Abstract

Orbital angular momentum (OAM) is an important property of vortex light, which provides a valuable tool to manipulate the light-matter interaction in the study of classical and quantum optics. Here we propose a scheme to generate vortex light fields via four-wave mixing (FWM) in asymmetric semiconductor quantum wells. By tailoring the probe-field and control-field detunings, we can effectively manipulate the helical phase and intensity of the FWM field. Particularly, when probe field and control field have identical detuning, we find that both the absorption and phase twist of the generated FWM field are significantly suppressed. Consequently, the highly efficient vortex FWM is realized, where the maximum conversion efficiency reaches around 50%. Our study provides a tool to transfer vortex wavefronts from input to output fields in an efficient way, which may find potential applications in solid-state quantum optics and quantum information processing.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultraslow vortex four-wave mixing via multiphoton quantum interference

Yin Hong, Zhiping Wang, Dongsheng Ding, and Benli Yu
Opt. Express 27(21) 29863-29874 (2019)

Enhanced four-wave mixing in P T-symmetric optomechanical systems

Xintian Bian, Yongchao Zhang, Zhangyin Zhai, Hualing Yu, Fen Zuo, Guibin Chen, and Cheng Jiang
Opt. Express 28(7) 9049-9061 (2020)

Transfer of optical vortices using two-photon processes in a diamond configuration atomic system

Fei Wang, Fanggui Hu, Jun Xu, and Xidong Wang
J. Opt. Soc. Am. B 37(3) 902-910 (2020)

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref]
  2. M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
    [Crossref]
  3. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the Orbital Angular Momentum States of Photons,” Nature (London) 412(6844), 313–316 (2001).
    [Crossref]
  4. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref]
  5. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
    [Crossref]
  6. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  7. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  8. D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).
    [Crossref]
  9. A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
    [Crossref]
  10. V. Parigi, V. Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6(1), 7706 (2015).
    [Crossref]
  11. A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).
    [Crossref]
  12. J. Ruseckas, V. Kudriasov, I. A. Yu, and G. Juzeliunas, “Transfer of orbital angular momentum of light using two-component slow light,” Phys. Rev. A 87(5), 053840 (2013).
    [Crossref]
  13. N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially Dependent Electromagnetically Induced Transparency,” Phys. Rev. Lett. 114(12), 123603 (2015).
    [Crossref]
  14. G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).
    [Crossref]
  15. D. Zhang, X. Liu, L. Yang, X. Li, Z. Zhang, and Y. Zhang, “Modulated vortex six-wave mixing,” Opt. Lett. 42(16), 3097–3100 (2017).
    [Crossref]
  16. A. Imamoğlu and R. J. Ram, “Semiconductor lasers without population inversion,” Opt. Lett. 19(21), 1744–1746 (1994).
    [Crossref]
  17. D. E. Nikonov, A. Imamoğlu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B 59(19), 12212–12215 (1999).
    [Crossref]
  18. M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5(3), 175–178 (2006).
    [Crossref]
  19. S. M. Sadeghi, H. M. van Driel, and J. M. Fraser, “Coherent control and enhancement of refractive index in an asymmetric double quantum well,” Phys. Rev. B 62(23), 15386–15389 (2000).
    [Crossref]
  20. J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72(8), 085323 (2005).
    [Crossref]
  21. M. C. Phillips and H. Wang, “Spin Coherence and Electromagnetically Induced Transparency via Exciton Correlations,” Phys. Rev. Lett. 89(18), 186401 (2002).
    [Crossref]
  22. M. C. Phillips and H. Wang, “Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,” Opt. Lett. 28(10), 831–833 (2003).
    [Crossref]
  23. P.-C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.-W. Chang, and S.-L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004).
    [Crossref]
  24. H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74(15), 155314 (2006).
    [Crossref]
  25. H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32(17), 2475–2477 (2007).
    [Crossref]
  26. J. H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75(15), 155329 (2007).
    [Crossref]
  27. W. X. Yang, J. M. Hou, and R. K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77(3), 033838 (2008).
    [Crossref]
  28. C. J. Zhu and G. X. Huang, “Slow-light solitons in coupled asymmetric quantum wells via interband transitions,” Phys. Rev. B 80(23), 235408 (2009).
    [Crossref]
  29. X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372(14), 2509–2513 (2008).
    [Crossref]
  30. S. Evangelou and E. Paspalakis, “Pulsed four-wave mixing in intersubband transitions of a symmetric semiconductor quantum well,” Photonics Nanostruct.: Fundam. Appl. 9(2), 168–173 (2011).
    [Crossref]
  31. S. G. Kosionis, A. F. Terzis, and E. Paspalakis, “Transient four-wave mixing in intersubband transitions of semiconductor quantum wells,” J. Lumin. 140, 130–134 (2013).
    [Crossref]
  32. S. Liu, W. X. Yang, Y. L. Chuang, A. X. Chen, A. Liu, and Y. Huang, “Enhanced four-wave mixing efficiency in four-subband semiconductor quantum wells via Fano-type interference,” Opt. Express 22(23), 29179–29190 (2014).
    [Crossref]
  33. S. E. Harris and L. V. Hau, “Nonlinear Optics at Low Light Levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
    [Crossref]
  34. L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening Optical Four-Wave Mixing Channels with Giant Enhancement Using Ultraslow Pump Waves,” Phys. Rev. Lett. 88(14), 143902 (2002).
    [Crossref]
  35. Y. Zhang, A. W. Brown, and M. Xiao, “Opening Four-Wave Mixing and Six-Wave Mixing Channels via Dual Electromagnetically Induced Transparency Windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
    [Crossref]
  36. Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor,” Phys. Rev. Lett. 113(2), 023602 (2014).
    [Crossref]
  37. Y. Hong, Z. Wang, D. Ding, and B. Yu, “Ultraslow vortex four-wave mixing via multiphoton quantum interference,” Opt. Express 27(21), 29863–29874 (2019).
    [Crossref]
  38. X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).
    [Crossref]
  39. J. Faist, F. Capassom, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390(6660), 589–591 (1997).
    [Crossref]
  40. J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast All Optical Switching via Tunable Fano Interference,” Phys. Rev. Lett. 95(5), 057401 (2005).
    [Crossref]
  41. H. Sun, S. Fan, H. Zhang, and S. Gong, “Tunneling-induced high-efficiency four-wave mixing in asymmetric quantum wells,” Phys. Rev. B 87(23), 235310 (2013).
    [Crossref]
  42. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
    [Crossref]
  43. D. E. Nikonov, A. Imamoğlu, L. V. Butov, and H. Schmidt, “Collective Intersubband Excitations in Quantum Wells: Coulomb Interaction versus Subband Dispersion,” Phys. Rev. Lett. 79(23), 4633–4636 (1997).
    [Crossref]
  44. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, Cambridge, UK, 1997).
  45. G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-Induced Quantum Coherence in a Semiconductor Quantum Well,” Phys. Rev. Lett. 84(5), 1019–1022 (2000).
    [Crossref]
  46. M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically Induced Transparency in Semiconductors via Biexciton Coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
    [Crossref]
  47. E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Coherent manipulation of a strongly driven semiconductor quantum well,” Phys. Rev. B 73(12), 125344 (2006).
    [Crossref]
  48. T. N. Dey and J. Evers, “Nondiffracting optical beams in a three-level Raman system,” Phys. Rev. A 84(4), 043842 (2011).
    [Crossref]
  49. Y. Zhang, Z. Wang, J. Qiu, Y. Hong, and B. Yu, “Spatially dependent four-wave mixing in semiconductor quantum wells,” Appl. Phys. Lett. 115(17), 171905 (2019).
    [Crossref]
  50. Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67(1), 013811 (2003).
    [Crossref]
  51. L.-G. Si, W.-X. Yang, X. Y. Lü, X. Hao, and X. Yang, “Formation and propagation of ultraslow three-wave-vector optical solitons in a cold seven-level triple-Λ atomic system under Raman excitation,” Phys. Rev. A 82(1), 013836 (2010).
    [Crossref]
  52. Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference,” Opt. Lett. 29(19), 2294–2296 (2004).
    [Crossref]
  53. H. Li and G. Huang, “Highly efficient four-wave mixing in a coherent six-level system in ultraslow propagation regime,” Phys. Rev. A 76(4), 043809 (2007).
    [Crossref]
  54. Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70(5), 053818 (2004).
    [Crossref]
  55. H. C. Liu and F. Capasso, Intersubband Transitions in Quantum Wells: Physics and Device Applications (Academic, New York, 2000).
  56. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
    [Crossref]
  57. T. Shih, K. Reimann, M. Woerner, T. Elsaesser, I. Waldmüller, A. Knorr, R. Hey, and K. H. Ploog, “Nonlinear response of radiatively coupled intersubband transitions of quasi-two-dimensional electrons,” Phys. Rev. B 72(19), 195338 (2005).
    [Crossref]
  58. S. M. Sadeghi, L. Deng, X. Li, and W. P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20(36), 365401 (2009).
    [Crossref]
  59. S. M. Sadeghi, “Gain without inversion in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 21(45), 455401 (2010).
    [Crossref]
  60. M. R. Singh, D. G. Schindel, and A. Hatef, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99(18), 181106 (2011).
    [Crossref]
  61. H. S. Borges, L. Sanz, J. M. Villas-Bôas, O. O. Diniz Neto, and A. M. Alcalde, “Tunneling induced transparency and slow light in quantum dot molecules,” Phys. Rev. B 85(11), 115425 (2012).
    [Crossref]
  62. S. M. Sadeghi, W. J. Wing, and R. R. Gutha, “Undamped ultrafast pulsation of plasmonic fields via coherent exciton-plasmon coupling,” Nanotechnology 26(8), 085202 (2015).
    [Crossref]
  63. F. Carreño, M. A. Antón, V. Yannopapas, and E. Paspalakis, “Control of the absorption of a four-level quantum system near a plasmonic nanostructure,” Phys. Rev. B 95(19), 195410 (2017).
    [Crossref]
  64. I. Thanopulos, V. Karanikolas, N. Iliopoulos, and E. Paspalakis, “Non-Markovian spontaneous emission dynamics of a quantum emitter near a MoS2 nanodisk,” Phys. Rev. B 99(19), 195412 (2019).
    [Crossref]

2019 (4)

Y. Hong, Z. Wang, D. Ding, and B. Yu, “Ultraslow vortex four-wave mixing via multiphoton quantum interference,” Opt. Express 27(21), 29863–29874 (2019).
[Crossref]

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).
[Crossref]

Y. Zhang, Z. Wang, J. Qiu, Y. Hong, and B. Yu, “Spatially dependent four-wave mixing in semiconductor quantum wells,” Appl. Phys. Lett. 115(17), 171905 (2019).
[Crossref]

I. Thanopulos, V. Karanikolas, N. Iliopoulos, and E. Paspalakis, “Non-Markovian spontaneous emission dynamics of a quantum emitter near a MoS2 nanodisk,” Phys. Rev. B 99(19), 195412 (2019).
[Crossref]

2017 (2)

F. Carreño, M. A. Antón, V. Yannopapas, and E. Paspalakis, “Control of the absorption of a four-level quantum system near a plasmonic nanostructure,” Phys. Rev. B 95(19), 195410 (2017).
[Crossref]

D. Zhang, X. Liu, L. Yang, X. Li, Z. Zhang, and Y. Zhang, “Modulated vortex six-wave mixing,” Opt. Lett. 42(16), 3097–3100 (2017).
[Crossref]

2015 (3)

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially Dependent Electromagnetically Induced Transparency,” Phys. Rev. Lett. 114(12), 123603 (2015).
[Crossref]

V. Parigi, V. Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6(1), 7706 (2015).
[Crossref]

S. M. Sadeghi, W. J. Wing, and R. R. Gutha, “Undamped ultrafast pulsation of plasmonic fields via coherent exciton-plasmon coupling,” Nanotechnology 26(8), 085202 (2015).
[Crossref]

2014 (3)

Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor,” Phys. Rev. Lett. 113(2), 023602 (2014).
[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

S. Liu, W. X. Yang, Y. L. Chuang, A. X. Chen, A. Liu, and Y. Huang, “Enhanced four-wave mixing efficiency in four-subband semiconductor quantum wells via Fano-type interference,” Opt. Express 22(23), 29179–29190 (2014).
[Crossref]

2013 (4)

J. Ruseckas, V. Kudriasov, I. A. Yu, and G. Juzeliunas, “Transfer of orbital angular momentum of light using two-component slow light,” Phys. Rev. A 87(5), 053840 (2013).
[Crossref]

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).
[Crossref]

S. G. Kosionis, A. F. Terzis, and E. Paspalakis, “Transient four-wave mixing in intersubband transitions of semiconductor quantum wells,” J. Lumin. 140, 130–134 (2013).
[Crossref]

H. Sun, S. Fan, H. Zhang, and S. Gong, “Tunneling-induced high-efficiency four-wave mixing in asymmetric quantum wells,” Phys. Rev. B 87(23), 235310 (2013).
[Crossref]

2012 (3)

H. S. Borges, L. Sanz, J. M. Villas-Bôas, O. O. Diniz Neto, and A. M. Alcalde, “Tunneling induced transparency and slow light in quantum dot molecules,” Phys. Rev. B 85(11), 115425 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).
[Crossref]

2011 (5)

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

S. Evangelou and E. Paspalakis, “Pulsed four-wave mixing in intersubband transitions of a symmetric semiconductor quantum well,” Photonics Nanostruct.: Fundam. Appl. 9(2), 168–173 (2011).
[Crossref]

M. R. Singh, D. G. Schindel, and A. Hatef, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99(18), 181106 (2011).
[Crossref]

T. N. Dey and J. Evers, “Nondiffracting optical beams in a three-level Raman system,” Phys. Rev. A 84(4), 043842 (2011).
[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

2010 (2)

L.-G. Si, W.-X. Yang, X. Y. Lü, X. Hao, and X. Yang, “Formation and propagation of ultraslow three-wave-vector optical solitons in a cold seven-level triple-Λ atomic system under Raman excitation,” Phys. Rev. A 82(1), 013836 (2010).
[Crossref]

S. M. Sadeghi, “Gain without inversion in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 21(45), 455401 (2010).
[Crossref]

2009 (2)

S. M. Sadeghi, L. Deng, X. Li, and W. P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20(36), 365401 (2009).
[Crossref]

C. J. Zhu and G. X. Huang, “Slow-light solitons in coupled asymmetric quantum wells via interband transitions,” Phys. Rev. B 80(23), 235408 (2009).
[Crossref]

2008 (3)

X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372(14), 2509–2513 (2008).
[Crossref]

W. X. Yang, J. M. Hou, and R. K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77(3), 033838 (2008).
[Crossref]

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).
[Crossref]

2007 (5)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32(17), 2475–2477 (2007).
[Crossref]

J. H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75(15), 155329 (2007).
[Crossref]

H. Li and G. Huang, “Highly efficient four-wave mixing in a coherent six-level system in ultraslow propagation regime,” Phys. Rev. A 76(4), 043809 (2007).
[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening Four-Wave Mixing and Six-Wave Mixing Channels via Dual Electromagnetically Induced Transparency Windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref]

2006 (3)

E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Coherent manipulation of a strongly driven semiconductor quantum well,” Phys. Rev. B 73(12), 125344 (2006).
[Crossref]

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5(3), 175–178 (2006).
[Crossref]

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74(15), 155314 (2006).
[Crossref]

2005 (3)

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72(8), 085323 (2005).
[Crossref]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast All Optical Switching via Tunable Fano Interference,” Phys. Rev. Lett. 95(5), 057401 (2005).
[Crossref]

T. Shih, K. Reimann, M. Woerner, T. Elsaesser, I. Waldmüller, A. Knorr, R. Hey, and K. H. Ploog, “Nonlinear response of radiatively coupled intersubband transitions of quasi-two-dimensional electrons,” Phys. Rev. B 72(19), 195338 (2005).
[Crossref]

2004 (5)

2003 (4)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

M. C. Phillips and H. Wang, “Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,” Opt. Lett. 28(10), 831–833 (2003).
[Crossref]

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67(1), 013811 (2003).
[Crossref]

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically Induced Transparency in Semiconductors via Biexciton Coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[Crossref]

2002 (2)

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening Optical Four-Wave Mixing Channels with Giant Enhancement Using Ultraslow Pump Waves,” Phys. Rev. Lett. 88(14), 143902 (2002).
[Crossref]

M. C. Phillips and H. Wang, “Spin Coherence and Electromagnetically Induced Transparency via Exciton Correlations,” Phys. Rev. Lett. 89(18), 186401 (2002).
[Crossref]

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the Orbital Angular Momentum States of Photons,” Nature (London) 412(6844), 313–316 (2001).
[Crossref]

2000 (2)

S. M. Sadeghi, H. M. van Driel, and J. M. Fraser, “Coherent control and enhancement of refractive index in an asymmetric double quantum well,” Phys. Rev. B 62(23), 15386–15389 (2000).
[Crossref]

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-Induced Quantum Coherence in a Semiconductor Quantum Well,” Phys. Rev. Lett. 84(5), 1019–1022 (2000).
[Crossref]

1999 (2)

D. E. Nikonov, A. Imamoğlu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B 59(19), 12212–12215 (1999).
[Crossref]

S. E. Harris and L. V. Hau, “Nonlinear Optics at Low Light Levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[Crossref]

1997 (2)

D. E. Nikonov, A. Imamoğlu, L. V. Butov, and H. Schmidt, “Collective Intersubband Excitations in Quantum Wells: Coulomb Interaction versus Subband Dispersion,” Phys. Rev. Lett. 79(23), 4633–4636 (1997).
[Crossref]

J. Faist, F. Capassom, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390(6660), 589–591 (1997).
[Crossref]

1994 (1)

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Ahmed, N.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Alcalde, A. M.

H. S. Borges, L. Sanz, J. M. Villas-Bôas, O. O. Diniz Neto, and A. M. Alcalde, “Tunneling induced transparency and slow light in quantum dot molecules,” Phys. Rev. B 85(11), 115425 (2012).
[Crossref]

Allen, L.

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Ambrosio, V.

V. Parigi, V. Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6(1), 7706 (2015).
[Crossref]

Antón, M. A.

F. Carreño, M. A. Antón, V. Yannopapas, and E. Paspalakis, “Control of the absorption of a four-level quantum system near a plasmonic nanostructure,” Phys. Rev. B 95(19), 195410 (2017).
[Crossref]

Arnold, A. S.

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).
[Crossref]

Arnold, C.

V. Parigi, V. Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6(1), 7706 (2015).
[Crossref]

Artoni, M.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast All Optical Switching via Tunable Fano Interference,” Phys. Rev. Lett. 95(5), 057401 (2005).
[Crossref]

Barnett, S. M.

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially Dependent Electromagnetically Induced Transparency,” Phys. Rev. Lett. 114(12), 123603 (2015).
[Crossref]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
[Crossref]

Bassani, F.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast All Optical Switching via Tunable Fano Interference,” Phys. Rev. Lett. 95(5), 057401 (2005).
[Crossref]

Beck, M.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5(3), 175–178 (2006).
[Crossref]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Binder, R.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically Induced Transparency in Semiconductors via Biexciton Coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[Crossref]

Borges, H. S.

H. S. Borges, L. Sanz, J. M. Villas-Bôas, O. O. Diniz Neto, and A. M. Alcalde, “Tunneling induced transparency and slow light in quantum dot molecules,” Phys. Rev. B 85(11), 115425 (2012).
[Crossref]

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Boyer, V.

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).
[Crossref]

Brown, A. W.

Y. Zhang, A. W. Brown, and M. Xiao, “Opening Four-Wave Mixing and Six-Wave Mixing Channels via Dual Electromagnetically Induced Transparency Windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref]

Butov, L. V.

D. E. Nikonov, A. Imamoğlu, L. V. Butov, and H. Schmidt, “Collective Intersubband Excitations in Quantum Wells: Coulomb Interaction versus Subband Dispersion,” Phys. Rev. Lett. 79(23), 4633–4636 (1997).
[Crossref]

Cao, L.

Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor,” Phys. Rev. Lett. 113(2), 023602 (2014).
[Crossref]

Capasso, F.

H. C. Liu and F. Capasso, Intersubband Transitions in Quantum Wells: Physics and Device Applications (Academic, New York, 2000).

Capassom, F.

J. Faist, F. Capassom, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390(6660), 589–591 (1997).
[Crossref]

Carreño, F.

F. Carreño, M. A. Antón, V. Yannopapas, and E. Paspalakis, “Control of the absorption of a four-level quantum system near a plasmonic nanostructure,” Phys. Rev. B 95(19), 195410 (2017).
[Crossref]

Chang, S.-W.

Chang-Hasnain, C. J.

Chen, A. X.

Chuang, S.-L.

Chuang, Y. L.

Clark, T. W.

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially Dependent Electromagnetically Induced Transparency,” Phys. Rev. Lett. 114(12), 123603 (2015).
[Crossref]

Courtial, J.

Deng, L.

S. M. Sadeghi, L. Deng, X. Li, and W. P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20(36), 365401 (2009).
[Crossref]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference,” Opt. Lett. 29(19), 2294–2296 (2004).
[Crossref]

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening Optical Four-Wave Mixing Channels with Giant Enhancement Using Ultraslow Pump Waves,” Phys. Rev. Lett. 88(14), 143902 (2002).
[Crossref]

Dey, T. N.

T. N. Dey and J. Evers, “Nondiffracting optical beams in a three-level Raman system,” Phys. Rev. A 84(4), 043842 (2011).
[Crossref]

Ding, D.

Ding, D. S.

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).
[Crossref]

Diniz Neto, O. O.

H. S. Borges, L. Sanz, J. M. Villas-Bôas, O. O. Diniz Neto, and A. M. Alcalde, “Tunneling induced transparency and slow light in quantum dot molecules,” Phys. Rev. B 85(11), 115425 (2012).
[Crossref]

Dolinar, S.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Dynes, J. F.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5(3), 175–178 (2006).
[Crossref]

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72(8), 085323 (2005).
[Crossref]

Elsaesser, T.

T. Shih, K. Reimann, M. Woerner, T. Elsaesser, I. Waldmüller, A. Knorr, R. Hey, and K. H. Ploog, “Nonlinear response of radiatively coupled intersubband transitions of quasi-two-dimensional electrons,” Phys. Rev. B 72(19), 195338 (2005).
[Crossref]

Evangelou, S.

S. Evangelou and E. Paspalakis, “Pulsed four-wave mixing in intersubband transitions of a symmetric semiconductor quantum well,” Photonics Nanostruct.: Fundam. Appl. 9(2), 168–173 (2011).
[Crossref]

Evers, J.

T. N. Dey and J. Evers, “Nondiffracting optical beams in a three-level Raman system,” Phys. Rev. A 84(4), 043842 (2011).
[Crossref]

Faist, J.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5(3), 175–178 (2006).
[Crossref]

J. Faist, F. Capassom, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390(6660), 589–591 (1997).
[Crossref]

Fan, S.

H. Sun, S. Fan, H. Zhang, and S. Gong, “Tunneling-induced high-efficiency four-wave mixing in asymmetric quantum wells,” Phys. Rev. B 87(23), 235310 (2013).
[Crossref]

Fazal, I. M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Franke-Arnold, S.

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially Dependent Electromagnetically Induced Transparency,” Phys. Rev. Lett. 114(12), 123603 (2015).
[Crossref]

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).
[Crossref]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
[Crossref]

Fraser, J. M.

S. M. Sadeghi, H. M. van Driel, and J. M. Fraser, “Coherent control and enhancement of refractive index in an asymmetric double quantum well,” Phys. Rev. B 62(23), 15386–15389 (2000).
[Crossref]

Frogley, M. D.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5(3), 175–178 (2006).
[Crossref]

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72(8), 085323 (2005).
[Crossref]

Gao, J. Y.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast All Optical Switching via Tunable Fano Interference,” Phys. Rev. Lett. 95(5), 057401 (2005).
[Crossref]

Giacobino, E.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Gibson, G.

Giner, L.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Gong, S.

H. Sun, S. Fan, H. Zhang, and S. Gong, “Tunneling-induced high-efficiency four-wave mixing in asymmetric quantum wells,” Phys. Rev. B 87(23), 235310 (2013).
[Crossref]

H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32(17), 2475–2477 (2007).
[Crossref]

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74(15), 155314 (2006).
[Crossref]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

Guo, G. C.

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).
[Crossref]

Gutha, R. R.

S. M. Sadeghi, W. J. Wing, and R. R. Gutha, “Undamped ultrafast pulsation of plasmonic fields via coherent exciton-plasmon coupling,” Nanotechnology 26(8), 085202 (2015).
[Crossref]

Hagley, E. W.

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference,” Opt. Lett. 29(19), 2294–2296 (2004).
[Crossref]

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening Optical Four-Wave Mixing Channels with Giant Enhancement Using Ultraslow Pump Waves,” Phys. Rev. Lett. 88(14), 143902 (2002).
[Crossref]

Hao, X.

L.-G. Si, W.-X. Yang, X. Y. Lü, X. Hao, and X. Yang, “Formation and propagation of ultraslow three-wave-vector optical solitons in a cold seven-level triple-Λ atomic system under Raman excitation,” Phys. Rev. A 82(1), 013836 (2010).
[Crossref]

X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372(14), 2509–2513 (2008).
[Crossref]

Harris, S. E.

S. E. Harris and L. V. Hau, “Nonlinear Optics at Low Light Levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[Crossref]

Hatef, A.

M. R. Singh, D. G. Schindel, and A. Hatef, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99(18), 181106 (2011).
[Crossref]

Hau, L. V.

S. E. Harris and L. V. Hau, “Nonlinear Optics at Low Light Levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[Crossref]

Hey, R.

T. Shih, K. Reimann, M. Woerner, T. Elsaesser, I. Waldmüller, A. Knorr, R. Hey, and K. H. Ploog, “Nonlinear response of radiatively coupled intersubband transitions of quasi-two-dimensional electrons,” Phys. Rev. B 72(19), 195338 (2005).
[Crossref]

Hong, Y.

Y. Zhang, Z. Wang, J. Qiu, Y. Hong, and B. Yu, “Spatially dependent four-wave mixing in semiconductor quantum wells,” Appl. Phys. Lett. 115(17), 171905 (2019).
[Crossref]

Y. Hong, Z. Wang, D. Ding, and B. Yu, “Ultraslow vortex four-wave mixing via multiphoton quantum interference,” Opt. Express 27(21), 29863–29874 (2019).
[Crossref]

Hou, J. M.

W. X. Yang, J. M. Hou, and R. K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77(3), 033838 (2008).
[Crossref]

Huang, G.

H. Li and G. Huang, “Highly efficient four-wave mixing in a coherent six-level system in ultraslow propagation regime,” Phys. Rev. A 76(4), 043809 (2007).
[Crossref]

Huang, G. X.

C. J. Zhu and G. X. Huang, “Slow-light solitons in coupled asymmetric quantum wells via interband transitions,” Phys. Rev. B 80(23), 235408 (2009).
[Crossref]

Huang, H.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Huang, W. P.

S. M. Sadeghi, L. Deng, X. Li, and W. P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20(36), 365401 (2009).
[Crossref]

Huang, Y.

Iliopoulos, N.

I. Thanopulos, V. Karanikolas, N. Iliopoulos, and E. Paspalakis, “Non-Markovian spontaneous emission dynamics of a quantum emitter near a MoS2 nanodisk,” Phys. Rev. B 99(19), 195412 (2019).
[Crossref]

Imamoglu, A.

D. E. Nikonov, A. Imamoğlu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B 59(19), 12212–12215 (1999).
[Crossref]

D. E. Nikonov, A. Imamoğlu, L. V. Butov, and H. Schmidt, “Collective Intersubband Excitations in Quantum Wells: Coulomb Interaction versus Subband Dispersion,” Phys. Rev. Lett. 79(23), 4633–4636 (1997).
[Crossref]

A. Imamoğlu and R. J. Ram, “Semiconductor lasers without population inversion,” Opt. Lett. 19(21), 1744–1746 (1994).
[Crossref]

Jin, S.

H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32(17), 2475–2477 (2007).
[Crossref]

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74(15), 155314 (2006).
[Crossref]

Jing, J.

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).
[Crossref]

Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor,” Phys. Rev. Lett. 113(2), 023602 (2014).
[Crossref]

Jones, K. M.

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).
[Crossref]

Juzeliunas, G.

J. Ruseckas, V. Kudriasov, I. A. Yu, and G. Juzeliunas, “Transfer of orbital angular momentum of light using two-component slow light,” Phys. Rev. A 87(5), 053840 (2013).
[Crossref]

Karanikolas, V.

I. Thanopulos, V. Karanikolas, N. Iliopoulos, and E. Paspalakis, “Non-Markovian spontaneous emission dynamics of a quantum emitter near a MoS2 nanodisk,” Phys. Rev. B 99(19), 195412 (2019).
[Crossref]

Knorr, A.

T. Shih, K. Reimann, M. Woerner, T. Elsaesser, I. Waldmüller, A. Knorr, R. Hey, and K. H. Ploog, “Nonlinear response of radiatively coupled intersubband transitions of quasi-two-dimensional electrons,” Phys. Rev. B 72(19), 195338 (2005).
[Crossref]

Kosionis, S. G.

S. G. Kosionis, A. F. Terzis, and E. Paspalakis, “Transient four-wave mixing in intersubband transitions of semiconductor quantum wells,” J. Lumin. 140, 130–134 (2013).
[Crossref]

Kozuma, M.

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening Optical Four-Wave Mixing Channels with Giant Enhancement Using Ultraslow Pump Waves,” Phys. Rev. Lett. 88(14), 143902 (2002).
[Crossref]

Ku, P.-C.

Kudriasov, V.

J. Ruseckas, V. Kudriasov, I. A. Yu, and G. Juzeliunas, “Transfer of orbital angular momentum of light using two-component slow light,” Phys. Rev. A 87(5), 053840 (2013).
[Crossref]

Kwong, N. H.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically Induced Transparency in Semiconductors via Biexciton Coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[Crossref]

La Rocca, G. C.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast All Optical Switching via Tunable Fano Interference,” Phys. Rev. Lett. 95(5), 057401 (2005).
[Crossref]

Laurat, J.

V. Parigi, V. Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6(1), 7706 (2015).
[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Lee, R. K.

W. X. Yang, J. M. Hou, and R. K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77(3), 033838 (2008).
[Crossref]

Lemons, K.

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).
[Crossref]

Lett, P. D.

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).
[Crossref]

Li, H.

H. Li and G. Huang, “Highly efficient four-wave mixing in a coherent six-level system in ultraslow propagation regime,” Phys. Rev. A 76(4), 043809 (2007).
[Crossref]

Li, J.

X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372(14), 2509–2513 (2008).
[Crossref]

Li, J. H.

J. H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75(15), 155329 (2007).
[Crossref]

Li, R.

H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32(17), 2475–2477 (2007).
[Crossref]

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74(15), 155314 (2006).
[Crossref]

Li, S.

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).
[Crossref]

Li, T.

Li, X.

D. Zhang, X. Liu, L. Yang, X. Li, Z. Zhang, and Y. Zhang, “Modulated vortex six-wave mixing,” Opt. Lett. 42(16), 3097–3100 (2017).
[Crossref]

S. M. Sadeghi, L. Deng, X. Li, and W. P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20(36), 365401 (2009).
[Crossref]

Liu, A.

Liu, H. C.

H. C. Liu and F. Capasso, Intersubband Transitions in Quantum Wells: Physics and Device Applications (Academic, New York, 2000).

Liu, J.

X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372(14), 2509–2513 (2008).
[Crossref]

Liu, S.

Liu, X.

Lü, X. Y.

L.-G. Si, W.-X. Yang, X. Y. Lü, X. Hao, and X. Yang, “Formation and propagation of ultraslow three-wave-vector optical solitons in a cold seven-level triple-Λ atomic system under Raman excitation,” Phys. Rev. A 82(1), 013836 (2010).
[Crossref]

Lv, S.

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).
[Crossref]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the Orbital Angular Momentum States of Photons,” Nature (London) 412(6844), 313–316 (2001).
[Crossref]

Marino, A. M.

Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor,” Phys. Rev. Lett. 113(2), 023602 (2014).
[Crossref]

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).
[Crossref]

Marrucci, L.

V. Parigi, V. Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6(1), 7706 (2015).
[Crossref]

Maxein, D.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Molina-Terriza, G.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Nicolas, A.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Nikonov, D. E.

D. E. Nikonov, A. Imamoğlu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B 59(19), 12212–12215 (1999).
[Crossref]

D. E. Nikonov, A. Imamoğlu, L. V. Butov, and H. Schmidt, “Collective Intersubband Excitations in Quantum Wells: Coulomb Interaction versus Subband Dispersion,” Phys. Rev. Lett. 79(23), 4633–4636 (1997).
[Crossref]

Niu, Y.

H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32(17), 2475–2477 (2007).
[Crossref]

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74(15), 155314 (2006).
[Crossref]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Padgett, M. J.

Palinginis, P.

Pan, X.

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).
[Crossref]

Parigi, V.

V. Parigi, V. Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6(1), 7706 (2015).
[Crossref]

Pas’ko, V.

Paspalakis, E.

I. Thanopulos, V. Karanikolas, N. Iliopoulos, and E. Paspalakis, “Non-Markovian spontaneous emission dynamics of a quantum emitter near a MoS2 nanodisk,” Phys. Rev. B 99(19), 195412 (2019).
[Crossref]

F. Carreño, M. A. Antón, V. Yannopapas, and E. Paspalakis, “Control of the absorption of a four-level quantum system near a plasmonic nanostructure,” Phys. Rev. B 95(19), 195410 (2017).
[Crossref]

S. G. Kosionis, A. F. Terzis, and E. Paspalakis, “Transient four-wave mixing in intersubband transitions of semiconductor quantum wells,” J. Lumin. 140, 130–134 (2013).
[Crossref]

S. Evangelou and E. Paspalakis, “Pulsed four-wave mixing in intersubband transitions of a symmetric semiconductor quantum well,” Photonics Nanostruct.: Fundam. Appl. 9(2), 168–173 (2011).
[Crossref]

E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Coherent manipulation of a strongly driven semiconductor quantum well,” Phys. Rev. B 73(12), 125344 (2006).
[Crossref]

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-Induced Quantum Coherence in a Semiconductor Quantum Well,” Phys. Rev. Lett. 84(5), 1019–1022 (2000).
[Crossref]

Payne, M. G.

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference,” Opt. Lett. 29(19), 2294–2296 (2004).
[Crossref]

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening Optical Four-Wave Mixing Channels with Giant Enhancement Using Ultraslow Pump Waves,” Phys. Rev. Lett. 88(14), 143902 (2002).
[Crossref]

Pfeiffer, L. N.

J. Faist, F. Capassom, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390(6660), 589–591 (1997).
[Crossref]

Phillips, C. C.

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5(3), 175–178 (2006).
[Crossref]

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72(8), 085323 (2005).
[Crossref]

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-Induced Quantum Coherence in a Semiconductor Quantum Well,” Phys. Rev. Lett. 84(5), 1019–1022 (2000).
[Crossref]

Phillips, M. C.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically Induced Transparency in Semiconductors via Biexciton Coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[Crossref]

M. C. Phillips and H. Wang, “Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,” Opt. Lett. 28(10), 831–833 (2003).
[Crossref]

M. C. Phillips and H. Wang, “Spin Coherence and Electromagnetically Induced Transparency via Exciton Correlations,” Phys. Rev. Lett. 89(18), 186401 (2002).
[Crossref]

Piccirillo, B.

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially Dependent Electromagnetically Induced Transparency,” Phys. Rev. Lett. 114(12), 123603 (2015).
[Crossref]

Ploog, K. H.

T. Shih, K. Reimann, M. Woerner, T. Elsaesser, I. Waldmüller, A. Knorr, R. Hey, and K. H. Ploog, “Nonlinear response of radiatively coupled intersubband transitions of quasi-two-dimensional electrons,” Phys. Rev. B 72(19), 195338 (2005).
[Crossref]

Pooser, R. C.

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).
[Crossref]

Qin, Z.

Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor,” Phys. Rev. Lett. 113(2), 023602 (2014).
[Crossref]

Qiu, J.

Y. Zhang, Z. Wang, J. Qiu, Y. Hong, and B. Yu, “Spatially dependent four-wave mixing in semiconductor quantum wells,” Appl. Phys. Lett. 115(17), 171905 (2019).
[Crossref]

Radwell, N.

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially Dependent Electromagnetically Induced Transparency,” Phys. Rev. Lett. 114(12), 123603 (2015).
[Crossref]

Ram, R. J.

Reimann, K.

T. Shih, K. Reimann, M. Woerner, T. Elsaesser, I. Waldmüller, A. Knorr, R. Hey, and K. H. Ploog, “Nonlinear response of radiatively coupled intersubband transitions of quasi-two-dimensional electrons,” Phys. Rev. B 72(19), 195338 (2005).
[Crossref]

Ren, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Rodger, J.

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72(8), 085323 (2005).
[Crossref]

Rumyantsev, I.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically Induced Transparency in Semiconductors via Biexciton Coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[Crossref]

Ruseckas, J.

J. Ruseckas, V. Kudriasov, I. A. Yu, and G. Juzeliunas, “Transfer of orbital angular momentum of light using two-component slow light,” Phys. Rev. A 87(5), 053840 (2013).
[Crossref]

Sadeghi, S. M.

S. M. Sadeghi, W. J. Wing, and R. R. Gutha, “Undamped ultrafast pulsation of plasmonic fields via coherent exciton-plasmon coupling,” Nanotechnology 26(8), 085202 (2015).
[Crossref]

S. M. Sadeghi, “Gain without inversion in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 21(45), 455401 (2010).
[Crossref]

S. M. Sadeghi, L. Deng, X. Li, and W. P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20(36), 365401 (2009).
[Crossref]

S. M. Sadeghi, H. M. van Driel, and J. M. Fraser, “Coherent control and enhancement of refractive index in an asymmetric double quantum well,” Phys. Rev. B 62(23), 15386–15389 (2000).
[Crossref]

Saldana, J.

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67(1), 013811 (2003).
[Crossref]

Sanz, L.

H. S. Borges, L. Sanz, J. M. Villas-Bôas, O. O. Diniz Neto, and A. M. Alcalde, “Tunneling induced transparency and slow light in quantum dot molecules,” Phys. Rev. B 85(11), 115425 (2012).
[Crossref]

Schindel, D. G.

M. R. Singh, D. G. Schindel, and A. Hatef, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99(18), 181106 (2011).
[Crossref]

Schmidt, H.

D. E. Nikonov, A. Imamoğlu, L. V. Butov, and H. Schmidt, “Collective Intersubband Excitations in Quantum Wells: Coulomb Interaction versus Subband Dispersion,” Phys. Rev. Lett. 79(23), 4633–4636 (1997).
[Crossref]

Sciarrino, F.

V. Parigi, V. Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6(1), 7706 (2015).
[Crossref]

Scully, M. O.

D. E. Nikonov, A. Imamoğlu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B 59(19), 12212–12215 (1999).
[Crossref]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, Cambridge, UK, 1997).

Sedgwick, F.

Serapiglia, G. B.

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-Induced Quantum Coherence in a Semiconductor Quantum Well,” Phys. Rev. Lett. 84(5), 1019–1022 (2000).
[Crossref]

Shi, B. S.

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).
[Crossref]

Shih, T.

T. Shih, K. Reimann, M. Woerner, T. Elsaesser, I. Waldmüller, A. Knorr, R. Hey, and K. H. Ploog, “Nonlinear response of radiatively coupled intersubband transitions of quasi-two-dimensional electrons,” Phys. Rev. B 72(19), 195338 (2005).
[Crossref]

Si, L.-G.

L.-G. Si, W.-X. Yang, X. Y. Lü, X. Hao, and X. Yang, “Formation and propagation of ultraslow three-wave-vector optical solitons in a cold seven-level triple-Λ atomic system under Raman excitation,” Phys. Rev. A 82(1), 013836 (2010).
[Crossref]

Silvestri, L.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast All Optical Switching via Tunable Fano Interference,” Phys. Rev. Lett. 95(5), 057401 (2005).
[Crossref]

Singh, M. R.

M. R. Singh, D. G. Schindel, and A. Hatef, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99(18), 181106 (2011).
[Crossref]

Sirtori, C.

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-Induced Quantum Coherence in a Semiconductor Quantum Well,” Phys. Rev. Lett. 84(5), 1019–1022 (2000).
[Crossref]

J. Faist, F. Capassom, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390(6660), 589–591 (1997).
[Crossref]

Song, P.

X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372(14), 2509–2513 (2008).
[Crossref]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Sun, H.

H. Sun, S. Fan, H. Zhang, and S. Gong, “Tunneling-induced high-efficiency four-wave mixing in asymmetric quantum wells,” Phys. Rev. B 87(23), 235310 (2013).
[Crossref]

H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32(17), 2475–2477 (2007).
[Crossref]

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74(15), 155314 (2006).
[Crossref]

Takayama, R.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically Induced Transparency in Semiconductors via Biexciton Coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[Crossref]

Terzis, A. F.

S. G. Kosionis, A. F. Terzis, and E. Paspalakis, “Transient four-wave mixing in intersubband transitions of semiconductor quantum wells,” J. Lumin. 140, 130–134 (2013).
[Crossref]

E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Coherent manipulation of a strongly driven semiconductor quantum well,” Phys. Rev. B 73(12), 125344 (2006).
[Crossref]

Thanopulos, I.

I. Thanopulos, V. Karanikolas, N. Iliopoulos, and E. Paspalakis, “Non-Markovian spontaneous emission dynamics of a quantum emitter near a MoS2 nanodisk,” Phys. Rev. B 99(19), 195412 (2019).
[Crossref]

Torner, L.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Torres, J. P.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Tsaousidou, M.

E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Coherent manipulation of a strongly driven semiconductor quantum well,” Phys. Rev. B 73(12), 125344 (2006).
[Crossref]

Tur, M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

van Driel, H. M.

S. M. Sadeghi, H. M. van Driel, and J. M. Fraser, “Coherent control and enhancement of refractive index in an asymmetric double quantum well,” Phys. Rev. B 62(23), 15386–15389 (2000).
[Crossref]

Vasnetsov, M.

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the Orbital Angular Momentum States of Photons,” Nature (London) 412(6844), 313–316 (2001).
[Crossref]

Veissier, L.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Villas-Bôas, J. M.

H. S. Borges, L. Sanz, J. M. Villas-Bôas, O. O. Diniz Neto, and A. M. Alcalde, “Tunneling induced transparency and slow light in quantum dot molecules,” Phys. Rev. B 85(11), 115425 (2012).
[Crossref]

Vodopyanov, K. L.

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-Induced Quantum Coherence in a Semiconductor Quantum Well,” Phys. Rev. Lett. 84(5), 1019–1022 (2000).
[Crossref]

Waldmüller, I.

T. Shih, K. Reimann, M. Woerner, T. Elsaesser, I. Waldmüller, A. Knorr, R. Hey, and K. H. Ploog, “Nonlinear response of radiatively coupled intersubband transitions of quasi-two-dimensional electrons,” Phys. Rev. B 72(19), 195338 (2005).
[Crossref]

Walker, G.

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).
[Crossref]

Wang, H.

Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor,” Phys. Rev. Lett. 113(2), 023602 (2014).
[Crossref]

P.-C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.-W. Chang, and S.-L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004).
[Crossref]

M. C. Phillips and H. Wang, “Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,” Opt. Lett. 28(10), 831–833 (2003).
[Crossref]

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically Induced Transparency in Semiconductors via Biexciton Coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[Crossref]

M. C. Phillips and H. Wang, “Spin Coherence and Electromagnetically Induced Transparency via Exciton Correlations,” Phys. Rev. Lett. 89(18), 186401 (2002).
[Crossref]

Wang, J.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wang, W.

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).
[Crossref]

Wang, Z.

Y. Hong, Z. Wang, D. Ding, and B. Yu, “Ultraslow vortex four-wave mixing via multiphoton quantum interference,” Opt. Express 27(21), 29863–29874 (2019).
[Crossref]

Y. Zhang, Z. Wang, J. Qiu, Y. Hong, and B. Yu, “Spatially dependent four-wave mixing in semiconductor quantum wells,” Appl. Phys. Lett. 115(17), 171905 (2019).
[Crossref]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the Orbital Angular Momentum States of Photons,” Nature (London) 412(6844), 313–316 (2001).
[Crossref]

West, K. W.

J. Faist, F. Capassom, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390(6660), 589–591 (1997).
[Crossref]

Wing, W. J.

S. M. Sadeghi, W. J. Wing, and R. R. Gutha, “Undamped ultrafast pulsation of plasmonic fields via coherent exciton-plasmon coupling,” Nanotechnology 26(8), 085202 (2015).
[Crossref]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Woerner, M.

T. Shih, K. Reimann, M. Woerner, T. Elsaesser, I. Waldmüller, A. Knorr, R. Hey, and K. H. Ploog, “Nonlinear response of radiatively coupled intersubband transitions of quasi-two-dimensional electrons,” Phys. Rev. B 72(19), 195338 (2005).
[Crossref]

Wu, J. H.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast All Optical Switching via Tunable Fano Interference,” Phys. Rev. Lett. 95(5), 057401 (2005).
[Crossref]

Wu, Y.

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Efficient multiwave mixing in the ultraslow propagation regime and the role of multiphoton quantum destructive interference,” Opt. Lett. 29(19), 2294–2296 (2004).
[Crossref]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70(5), 053818 (2004).
[Crossref]

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67(1), 013811 (2003).
[Crossref]

Xiao, M.

Y. Zhang, A. W. Brown, and M. Xiao, “Opening Four-Wave Mixing and Six-Wave Mixing Channels via Dual Electromagnetically Induced Transparency Windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref]

Xu, J. H.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast All Optical Switching via Tunable Fano Interference,” Phys. Rev. Lett. 95(5), 057401 (2005).
[Crossref]

Xu, Z.

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74(15), 155314 (2006).
[Crossref]

Yan, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, J. Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, L.

Yang, W. X.

Yang, W.-X.

L.-G. Si, W.-X. Yang, X. Y. Lü, X. Hao, and X. Yang, “Formation and propagation of ultraslow three-wave-vector optical solitons in a cold seven-level triple-Λ atomic system under Raman excitation,” Phys. Rev. A 82(1), 013836 (2010).
[Crossref]

Yang, X.

L.-G. Si, W.-X. Yang, X. Y. Lü, X. Hao, and X. Yang, “Formation and propagation of ultraslow three-wave-vector optical solitons in a cold seven-level triple-Λ atomic system under Raman excitation,” Phys. Rev. A 82(1), 013836 (2010).
[Crossref]

X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372(14), 2509–2513 (2008).
[Crossref]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70(5), 053818 (2004).
[Crossref]

Yannopapas, V.

F. Carreño, M. A. Antón, V. Yannopapas, and E. Paspalakis, “Control of the absorption of a four-level quantum system near a plasmonic nanostructure,” Phys. Rev. B 95(19), 195410 (2017).
[Crossref]

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Yu, B.

Y. Hong, Z. Wang, D. Ding, and B. Yu, “Ultraslow vortex four-wave mixing via multiphoton quantum interference,” Opt. Express 27(21), 29863–29874 (2019).
[Crossref]

Y. Zhang, Z. Wang, J. Qiu, Y. Hong, and B. Yu, “Spatially dependent four-wave mixing in semiconductor quantum wells,” Appl. Phys. Lett. 115(17), 171905 (2019).
[Crossref]

Yu, I. A.

J. Ruseckas, V. Kudriasov, I. A. Yu, and G. Juzeliunas, “Transfer of orbital angular momentum of light using two-component slow light,” Phys. Rev. A 87(5), 053840 (2013).
[Crossref]

Yu, S.

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).
[Crossref]

Yue, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the Orbital Angular Momentum States of Photons,” Nature (London) 412(6844), 313–316 (2001).
[Crossref]

Zhang, D.

Zhang, H.

H. Sun, S. Fan, H. Zhang, and S. Gong, “Tunneling-induced high-efficiency four-wave mixing in asymmetric quantum wells,” Phys. Rev. B 87(23), 235310 (2013).
[Crossref]

Zhang, K.

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).
[Crossref]

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).
[Crossref]

Zhang, W.

Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor,” Phys. Rev. Lett. 113(2), 023602 (2014).
[Crossref]

Zhang, Y.

Y. Zhang, Z. Wang, J. Qiu, Y. Hong, and B. Yu, “Spatially dependent four-wave mixing in semiconductor quantum wells,” Appl. Phys. Lett. 115(17), 171905 (2019).
[Crossref]

D. Zhang, X. Liu, L. Yang, X. Li, Z. Zhang, and Y. Zhang, “Modulated vortex six-wave mixing,” Opt. Lett. 42(16), 3097–3100 (2017).
[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening Four-Wave Mixing and Six-Wave Mixing Channels via Dual Electromagnetically Induced Transparency Windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref]

Zhang, Z.

Zhou, Y.

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).
[Crossref]

Zhou, Z. Y.

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).
[Crossref]

Zhu, C. J.

C. J. Zhu and G. X. Huang, “Slow-light solitons in coupled asymmetric quantum wells via interband transitions,” Phys. Rev. B 80(23), 235408 (2009).
[Crossref]

Zhu, Y.

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67(1), 013811 (2003).
[Crossref]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, Cambridge, UK, 1997).

Adv. Opt. Photonics (1)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Appl. Phys. Lett. (2)

Y. Zhang, Z. Wang, J. Qiu, Y. Hong, and B. Yu, “Spatially dependent four-wave mixing in semiconductor quantum wells,” Appl. Phys. Lett. 115(17), 171905 (2019).
[Crossref]

M. R. Singh, D. G. Schindel, and A. Hatef, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99(18), 181106 (2011).
[Crossref]

J. Lumin. (1)

S. G. Kosionis, A. F. Terzis, and E. Paspalakis, “Transient four-wave mixing in intersubband transitions of semiconductor quantum wells,” J. Lumin. 140, 130–134 (2013).
[Crossref]

Nanotechnology (3)

S. M. Sadeghi, L. Deng, X. Li, and W. P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20(36), 365401 (2009).
[Crossref]

S. M. Sadeghi, “Gain without inversion in hybrid quantum dot-metallic nanoparticle systems,” Nanotechnology 21(45), 455401 (2010).
[Crossref]

S. M. Sadeghi, W. J. Wing, and R. R. Gutha, “Undamped ultrafast pulsation of plasmonic fields via coherent exciton-plasmon coupling,” Nanotechnology 26(8), 085202 (2015).
[Crossref]

Nat. Commun. (2)

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).
[Crossref]

V. Parigi, V. Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, “Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory,” Nat. Commun. 6(1), 7706 (2015).
[Crossref]

Nat. Mater. (1)

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5(3), 175–178 (2006).
[Crossref]

Nat. Photonics (3)

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Nat. Phys. (1)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Nature (2)

J. Faist, F. Capassom, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390(6660), 589–591 (1997).
[Crossref]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

Nature (London) (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the Orbital Angular Momentum States of Photons,” Nature (London) 412(6844), 313–316 (2001).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

Photonics Nanostruct.: Fundam. Appl. (1)

S. Evangelou and E. Paspalakis, “Pulsed four-wave mixing in intersubband transitions of a symmetric semiconductor quantum well,” Photonics Nanostruct.: Fundam. Appl. 9(2), 168–173 (2011).
[Crossref]

Phys. Lett. A (1)

X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372(14), 2509–2513 (2008).
[Crossref]

Phys. Rev. A (8)

W. X. Yang, J. M. Hou, and R. K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77(3), 033838 (2008).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

J. Ruseckas, V. Kudriasov, I. A. Yu, and G. Juzeliunas, “Transfer of orbital angular momentum of light using two-component slow light,” Phys. Rev. A 87(5), 053840 (2013).
[Crossref]

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67(1), 013811 (2003).
[Crossref]

L.-G. Si, W.-X. Yang, X. Y. Lü, X. Hao, and X. Yang, “Formation and propagation of ultraslow three-wave-vector optical solitons in a cold seven-level triple-Λ atomic system under Raman excitation,” Phys. Rev. A 82(1), 013836 (2010).
[Crossref]

T. N. Dey and J. Evers, “Nondiffracting optical beams in a three-level Raman system,” Phys. Rev. A 84(4), 043842 (2011).
[Crossref]

H. Li and G. Huang, “Highly efficient four-wave mixing in a coherent six-level system in ultraslow propagation regime,” Phys. Rev. A 76(4), 043809 (2007).
[Crossref]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70(5), 053818 (2004).
[Crossref]

Phys. Rev. B (12)

E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Coherent manipulation of a strongly driven semiconductor quantum well,” Phys. Rev. B 73(12), 125344 (2006).
[Crossref]

F. Carreño, M. A. Antón, V. Yannopapas, and E. Paspalakis, “Control of the absorption of a four-level quantum system near a plasmonic nanostructure,” Phys. Rev. B 95(19), 195410 (2017).
[Crossref]

I. Thanopulos, V. Karanikolas, N. Iliopoulos, and E. Paspalakis, “Non-Markovian spontaneous emission dynamics of a quantum emitter near a MoS2 nanodisk,” Phys. Rev. B 99(19), 195412 (2019).
[Crossref]

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74(15), 155314 (2006).
[Crossref]

H. S. Borges, L. Sanz, J. M. Villas-Bôas, O. O. Diniz Neto, and A. M. Alcalde, “Tunneling induced transparency and slow light in quantum dot molecules,” Phys. Rev. B 85(11), 115425 (2012).
[Crossref]

T. Shih, K. Reimann, M. Woerner, T. Elsaesser, I. Waldmüller, A. Knorr, R. Hey, and K. H. Ploog, “Nonlinear response of radiatively coupled intersubband transitions of quasi-two-dimensional electrons,” Phys. Rev. B 72(19), 195338 (2005).
[Crossref]

S. M. Sadeghi, H. M. van Driel, and J. M. Fraser, “Coherent control and enhancement of refractive index in an asymmetric double quantum well,” Phys. Rev. B 62(23), 15386–15389 (2000).
[Crossref]

J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72(8), 085323 (2005).
[Crossref]

C. J. Zhu and G. X. Huang, “Slow-light solitons in coupled asymmetric quantum wells via interband transitions,” Phys. Rev. B 80(23), 235408 (2009).
[Crossref]

D. E. Nikonov, A. Imamoğlu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B 59(19), 12212–12215 (1999).
[Crossref]

J. H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75(15), 155329 (2007).
[Crossref]

H. Sun, S. Fan, H. Zhang, and S. Gong, “Tunneling-induced high-efficiency four-wave mixing in asymmetric quantum wells,” Phys. Rev. B 87(23), 235310 (2013).
[Crossref]

Phys. Rev. Lett. (13)

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast All Optical Switching via Tunable Fano Interference,” Phys. Rev. Lett. 95(5), 057401 (2005).
[Crossref]

D. E. Nikonov, A. Imamoğlu, L. V. Butov, and H. Schmidt, “Collective Intersubband Excitations in Quantum Wells: Coulomb Interaction versus Subband Dispersion,” Phys. Rev. Lett. 79(23), 4633–4636 (1997).
[Crossref]

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-Induced Quantum Coherence in a Semiconductor Quantum Well,” Phys. Rev. Lett. 84(5), 1019–1022 (2000).
[Crossref]

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically Induced Transparency in Semiconductors via Biexciton Coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[Crossref]

X. Pan, S. Yu, Y. Zhou, K. Zhang, K. Zhang, S. Lv, S. Li, W. Wang, and J. Jing, “Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in Hot Atomic Vapor,” Phys. Rev. Lett. 123(7), 070506 (2019).
[Crossref]

M. C. Phillips and H. Wang, “Spin Coherence and Electromagnetically Induced Transparency via Exciton Correlations,” Phys. Rev. Lett. 89(18), 186401 (2002).
[Crossref]

N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S. Franke-Arnold, “Spatially Dependent Electromagnetically Induced Transparency,” Phys. Rev. Lett. 114(12), 123603 (2015).
[Crossref]

G. Walker, A. S. Arnold, and S. Franke-Arnold, “Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor,” Phys. Rev. Lett. 108(24), 243601 (2012).
[Crossref]

A. M. Marino, V. Boyer, R. C. Pooser, P. D. Lett, K. Lemons, and K. M. Jones, “Delocalized Correlations in Twin Light Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 101(9), 093602 (2008).
[Crossref]

S. E. Harris and L. V. Hau, “Nonlinear Optics at Low Light Levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999).
[Crossref]

L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening Optical Four-Wave Mixing Channels with Giant Enhancement Using Ultraslow Pump Waves,” Phys. Rev. Lett. 88(14), 143902 (2002).
[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening Four-Wave Mixing and Six-Wave Mixing Channels via Dual Electromagnetically Induced Transparency Windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref]

Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing, “Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor,” Phys. Rev. Lett. 113(2), 023602 (2014).
[Crossref]

Phys. Today (1)

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Other (2)

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, Cambridge, UK, 1997).

H. C. Liu and F. Capasso, Intersubband Transitions in Quantum Wells: Physics and Device Applications (Academic, New York, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) The fundamental structure is coupled asymmetric quantum wells. Each well has a distinctive ground state, labeled as $|1\rangle$ and $|2\rangle$. The first excited state of the well is nearly degenerate. The cross coupling between the well leads to delocalized state $|3\rangle$ and $|4\rangle$. Another state $|5\rangle$ is used to produce the FWM field. A probe field $\Omega _{p}$ connects states $|1\rangle$ and $|3\rangle$, while a control field $\Omega _{c}$ couples states $|2\rangle$ and $|3\rangle$. A vortex field $\Omega _{v}$ drives states $|2\rangle$ and $|5\rangle$, and the FWM field is generated from the transition $|5\rangle \leftrightarrow |1\rangle$. (b) Geometry of the laser fields. The FWM field carrying OAM is generated under the phase-matching condition $\vec {k}_{p}+ \vec {k}_{v}=\vec {k}_{c}+\vec {k}_{m}$.
Fig. 2.
Fig. 2. Phase [(a) and (b)] and intensity [(c) and (d)] patterns of the FWM field for $\Delta _{p}=\Delta _{c}=0$ meV and $\Delta _{p}=\Delta _{c}=6$ meV, respectively. (e) and (f) are corresponding real Re($K_{+}$) and imaginary Im($K_{+}$) parts of the dispersion relation $K_{+}$ as a function of radial radius $r$. The other parameters are $g=f=1.2$, $\Delta _{v}=0$, $\Delta =3$ meV, $\Omega _{c}=12$ meV, $\Omega _{v0}=15$ meV, $\zeta _{m}= \zeta _{p}=3\,$meV/$\mu$m, $\Omega _{0}=1$ meV, $l=3$, $p=1$, $\omega _{0}=200$ $\mu$m, $\omega _{sp}=3 \omega _{0}$, $\tau =10^{-6}$ s, $L=100$ $\mu$m.
Fig. 3.
Fig. 3. Phase [(a) and (b)] and intensity [(c) and (d)] patterns of the FWM field for ($\Delta _{p},\Delta _{c})=(4,0$ meV$)$ and ($\Delta _{p},\Delta _{c})=(0,4$ meV$)$, respectively. (e) and (f) are corresponding real Re($K_{+}$) and imaginary Im($K_{+}$) parts of the dispersion relation $K_{+}$ as a function of radial radius $r$. Other parameters are the same as in Fig. 2.
Fig. 4.
Fig. 4. Interference phase (a)–(d) and intensity (e)–(h) patterns of the FWM field and a same-frequency Gaussian beam for different probe-field detuning $\Delta _{p}$ and the control-field detuning $\Delta _{c}$. Other parameters are the same as in Fig. 2 except for $\Omega _{G0}=0.3$ meV. Note that, profiles (a)–(d) have shown the evidence that OAM phase is transferred entirely from the pump field to the FWM field, while profiles (a)–(h) imply that both the intensity and the phase of the FWM field are modulated.
Fig. 5.
Fig. 5. The FWM conversion efficiency $\eta$ as a function of the propagation distance $L$ (a), control field $\Omega _{c}$ (b), and probe-field detuning $\Delta _{p}$ (c), respectively. Other parameters are the same as in Fig. 2.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

Ω v = 2 p ! / π ( p + | l | ) ! Ω v 0 ω 0 ( 2 r ω 0 ) | l | exp ( r 2 ω 0 2 ) L p | l | ( 2 r 2 ω 0 2 ) exp ( i l ϕ ) ,
H I = ( Δ p Δ c ) | 2 2 | + ( Δ p Δ ) | 3 3 | + ( Δ p + Δ ) | 4 4 | + ( Δ v + Δ p Δ c ) | 5 5 | ( g Ω p e i k p r | 3 1 | + Ω p e i k p r | 4 1 | + f Ω c e i k c r | 3 2 | + Ω c e i k c r | 4 2 | + Ω v e i k v r | 5 2 | + Ω m e i k m r | 5 1 | + H . c . ) ,
A ˙ 2 = i ( Δ p Δ c ) A 2 + i f Ω c A 3 + i Ω c A 4 + i Ω v A 5 γ 2 A 2 ,
A ˙ 3 = i ( Δ p Δ i γ 3 ) A 3 + i g Ω p A 1 + i f Ω c A 2 ,
A ˙ 4 = i ( Δ p + Δ i γ 4 ) A 4 + i Ω p A 1 + i Ω c A 2 ,
A ˙ 5 = i ( Δ v + Δ p Δ c ) A 5 + i Ω v A 2 + i Ω m A 1 γ 5 A 5 ,
Ω p z + Ω p c t = i c 2 ω p 2 Ω p + i ζ p ( g A 3 + A 4 ) A 1 ,
Ω m z + Ω m c t = i c 2 ω m 2 Ω m + i ζ m A 5 A 1 ,
b 2 A ~ 2 + f Ω c A ~ 3 + Ω c A ~ 4 + Ω v A ~ 5 = 0 ,
b 3 A ~ 3 + f Ω c A ~ 2 + g Ω ~ p = 0 ,
b 4 A ~ 4 + Ω c A ~ 2 + Ω ~ p = 0 ,
b 5 A ~ 5 + Ω v A ~ 2 + Ω ~ m = 0 ,
i Ω ~ p / z ω Ω ~ p / c ζ p ( g A ~ 3 + A ~ 4 ) = 0 ,
i Ω ~ m / z ω Ω ~ m / c i ζ m A ~ 5 = 0 ,
g A ~ 3 + A ~ 4 = D p 1 Ω ~ p / D + D m 1 Ω ~ m / D ,
A ~ 5 = D p 2 Ω ~ p / D + D m 2 Ω ~ m / D ,
Ω ~ m ( z , ω ; x , y ) = F Ω ~ p ( z = 0 , ω ; x , y ) ( e i z K + e i z K ) ,
Ω m ( z , t ; x , y ) = F [ Ω p ( η + ) e i z K + Ω p ( η ) e i z K ] ,
Ω m ( L , t ; x , y ) = F Ω p ( η + ) e i L K + .
η = | μ 31 | 2 | μ 51 | 2 x y z t | Ω m ( L , t ; x , y ) | 2 d x d y d z d t x y t | Ω p ( 0 , t ; x , y ) | 2 d x d y d t .

Metrics