heterodimers: Reversal of Optical Binding Force Based on the Forced Breaking of Symmetry,” Sci. Rep. 8(1), 3164 (2018).
[Crossref]

S. S. Satter, M. R. C. Mahdy, M. A. R. Ohi, F. Islam, and H. M. Rivy, “Plasmonic cube tetramers over substrates: reversal of binding force as the effect of fano resonance and light polarization,” J. Phys. Chem. C 122(36), 20923–20934 (2018).
[Crossref]

2017 (2)

T. Yano, Y. Tsuchimoto, R. P. Zaccaria, A. Toma, A. Portela, and M. Hara, “Enhanced optical magnetism for reversed optical binding forces between silicon nanoparticles in the visible region,” Opt. Express 25(1), 431–439 (2017).
[Crossref]

M. R. C. Mahdy, T. Zhang, M. Danesh, and W. Ding, “Substrate and Fano Resonance Effects on the Reversal of Optical Binding Force between Plasmonic Cube Dimers,” Sci. Rep. 7(1), 6938 (2017).
[Crossref]

2016 (1)

T. V. Raziman and O. J. F. Martin, “Does the real part contain all the physical information,” J. Opt. 18(9), 095002 (2016).
[Crossref]

2015 (2)

T. V. Raziman and O. J. F. Martin, “Internal optical forces in plasmonic nanostructures,” Opt. Express 23(15), 20143–20157 (2015).
[Crossref]

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

2014 (1)

Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, and H. Xu, “Ultrasensitive Size-Selection of Plasmonic Nanoparticles by Fano Interference Optical Force,” ACS Nano 8(1), 701–708 (2014).
[Crossref]

2013 (3)

2012 (2)

V. Demergis and E. Florin, “Ultrastrong optical binding of metallic nanoparticles,” Nano Lett. 12(11), 5756–5760 (2012).
[Crossref]

A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref]

2011 (1)

H. Liu, J. Ng, S. Wang, Z. H. Hang, C. T. Chan, and S. Zhu, “Strong plasmon coupling between two gold nanospheres on a gold slab,” New J. Phys. 13(7), 073040 (2011).
[Crossref]

2010 (2)

V. D. Miljkovic, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Kall, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C 114(16), 7472–7479 (2010).
[Crossref]

R. Zhao, P. Tassin, T. Koschny, and C. M. Soukoulis, “Optical forces in nanowire pairs and metamaterials,” Opt. Express 18(25), 25665–25676 (2010).
[Crossref]

2009 (3)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

E. Xifreperez, G. D. A. Fj, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103(10), 103902 (2009).
[Crossref]

R. A. Nome, M. J. Guffey, N. F. Scherer, and S. K. Gray, “Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers,” J. Phys. Chem. A 113(16), 4408–4415 (2009).
[Crossref]

2008 (2)

J. Ng, R. Tang, and C. T. Chan, “Electrodynamics study of plasmonic bonding and antibonding forces in a bisphere,” Phys. Rev. B 77(19), 195407 (2008).
[Crossref]

V. Myroshnychenko, J. Rodriguezfernandez, I. Pastorizasantos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Lizmarzan, and F. J. G. De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]

2005 (2)

W. J. Greenleaf, M. T. Woodside, E. A. Abbondanzieri, and S. M. Block, “Passive all-optical force clamp for high-resolution laser trapping,” Phys. Rev. Lett. 95(20), 208102 (2005).
[Crossref]

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U. S. A. 102(5), 1280–1284 (2005).
[Crossref]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

2002 (1)

H. Xu and M. Kall, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[Crossref]

1998 (1)

A. Pralle, E. Florin, E. H. K. Stelzer, and J. K. H. Horber, “Local viscosity probed by photonic force microscopy,” Appl. Phys. A 66(7), S71–S73 (1998).
[Crossref]

1989 (1)

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[Crossref]

1987 (1)

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59(23), 2631–2634 (1987).
[Crossref]

Abbondanzieri, E. A.

W. J. Greenleaf, M. T. Woodside, E. A. Abbondanzieri, and S. M. Block, “Passive all-optical force clamp for high-resolution laser trapping,” Phys. Rev. Lett. 95(20), 208102 (2005).
[Crossref]

Banzer, P.

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

Block, S. M.

W. J. Greenleaf, M. T. Woodside, E. A. Abbondanzieri, and S. M. Block, “Passive all-optical force clamp for high-resolution laser trapping,” Phys. Rev. Lett. 95(20), 208102 (2005).
[Crossref]

Bowman, R.

R. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
[Crossref]

Brus, L. E.

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U. S. A. 102(5), 1280–1284 (2005).
[Crossref]

Burns, M. M.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[Crossref]

Cable, A.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59(23), 2631–2634 (1987).
[Crossref]

Cao, S.

F. Xiao, S. Cao, W. Shang, W. Zhu, L. Han, T. Mei, M. Premaratne, and J. Zhao, “Enhanced second-harmonic generation assisted by breathing mode in a multi-resonant plasmonic trimer,” Opt. Lett. 44(15), 3813–3816 (2019).
[Crossref]

F. Xiao, G. Wang, X. Gan, W. Shang, S. Cao, W. Zhu, T. Mei, M. Premaratne, and J. Zhao, “Selective excitation of a three-dimensionally oriented single plasmonic dipole,” Photonics Res. 7(6), 693–698 (2019).
[Crossref]

Chan, C. T.

H. Liu, J. Ng, S. Wang, Z. H. Hang, C. T. Chan, and S. Zhu, “Strong plasmon coupling between two gold nanospheres on a gold slab,” New J. Phys. 13(7), 073040 (2011).
[Crossref]

J. Ng, R. Tang, and C. T. Chan, “Electrodynamics study of plasmonic bonding and antibonding forces in a bisphere,” Phys. Rev. B 77(19), 195407 (2008).
[Crossref]

Chowdhury, A. B.

M. R. C. Mahdy, M. Danesh, T. Zhang, W. Ding, H. M. Rivy, A. B. Chowdhury, and M. Q. Mehmood, “Plasmonic Spherical Heterodimers: Reversal of Optical Binding Force Based on the Forced Breaking of Symmetry,” Sci. Rep. 8(1), 3164 (2018).
[Crossref]

Chu, S.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59(23), 2631–2634 (1987).
[Crossref]

Danesh, M.

M. R. C. Mahdy, M. Danesh, T. Zhang, W. Ding, H. M. Rivy, A. B. Chowdhury, and M. Q. Mehmood, “Plasmonic Spherical Heterodimers: Reversal of Optical Binding Force Based on the Forced Breaking of Symmetry,” Sci. Rep. 8(1), 3164 (2018).
[Crossref]

M. R. C. Mahdy, T. Zhang, M. Danesh, and W. Ding, “Substrate and Fano Resonance Effects on the Reversal of Optical Binding Force between Plasmonic Cube Dimers,” Sci. Rep. 7(1), 6938 (2017).
[Crossref]

De Abajo, F. J. G.

V. Myroshnychenko, J. Rodriguezfernandez, I. Pastorizasantos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Lizmarzan, and F. J. G. De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]

Demergis, V.

V. Demergis and E. Florin, “Ultrastrong optical binding of metallic nanoparticles,” Nano Lett. 12(11), 5756–5760 (2012).
[Crossref]

Deng, H.-D.

Ding, W.

M. R. C. Mahdy, M. Danesh, T. Zhang, W. Ding, H. M. Rivy, A. B. Chowdhury, and M. Q. Mehmood, “Plasmonic Spherical Heterodimers: Reversal of Optical Binding Force Based on the Forced Breaking of Symmetry,” Sci. Rep. 8(1), 3164 (2018).
[Crossref]

M. R. C. Mahdy, T. Zhang, M. Danesh, and W. Ding, “Substrate and Fano Resonance Effects on the Reversal of Optical Binding Force between Plasmonic Cube Dimers,” Sci. Rep. 7(1), 6938 (2017).
[Crossref]

Dionne, J. A.

A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref]

Dong, B.

Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, and H. Xu, “Ultrasensitive Size-Selection of Plasmonic Nanoparticles by Fano Interference Optical Force,” ACS Nano 8(1), 701–708 (2014).
[Crossref]

Fenollosa, R.

E. Xifreperez, G. D. A. Fj, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103(10), 103902 (2009).
[Crossref]

Fj, G. D. A.

E. Xifreperez, G. D. A. Fj, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103(10), 103902 (2009).
[Crossref]

Florin, E.

V. Demergis and E. Florin, “Ultrastrong optical binding of metallic nanoparticles,” Nano Lett. 12(11), 5756–5760 (2012).
[Crossref]

A. Pralle, E. Florin, E. H. K. Stelzer, and J. K. H. Horber, “Local viscosity probed by photonic force microscopy,” Appl. Phys. A 66(7), S71–S73 (1998).
[Crossref]

Fournier, J.-M.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[Crossref]

Funston, A. M.

V. Myroshnychenko, J. Rodriguezfernandez, I. Pastorizasantos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Lizmarzan, and F. J. G. De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]

Gan, X.

F. Xiao, G. Wang, X. Gan, W. Shang, S. Cao, W. Zhu, T. Mei, M. Premaratne, and J. Zhao, “Selective excitation of a three-dimensionally oriented single plasmonic dipole,” Photonics Res. 7(6), 693–698 (2019).
[Crossref]

Golovchenko, J. A.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[Crossref]

Gray, S. K.

R. A. Nome, M. J. Guffey, N. F. Scherer, and S. K. Gray, “Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers,” J. Phys. Chem. A 113(16), 4408–4415 (2009).
[Crossref]

Greenleaf, W. J.

W. J. Greenleaf, M. T. Woodside, E. A. Abbondanzieri, and S. M. Block, “Passive all-optical force clamp for high-resolution laser trapping,” Phys. Rev. Lett. 95(20), 208102 (2005).
[Crossref]

Guffey, M. J.

R. A. Nome, M. J. Guffey, N. F. Scherer, and S. K. Gray, “Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers,” J. Phys. Chem. A 113(16), 4408–4415 (2009).
[Crossref]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Hallock, A. J.

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U. S. A. 102(5), 1280–1284 (2005).
[Crossref]

Han, L.

Hang, Z. H.

H. Liu, J. Ng, S. Wang, Z. H. Hang, C. T. Chan, and S. Zhu, “Strong plasmon coupling between two gold nanospheres on a gold slab,” New J. Phys. 13(7), 073040 (2011).
[Crossref]

Hara, M.

Horber, J. K. H.

A. Pralle, E. Florin, E. H. K. Stelzer, and J. K. H. Horber, “Local viscosity probed by photonic force microscopy,” Appl. Phys. A 66(7), S71–S73 (1998).
[Crossref]

Huang, W.-H.

Islam, F.

S. S. Satter, M. R. C. Mahdy, M. A. R. Ohi, F. Islam, and H. M. Rivy, “Plasmonic cube tetramers over substrates: reversal of binding force as the effect of fano resonance and light polarization,” J. Phys. Chem. C 122(36), 20923–20934 (2018).
[Crossref]

Jianlin, Z.

Johansson, P.

V. D. Miljkovic, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Kall, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C 114(16), 7472–7479 (2010).
[Crossref]

Kall, M.

V. D. Miljkovic, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Kall, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C 114(16), 7472–7479 (2010).
[Crossref]

H. Xu and M. Kall, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[Crossref]

Koschny, T.

Leuchs, G.

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

Li, S.-F.

Li, Z.

Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, and H. Xu, “Ultrasensitive Size-Selection of Plasmonic Nanoparticles by Fano Interference Optical Force,” ACS Nano 8(1), 701–708 (2014).
[Crossref]

Liu, H.

Q. Zhang, J. Xiao, X. Zhang, Y. Yao, and H. Liu, “Reversal of optical binding force by Fano resonance in plasmonic nanorod heterodimer,” Opt. Express 21(5), 6601–6608 (2013).
[Crossref]

H. Liu, J. Ng, S. Wang, Z. H. Hang, C. T. Chan, and S. Zhu, “Strong plasmon coupling between two gold nanospheres on a gold slab,” New J. Phys. 13(7), 073040 (2011).
[Crossref]

Lizmarzan, L. M.

V. Myroshnychenko, J. Rodriguezfernandez, I. Pastorizasantos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Lizmarzan, and F. J. G. De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]

Long, Y.-B.

Lu, H.

Mahdy, M. R. C.

M. R. C. Mahdy, M. Danesh, T. Zhang, W. Ding, H. M. Rivy, A. B. Chowdhury, and M. Q. Mehmood, “Plasmonic Spherical Heterodimers: Reversal of Optical Binding Force Based on the Forced Breaking of Symmetry,” Sci. Rep. 8(1), 3164 (2018).
[Crossref]

S. S. Satter, M. R. C. Mahdy, M. A. R. Ohi, F. Islam, and H. M. Rivy, “Plasmonic cube tetramers over substrates: reversal of binding force as the effect of fano resonance and light polarization,” J. Phys. Chem. C 122(36), 20923–20934 (2018).
[Crossref]

M. R. C. Mahdy, T. Zhang, M. Danesh, and W. Ding, “Substrate and Fano Resonance Effects on the Reversal of Optical Binding Force between Plasmonic Cube Dimers,” Sci. Rep. 7(1), 6938 (2017).
[Crossref]

Martin, O. J. F.

T. V. Raziman and O. J. F. Martin, “Does the real part contain all the physical information,” J. Opt. 18(9), 095002 (2016).
[Crossref]

T. V. Raziman and O. J. F. Martin, “Internal optical forces in plasmonic nanostructures,” Opt. Express 23(15), 20143–20157 (2015).
[Crossref]

Mehmood, M. Q.

M. R. C. Mahdy, M. Danesh, T. Zhang, W. Ding, H. M. Rivy, A. B. Chowdhury, and M. Q. Mehmood, “Plasmonic Spherical Heterodimers: Reversal of Optical Binding Force Based on the Forced Breaking of Symmetry,” Sci. Rep. 8(1), 3164 (2018).
[Crossref]

Mei, T.

F. Xiao, S. Cao, W. Shang, W. Zhu, L. Han, T. Mei, M. Premaratne, and J. Zhao, “Enhanced second-harmonic generation assisted by breathing mode in a multi-resonant plasmonic trimer,” Opt. Lett. 44(15), 3813–3816 (2019).
[Crossref]

F. Xiao, G. Wang, X. Gan, W. Shang, S. Cao, W. Zhu, T. Mei, M. Premaratne, and J. Zhao, “Selective excitation of a three-dimensionally oriented single plasmonic dipole,” Photonics Res. 7(6), 693–698 (2019).
[Crossref]

F. Xiao, W. Shang, W. Zhu, L. Han, M. Premaratne, T. Mei, and J. Zhao, “Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer,” Photonics Res. 6(3), 157–161 (2018).
[Crossref]

F. Xiao, Y. Ren, W. Shang, W. Zhu, L. Han, H. Lu, T. Mei, M. Premaratne, and Z. Jianlin, “Sub-10 nm particle trapping enabled by a plasmonic dark mode,” Opt. Lett. 43(14), 3413–3416 (2018).
[Crossref]

Meseguer, F.

E. Xifreperez, G. D. A. Fj, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103(10), 103902 (2009).
[Crossref]

Miljkovic, V. D.

V. D. Miljkovic, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Kall, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C 114(16), 7472–7479 (2010).
[Crossref]

Mulvaney, P.

V. Myroshnychenko, J. Rodriguezfernandez, I. Pastorizasantos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Lizmarzan, and F. J. G. De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]

Myroshnychenko, V.

V. Myroshnychenko, J. Rodriguezfernandez, I. Pastorizasantos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Lizmarzan, and F. J. G. De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]

Ng, J.

H. Liu, J. Ng, S. Wang, Z. H. Hang, C. T. Chan, and S. Zhu, “Strong plasmon coupling between two gold nanospheres on a gold slab,” New J. Phys. 13(7), 073040 (2011).
[Crossref]

J. Ng, R. Tang, and C. T. Chan, “Electrodynamics study of plasmonic bonding and antibonding forces in a bisphere,” Phys. Rev. B 77(19), 195407 (2008).
[Crossref]

Nome, R. A.

R. A. Nome, M. J. Guffey, N. F. Scherer, and S. K. Gray, “Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers,” J. Phys. Chem. A 113(16), 4408–4415 (2009).
[Crossref]

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Novo, C.

V. Myroshnychenko, J. Rodriguezfernandez, I. Pastorizasantos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Lizmarzan, and F. J. G. De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]

Ohi, M. A. R.

S. S. Satter, M. R. C. Mahdy, M. A. R. Ohi, F. Islam, and H. M. Rivy, “Plasmonic cube tetramers over substrates: reversal of binding force as the effect of fano resonance and light polarization,” J. Phys. Chem. C 122(36), 20923–20934 (2018).
[Crossref]

Padgett, M. J.

R. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
[Crossref]

Pakizeh, T.

V. D. Miljkovic, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Kall, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C 114(16), 7472–7479 (2010).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1991).

Pastorizasantos, I.

V. Myroshnychenko, J. Rodriguezfernandez, I. Pastorizasantos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Lizmarzan, and F. J. G. De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]

Portela, A.

Pralle, A.

A. Pralle, E. Florin, E. H. K. Stelzer, and J. K. H. Horber, “Local viscosity probed by photonic force microscopy,” Appl. Phys. A 66(7), S71–S73 (1998).
[Crossref]

Premaratne, M.

F. Xiao, S. Cao, W. Shang, W. Zhu, L. Han, T. Mei, M. Premaratne, and J. Zhao, “Enhanced second-harmonic generation assisted by breathing mode in a multi-resonant plasmonic trimer,” Opt. Lett. 44(15), 3813–3816 (2019).
[Crossref]

F. Xiao, G. Wang, X. Gan, W. Shang, S. Cao, W. Zhu, T. Mei, M. Premaratne, and J. Zhao, “Selective excitation of a three-dimensionally oriented single plasmonic dipole,” Photonics Res. 7(6), 693–698 (2019).
[Crossref]

F. Xiao, W. Shang, W. Zhu, L. Han, M. Premaratne, T. Mei, and J. Zhao, “Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer,” Photonics Res. 6(3), 157–161 (2018).
[Crossref]

F. Xiao, Y. Ren, W. Shang, W. Zhu, L. Han, H. Lu, T. Mei, M. Premaratne, and Z. Jianlin, “Sub-10 nm particle trapping enabled by a plasmonic dark mode,” Opt. Lett. 43(14), 3413–3416 (2018).
[Crossref]

Prentiss, M.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59(23), 2631–2634 (1987).
[Crossref]

Pritchard, D. E.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59(23), 2631–2634 (1987).
[Crossref]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Raab, E. L.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59(23), 2631–2634 (1987).
[Crossref]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Raziman, T. V.

T. V. Raziman and O. J. F. Martin, “Does the real part contain all the physical information,” J. Opt. 18(9), 095002 (2016).
[Crossref]

T. V. Raziman and O. J. F. Martin, “Internal optical forces in plasmonic nanostructures,” Opt. Express 23(15), 20143–20157 (2015).
[Crossref]

Redmond, P. L.

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U. S. A. 102(5), 1280–1284 (2005).
[Crossref]

Ren, Y.

Rivy, H. M.

M. R. C. Mahdy, M. Danesh, T. Zhang, W. Ding, H. M. Rivy, A. B. Chowdhury, and M. Q. Mehmood, “Plasmonic Spherical Heterodimers: Reversal of Optical Binding Force Based on the Forced Breaking of Symmetry,” Sci. Rep. 8(1), 3164 (2018).
[Crossref]

S. S. Satter, M. R. C. Mahdy, M. A. R. Ohi, F. Islam, and H. M. Rivy, “Plasmonic cube tetramers over substrates: reversal of binding force as the effect of fano resonance and light polarization,” J. Phys. Chem. C 122(36), 20923–20934 (2018).
[Crossref]

Rodriguezfernandez, J.

V. Myroshnychenko, J. Rodriguezfernandez, I. Pastorizasantos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Lizmarzan, and F. J. G. De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]

Saleh, A. A. E.

A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref]

Satter, S. S.

S. S. Satter, M. R. C. Mahdy, M. A. R. Ohi, F. Islam, and H. M. Rivy, “Plasmonic cube tetramers over substrates: reversal of binding force as the effect of fano resonance and light polarization,” J. Phys. Chem. C 122(36), 20923–20934 (2018).
[Crossref]

Scherer, N. F.

R. A. Nome, M. J. Guffey, N. F. Scherer, and S. K. Gray, “Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers,” J. Phys. Chem. A 113(16), 4408–4415 (2009).
[Crossref]

Sepulveda, B.

V. D. Miljkovic, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Kall, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C 114(16), 7472–7479 (2010).
[Crossref]

Shang, W.

F. Xiao, S. Cao, W. Shang, W. Zhu, L. Han, T. Mei, M. Premaratne, and J. Zhao, “Enhanced second-harmonic generation assisted by breathing mode in a multi-resonant plasmonic trimer,” Opt. Lett. 44(15), 3813–3816 (2019).
[Crossref]

F. Xiao, G. Wang, X. Gan, W. Shang, S. Cao, W. Zhu, T. Mei, M. Premaratne, and J. Zhao, “Selective excitation of a three-dimensionally oriented single plasmonic dipole,” Photonics Res. 7(6), 693–698 (2019).
[Crossref]

F. Xiao, W. Shang, W. Zhu, L. Han, M. Premaratne, T. Mei, and J. Zhao, “Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer,” Photonics Res. 6(3), 157–161 (2018).
[Crossref]

F. Xiao, Y. Ren, W. Shang, W. Zhu, L. Han, H. Lu, T. Mei, M. Premaratne, and Z. Jianlin, “Sub-10 nm particle trapping enabled by a plasmonic dark mode,” Opt. Lett. 43(14), 3413–3416 (2018).
[Crossref]

Soukoulis, C. M.

Stelzer, E. H. K.

A. Pralle, E. Florin, E. H. K. Stelzer, and J. K. H. Horber, “Local viscosity probed by photonic force microscopy,” Appl. Phys. A 66(7), S71–S73 (1998).
[Crossref]

Tang, R.

J. Ng, R. Tang, and C. T. Chan, “Electrodynamics study of plasmonic bonding and antibonding forces in a bisphere,” Phys. Rev. B 77(19), 195407 (2008).
[Crossref]

Tassin, P.

Toma, A.

Tong, L.

Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, and H. Xu, “Ultrasensitive Size-Selection of Plasmonic Nanoparticles by Fano Interference Optical Force,” ACS Nano 8(1), 701–708 (2014).
[Crossref]

Tsuchimoto, Y.

Wang, G.

F. Xiao, G. Wang, X. Gan, W. Shang, S. Cao, W. Zhu, T. Mei, M. Premaratne, and J. Zhao, “Selective excitation of a three-dimensionally oriented single plasmonic dipole,” Photonics Res. 7(6), 693–698 (2019).
[Crossref]

Wang, P.

Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, and H. Xu, “Ultrasensitive Size-Selection of Plasmonic Nanoparticles by Fano Interference Optical Force,” ACS Nano 8(1), 701–708 (2014).
[Crossref]

Wang, S.

H. Liu, J. Ng, S. Wang, Z. H. Hang, C. T. Chan, and S. Zhu, “Strong plasmon coupling between two gold nanospheres on a gold slab,” New J. Phys. 13(7), 073040 (2011).
[Crossref]

Woodside, M. T.

W. J. Greenleaf, M. T. Woodside, E. A. Abbondanzieri, and S. M. Block, “Passive all-optical force clamp for high-resolution laser trapping,” Phys. Rev. Lett. 95(20), 208102 (2005).
[Crossref]

Wozniak, P.

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

Xiang, Z.-X.

Xiao, F.

F. Xiao, S. Cao, W. Shang, W. Zhu, L. Han, T. Mei, M. Premaratne, and J. Zhao, “Enhanced second-harmonic generation assisted by breathing mode in a multi-resonant plasmonic trimer,” Opt. Lett. 44(15), 3813–3816 (2019).
[Crossref]

F. Xiao, G. Wang, X. Gan, W. Shang, S. Cao, W. Zhu, T. Mei, M. Premaratne, and J. Zhao, “Selective excitation of a three-dimensionally oriented single plasmonic dipole,” Photonics Res. 7(6), 693–698 (2019).
[Crossref]

F. Xiao, W. Shang, W. Zhu, L. Han, M. Premaratne, T. Mei, and J. Zhao, “Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer,” Photonics Res. 6(3), 157–161 (2018).
[Crossref]

F. Xiao, Y. Ren, W. Shang, W. Zhu, L. Han, H. Lu, T. Mei, M. Premaratne, and Z. Jianlin, “Sub-10 nm particle trapping enabled by a plasmonic dark mode,” Opt. Lett. 43(14), 3413–3416 (2018).
[Crossref]

Xiao, J.

Xiao, J. J.

Xifreperez, E.

E. Xifreperez, G. D. A. Fj, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103(10), 103902 (2009).
[Crossref]

Xu, H.

Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, and H. Xu, “Ultrasensitive Size-Selection of Plasmonic Nanoparticles by Fano Interference Optical Force,” ACS Nano 8(1), 701–708 (2014).
[Crossref]

H. Xu and M. Kall, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[Crossref]

Xu, H.-T.

Yano, T.

Yao, Y.

Zaccaria, R. P.

Zhan, Q.

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Zhang, Q.

Zhang, S.

Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, and H. Xu, “Ultrasensitive Size-Selection of Plasmonic Nanoparticles by Fano Interference Optical Force,” ACS Nano 8(1), 701–708 (2014).
[Crossref]

Zhang, T.

M. R. C. Mahdy, M. Danesh, T. Zhang, W. Ding, H. M. Rivy, A. B. Chowdhury, and M. Q. Mehmood, “Plasmonic Spherical Heterodimers: Reversal of Optical Binding Force Based on the Forced Breaking of Symmetry,” Sci. Rep. 8(1), 3164 (2018).
[Crossref]

M. R. C. Mahdy, T. Zhang, M. Danesh, and W. Ding, “Substrate and Fano Resonance Effects on the Reversal of Optical Binding Force between Plasmonic Cube Dimers,” Sci. Rep. 7(1), 6938 (2017).
[Crossref]

Zhang, X.

Zhao, J.

F. Xiao, G. Wang, X. Gan, W. Shang, S. Cao, W. Zhu, T. Mei, M. Premaratne, and J. Zhao, “Selective excitation of a three-dimensionally oriented single plasmonic dipole,” Photonics Res. 7(6), 693–698 (2019).
[Crossref]

F. Xiao, S. Cao, W. Shang, W. Zhu, L. Han, T. Mei, M. Premaratne, and J. Zhao, “Enhanced second-harmonic generation assisted by breathing mode in a multi-resonant plasmonic trimer,” Opt. Lett. 44(15), 3813–3816 (2019).
[Crossref]

F. Xiao, W. Shang, W. Zhu, L. Han, M. Premaratne, T. Mei, and J. Zhao, “Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer,” Photonics Res. 6(3), 157–161 (2018).
[Crossref]

Zhao, R.

Zhu, S.

H. Liu, J. Ng, S. Wang, Z. H. Hang, C. T. Chan, and S. Zhu, “Strong plasmon coupling between two gold nanospheres on a gold slab,” New J. Phys. 13(7), 073040 (2011).
[Crossref]

Zhu, W.

F. Xiao, G. Wang, X. Gan, W. Shang, S. Cao, W. Zhu, T. Mei, M. Premaratne, and J. Zhao, “Selective excitation of a three-dimensionally oriented single plasmonic dipole,” Photonics Res. 7(6), 693–698 (2019).
[Crossref]

F. Xiao, S. Cao, W. Shang, W. Zhu, L. Han, T. Mei, M. Premaratne, and J. Zhao, “Enhanced second-harmonic generation assisted by breathing mode in a multi-resonant plasmonic trimer,” Opt. Lett. 44(15), 3813–3816 (2019).
[Crossref]

F. Xiao, Y. Ren, W. Shang, W. Zhu, L. Han, H. Lu, T. Mei, M. Premaratne, and Z. Jianlin, “Sub-10 nm particle trapping enabled by a plasmonic dark mode,” Opt. Lett. 43(14), 3413–3416 (2018).
[Crossref]

F. Xiao, W. Shang, W. Zhu, L. Han, M. Premaratne, T. Mei, and J. Zhao, “Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer,” Photonics Res. 6(3), 157–161 (2018).
[Crossref]

ACS Nano (1)

Z. Li, S. Zhang, L. Tong, P. Wang, B. Dong, and H. Xu, “Ultrasensitive Size-Selection of Plasmonic Nanoparticles by Fano Interference Optical Force,” ACS Nano 8(1), 701–708 (2014).
[Crossref]

Adv. Opt. Photonics (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Appl. Phys. A (1)

A. Pralle, E. Florin, E. H. K. Stelzer, and J. K. H. Horber, “Local viscosity probed by photonic force microscopy,” Appl. Phys. A 66(7), S71–S73 (1998).
[Crossref]

Chem. Soc. Rev. (1)

V. Myroshnychenko, J. Rodriguezfernandez, I. Pastorizasantos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Lizmarzan, and F. J. G. De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]

J. Opt. (1)

T. V. Raziman and O. J. F. Martin, “Does the real part contain all the physical information,” J. Opt. 18(9), 095002 (2016).
[Crossref]

J. Phys. Chem. A (1)

R. A. Nome, M. J. Guffey, N. F. Scherer, and S. K. Gray, “Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers,” J. Phys. Chem. A 113(16), 4408–4415 (2009).
[Crossref]

J. Phys. Chem. C (2)

V. D. Miljkovic, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Kall, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C 114(16), 7472–7479 (2010).
[Crossref]

S. S. Satter, M. R. C. Mahdy, M. A. R. Ohi, F. Islam, and H. M. Rivy, “Plasmonic cube tetramers over substrates: reversal of binding force as the effect of fano resonance and light polarization,” J. Phys. Chem. C 122(36), 20923–20934 (2018).
[Crossref]

Laser Photonics Rev. (1)

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

Nano Lett. (2)

A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref]

V. Demergis and E. Florin, “Ultrastrong optical binding of metallic nanoparticles,” Nano Lett. 12(11), 5756–5760 (2012).
[Crossref]

New J. Phys. (1)

H. Liu, J. Ng, S. Wang, Z. H. Hang, C. T. Chan, and S. Zhu, “Strong plasmon coupling between two gold nanospheres on a gold slab,” New J. Phys. 13(7), 073040 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Photonics Res. (2)

F. Xiao, W. Shang, W. Zhu, L. Han, M. Premaratne, T. Mei, and J. Zhao, “Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer,” Photonics Res. 6(3), 157–161 (2018).
[Crossref]

F. Xiao, G. Wang, X. Gan, W. Shang, S. Cao, W. Zhu, T. Mei, M. Premaratne, and J. Zhao, “Selective excitation of a three-dimensionally oriented single plasmonic dipole,” Photonics Res. 7(6), 693–698 (2019).
[Crossref]

Phys. Rev. B (1)

J. Ng, R. Tang, and C. T. Chan, “Electrodynamics study of plasmonic bonding and antibonding forces in a bisphere,” Phys. Rev. B 77(19), 195407 (2008).
[Crossref]

Phys. Rev. Lett. (5)

W. J. Greenleaf, M. T. Woodside, E. A. Abbondanzieri, and S. M. Block, “Passive all-optical force clamp for high-resolution laser trapping,” Phys. Rev. Lett. 95(20), 208102 (2005).
[Crossref]

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[Crossref]

H. Xu and M. Kall, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[Crossref]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59(23), 2631–2634 (1987).
[Crossref]

E. Xifreperez, G. D. A. Fj, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103(10), 103902 (2009).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. U. S. A. 102(5), 1280–1284 (2005).
[Crossref]

Rep. Prog. Phys. (1)

R. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
[Crossref]

Sci. Rep. (2)

M. R. C. Mahdy, M. Danesh, T. Zhang, W. Ding, H. M. Rivy, A. B. Chowdhury, and M. Q. Mehmood, “Plasmonic Spherical Heterodimers: Reversal of Optical Binding Force Based on the Forced Breaking of Symmetry,” Sci. Rep. 8(1), 3164 (2018).
[Crossref]

M. R. C. Mahdy, T. Zhang, M. Danesh, and W. Ding, “Substrate and Fano Resonance Effects on the Reversal of Optical Binding Force between Plasmonic Cube Dimers,” Sci. Rep. 7(1), 6938 (2017).
[Crossref]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematics of an Ag heterodimer under the illumination of a tightly focused radially polarized beam (RPB). The lower right inset shows the geometry of Ag dimer: two Ag disks with the same thickness of 30 nm but different radii of r1 and r2 are separated by a gap size of g. The upper right inset shows the intensity distribution of the radially polarized beam at the top surface of the dimer, where the white arrows indicate the electric field vectors of beam. (b) Hybridization diagram for the plasmonic heterodimer. The bottom panel displays spectra of the individual left-disk placed at the beam center (solid line) and 600 nm away from beam center (dashed line). The middle and top panels are the RPB-excited scattering spectra of the the dimer (r1=250 nm, r2=150 nm, and g = 30 nm) and single right-disk with the radius of 150 nm, respectively. The insets of (b) show the charge maps at the labeled wavelengths.
Fig. 2.
Fig. 2. (a) Lateral gradient force exerted on the individual left- and right-disks, and optical binding force spectra of Ag dimer (r1=250 nm, r2=150 nm, and g = 30 nm). (b)-(d) Charge plots (upper panels) and electric field enhancement maps (lower panels) of the dimer at wavelengths of 690 nm, 810 nm, and 990 nm, respectively.
Fig. 3.
Fig. 3. (a) Scattering and (b) optical binding force spectra of Ag dimer (r1=250 nm, r2=150 nm, and g = 30 nm) at different x displacements. (c) Optical binding force of the dimer versus Δx at the wavelength of 975 nm. (d)-(h) Charge plots (left panels) and electric field enhancement maps (right panels) of the dimer at Δx=-800 nm, -400 nm, 0 nm, 500 nm, and 800 nm, respectively.
Fig. 4.
Fig. 4. (a) Scattering and (b) optical binding force spectra of Ag dimer (r1=250 nm, r2=150 nm, and g = 30 nm) at different y displacements. (c) Optical binding force of Ag dimer versus Δy at the wavelength of 830 nm. (d)-(e) Charge plots (left panels) and electric field enhancement maps (right panels) of the dimer at Δy = 0 nm, 350 nm, and 800 nm, respectively.
Fig. 5.
Fig. 5. (a) Scattering and (b) optical binding force spectra of Ag dimer (r1=250 nm, and g = 30 nm) as a dependence on the right-disk radius r2. (c) Optical binding force of the dimer versus r2 at the wavelength of 785 nm. (d)-(f) Charge plots (left panels) and electric field enhancement maps (right panels) of the dimer when the right disk radius is r2=100 nm, 150 nm and 200 nm, respectively.
Fig. 6.
Fig. 6. (a) Scattering and (b) optical binding force spectra of Ag dimer (r1=250 nm, and r2=150 nm) as the dependence on the dimer gap size g. (c) Optical binding force of the dimer versus g at the wavelength of 810 nm. (d)-(f) Charge plots (left panels) and electric field enhancement maps (right panels) of the dimer when the gap size is g = 10 nm, 30 nm and 50 nm, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F L ( R ) ( r ) = S T d S ,
T = 1 2 Re [ ε E E + μ H H 1 2 ( ε | E | 2 + μ | H | 2 ) I ] .

Metrics