Abstract

We report a diamond Raman ring cavity laser resonantly pumped by a tunable Ti:sapphire continuous wave laser. We characterize the laser operation generating first Stokes output and, for the first time, generate second Stokes lasing at a maximum output power of 364 mW with 33.4% slope efficiency at 1101.3 nm. Single longitudinal mode operation is achieved for all first Stokes output powers, but only for lower output powers for second Stokes operation. We discuss possible reasons preventing single longitudinal mode operation.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast second-Stokes diamond Raman laser

Michelle Murtagh, Jipeng Lin, Johanna Trägårdh, Gail McConnell, and David J. Spence
Opt. Express 24(8) 8149-8155 (2016)

Single longitudinal mode diamond Raman laser in the eye-safe spectral region for water vapor detection

Oliver Lux, Soumya Sarang, Robert J. Williams, Aaron McKay, and Richard P. Mildren
Opt. Express 24(24) 27812-27820 (2016)

Broadly tunable linewidth-invariant Raman Stokes comb for selective resonance photoionization

Daniel T. Echarri, Katerina Chrysalidis, Valentin N. Fedosseev, Bruce A. Marsh, Richard P. Mildren, Santiago M. Olaizola, David J. Spence, Shane G. Wilkins, and Eduardo Granados
Opt. Express 28(6) 8589-8600 (2020)

References

  • View by:
  • |
  • |
  • |

  1. M. Ebrahimzadeh, Mid-Infrared Ultrafast and Continuous-Wave Optical Parametric Oscillators, Topics in Applied Physics (Springer Berlin Heidelberg, 2003), 89(January 2008).
  2. D. J. Spence, “Spectral effects of stimulated Raman scattering in crystals,” Prog. Quantum Electron. 51, 1–45 (2017).
    [Crossref]
  3. J.-P. M. Feve, K. E. Shortoff, M. J. Bohn, and J. K. Brasseur, “High average power diamond Raman laser,” Opt. Express 19(2), 913–922 (2011).
    [Crossref]
  4. E. Granados, H. M. Pask, and D. J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express 17(2), 569–574 (2009).
    [Crossref]
  5. D. J. Spence, E. Granados, and R. P. Mildren, “Mode-locked picosecond diamond Raman laser,” Opt. Lett. 35(4), 556–558 (2010).
    [Crossref]
  6. E. Granados, D. J. Spence, and R. P. Mildren, “Deep ultraviolet diamond Raman laser,” Opt. Express 19(11), 10857–10863 (2011).
    [Crossref]
  7. R. P. Mildren, “Intrinsic Optical Properties of Diamond,” in Optical Engineering of Diamond (John Wiley & Sons, Ltd, 2013), pp. 1–34.
  8. R. Casula, J. P. Penttinen, A. J. Kemp, M. Guina, and J. E. Hastie, “1.4 µm continuous-wave diamond Raman laser,” Opt. Express 25(25), 31377–31383 (2017).
    [Crossref]
  9. D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1400108 (2013).
    [Crossref]
  10. R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photonics Rev. 9(4), 405–411 (2015).
    [Crossref]
  11. R. J. Williams, D. J. Spence, O. Lux, and R. P. Mildren, “High-power continuous-wave Raman frequency conversion from 1.06 µm to 1.49 µm in diamond,” Opt. Express 25(2), 749–757 (2017).
    [Crossref]
  12. S. Antipov, A. Sabella, R. J. Williams, O. Kitzler, D. J. Spence, and R. P. Mildren, “1.2 kW quasi-steady-state diamond Raman laser pumped by an M2 = 15 beam,” Opt. Lett. 44(10), 2506–2509 (2019).
    [Crossref]
  13. O. Lux, S. Sarang, O. Kitzler, D. J. Spence, and R. P. Mildren, “Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain,” Optica 3(8), 876–881 (2016).
    [Crossref]
  14. S. Sarang, O. Kitzler, O. Lux, Z. Bai, R. J. Williams, D. J. Spence, and R. P. Mildren, “Single-longitudinal-mode diamond laser stabilization using polarization-dependent Raman gain,” OSA Continuum 2(4), 1028–1038 (2019).
    [Crossref]
  15. O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23(7), 8590–8602 (2015).
    [Crossref]
  16. O. Kitzler, J. Lin, H. M. Pask, R. P. Mildren, S. C. Webster, N. Hempler, G. P. A. Malcolm, and D. J. Spence, “Single-longitudinal-mode ring diamond Raman laser,” Opt. Lett. 42(7), 1229–1232 (2017).
    [Crossref]
  17. T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
    [Crossref]
  18. A. Sabella, J. A. Piper, and R. P. Mildren, “1240 nm diamond Raman laser operating near the quantum limit,” Opt. Lett. 35(23), 3874–3876 (2010).
    [Crossref]
  19. Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
    [Crossref]
  20. A. E. Siegman, Lasers (University Science Books, 1986).
  21. J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
    [Crossref]
  22. B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28(17), 1507–1509 (2003).
    [Crossref]
  23. I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
    [Crossref]
  24. O. Kitzler, D. J. Spence, and R. P. Mildren, “Generalised theory of polarisation modes for resonators containing birefringence and anisotropic gain,” Opt. Express 27(12), 17209–17220 (2019).
    [Crossref]

2019 (3)

2018 (1)

Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
[Crossref]

2017 (4)

2016 (1)

2015 (2)

O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23(7), 8590–8602 (2015).
[Crossref]

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photonics Rev. 9(4), 405–411 (2015).
[Crossref]

2013 (1)

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1400108 (2013).
[Crossref]

2011 (2)

2010 (3)

2009 (1)

2007 (1)

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

2003 (1)

1980 (1)

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[Crossref]

Antipov, S.

Bai, Z.

S. Sarang, O. Kitzler, O. Lux, Z. Bai, R. J. Williams, D. J. Spence, and R. P. Mildren, “Single-longitudinal-mode diamond laser stabilization using polarization-dependent Raman gain,” OSA Continuum 2(4), 1028–1038 (2019).
[Crossref]

Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
[Crossref]

Bohn, M. J.

Brasseur, J. K.

Casula, R.

Couillaud, B.

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[Crossref]

Dawson, M. D.

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1400108 (2013).
[Crossref]

Ebrahimzadeh, M.

M. Ebrahimzadeh, Mid-Infrared Ultrafast and Continuous-Wave Optical Parametric Oscillators, Topics in Applied Physics (Springer Berlin Heidelberg, 2003), 89(January 2008).

Feve, J.-P. M.

Friel, I.

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[Crossref]

Gao, Q.

Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
[Crossref]

Geoghegan, S. L.

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[Crossref]

Granados, E.

Guina, M.

Hänsch, T. W.

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[Crossref]

Hastie, J. E.

R. Casula, J. P. Penttinen, A. J. Kemp, M. Guina, and J. E. Hastie, “1.4 µm continuous-wave diamond Raman laser,” Opt. Express 25(25), 31377–31383 (2017).
[Crossref]

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1400108 (2013).
[Crossref]

Hempler, N.

Kemp, A. J.

R. Casula, J. P. Penttinen, A. J. Kemp, M. Guina, and J. E. Hastie, “1.4 µm continuous-wave diamond Raman laser,” Opt. Express 25(25), 31377–31383 (2017).
[Crossref]

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1400108 (2013).
[Crossref]

Kippenberg, T. J.

Kitzler, O.

O. Kitzler, D. J. Spence, and R. P. Mildren, “Generalised theory of polarisation modes for resonators containing birefringence and anisotropic gain,” Opt. Express 27(12), 17209–17220 (2019).
[Crossref]

S. Sarang, O. Kitzler, O. Lux, Z. Bai, R. J. Williams, D. J. Spence, and R. P. Mildren, “Single-longitudinal-mode diamond laser stabilization using polarization-dependent Raman gain,” OSA Continuum 2(4), 1028–1038 (2019).
[Crossref]

S. Antipov, A. Sabella, R. J. Williams, O. Kitzler, D. J. Spence, and R. P. Mildren, “1.2 kW quasi-steady-state diamond Raman laser pumped by an M2 = 15 beam,” Opt. Lett. 44(10), 2506–2509 (2019).
[Crossref]

Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
[Crossref]

O. Kitzler, J. Lin, H. M. Pask, R. P. Mildren, S. C. Webster, N. Hempler, G. P. A. Malcolm, and D. J. Spence, “Single-longitudinal-mode ring diamond Raman laser,” Opt. Lett. 42(7), 1229–1232 (2017).
[Crossref]

O. Lux, S. Sarang, O. Kitzler, D. J. Spence, and R. P. Mildren, “Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain,” Optica 3(8), 876–881 (2016).
[Crossref]

O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23(7), 8590–8602 (2015).
[Crossref]

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photonics Rev. 9(4), 405–411 (2015).
[Crossref]

Lin, J.

Liu, Z.

Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
[Crossref]

Lu, Z.

Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
[Crossref]

Lux, O.

Malcolm, G. P. A.

McKay, A.

O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23(7), 8590–8602 (2015).
[Crossref]

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photonics Rev. 9(4), 405–411 (2015).
[Crossref]

Mildren, R. P.

S. Sarang, O. Kitzler, O. Lux, Z. Bai, R. J. Williams, D. J. Spence, and R. P. Mildren, “Single-longitudinal-mode diamond laser stabilization using polarization-dependent Raman gain,” OSA Continuum 2(4), 1028–1038 (2019).
[Crossref]

S. Antipov, A. Sabella, R. J. Williams, O. Kitzler, D. J. Spence, and R. P. Mildren, “1.2 kW quasi-steady-state diamond Raman laser pumped by an M2 = 15 beam,” Opt. Lett. 44(10), 2506–2509 (2019).
[Crossref]

O. Kitzler, D. J. Spence, and R. P. Mildren, “Generalised theory of polarisation modes for resonators containing birefringence and anisotropic gain,” Opt. Express 27(12), 17209–17220 (2019).
[Crossref]

Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
[Crossref]

O. Kitzler, J. Lin, H. M. Pask, R. P. Mildren, S. C. Webster, N. Hempler, G. P. A. Malcolm, and D. J. Spence, “Single-longitudinal-mode ring diamond Raman laser,” Opt. Lett. 42(7), 1229–1232 (2017).
[Crossref]

R. J. Williams, D. J. Spence, O. Lux, and R. P. Mildren, “High-power continuous-wave Raman frequency conversion from 1.06 µm to 1.49 µm in diamond,” Opt. Express 25(2), 749–757 (2017).
[Crossref]

O. Lux, S. Sarang, O. Kitzler, D. J. Spence, and R. P. Mildren, “Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain,” Optica 3(8), 876–881 (2016).
[Crossref]

O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23(7), 8590–8602 (2015).
[Crossref]

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photonics Rev. 9(4), 405–411 (2015).
[Crossref]

E. Granados, D. J. Spence, and R. P. Mildren, “Deep ultraviolet diamond Raman laser,” Opt. Express 19(11), 10857–10863 (2011).
[Crossref]

D. J. Spence, E. Granados, and R. P. Mildren, “Mode-locked picosecond diamond Raman laser,” Opt. Lett. 35(4), 556–558 (2010).
[Crossref]

A. Sabella, J. A. Piper, and R. P. Mildren, “1240 nm diamond Raman laser operating near the quantum limit,” Opt. Lett. 35(23), 3874–3876 (2010).
[Crossref]

R. P. Mildren, “Intrinsic Optical Properties of Diamond,” in Optical Engineering of Diamond (John Wiley & Sons, Ltd, 2013), pp. 1–34.

Min, B.

Nold, J.

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photonics Rev. 9(4), 405–411 (2015).
[Crossref]

Parrotta, D. C.

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1400108 (2013).
[Crossref]

Pask, H. M.

Penttinen, J. P.

Piper, J. A.

A. Sabella, J. A. Piper, and R. P. Mildren, “1240 nm diamond Raman laser operating near the quantum limit,” Opt. Lett. 35(23), 3874–3876 (2010).
[Crossref]

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

Sabella, A.

Sarang, S.

Scarsbrook, G. A.

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[Crossref]

Schreiber, T.

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photonics Rev. 9(4), 405–411 (2015).
[Crossref]

Shortoff, K. E.

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Spence, D. J.

O. Kitzler, D. J. Spence, and R. P. Mildren, “Generalised theory of polarisation modes for resonators containing birefringence and anisotropic gain,” Opt. Express 27(12), 17209–17220 (2019).
[Crossref]

S. Antipov, A. Sabella, R. J. Williams, O. Kitzler, D. J. Spence, and R. P. Mildren, “1.2 kW quasi-steady-state diamond Raman laser pumped by an M2 = 15 beam,” Opt. Lett. 44(10), 2506–2509 (2019).
[Crossref]

S. Sarang, O. Kitzler, O. Lux, Z. Bai, R. J. Williams, D. J. Spence, and R. P. Mildren, “Single-longitudinal-mode diamond laser stabilization using polarization-dependent Raman gain,” OSA Continuum 2(4), 1028–1038 (2019).
[Crossref]

O. Kitzler, J. Lin, H. M. Pask, R. P. Mildren, S. C. Webster, N. Hempler, G. P. A. Malcolm, and D. J. Spence, “Single-longitudinal-mode ring diamond Raman laser,” Opt. Lett. 42(7), 1229–1232 (2017).
[Crossref]

D. J. Spence, “Spectral effects of stimulated Raman scattering in crystals,” Prog. Quantum Electron. 51, 1–45 (2017).
[Crossref]

R. J. Williams, D. J. Spence, O. Lux, and R. P. Mildren, “High-power continuous-wave Raman frequency conversion from 1.06 µm to 1.49 µm in diamond,” Opt. Express 25(2), 749–757 (2017).
[Crossref]

O. Lux, S. Sarang, O. Kitzler, D. J. Spence, and R. P. Mildren, “Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain,” Optica 3(8), 876–881 (2016).
[Crossref]

O. Kitzler, A. McKay, D. J. Spence, and R. P. Mildren, “Modelling and optimization of continuous-wave external cavity Raman lasers,” Opt. Express 23(7), 8590–8602 (2015).
[Crossref]

E. Granados, D. J. Spence, and R. P. Mildren, “Deep ultraviolet diamond Raman laser,” Opt. Express 19(11), 10857–10863 (2011).
[Crossref]

D. J. Spence, E. Granados, and R. P. Mildren, “Mode-locked picosecond diamond Raman laser,” Opt. Lett. 35(4), 556–558 (2010).
[Crossref]

E. Granados, H. M. Pask, and D. J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express 17(2), 569–574 (2009).
[Crossref]

Strecker, M.

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photonics Rev. 9(4), 405–411 (2015).
[Crossref]

Twitchen, D. J.

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[Crossref]

Vahala, K. J.

Wang, Y.

Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
[Crossref]

Webster, S. C.

Williams, R. J.

S. Antipov, A. Sabella, R. J. Williams, O. Kitzler, D. J. Spence, and R. P. Mildren, “1.2 kW quasi-steady-state diamond Raman laser pumped by an M2 = 15 beam,” Opt. Lett. 44(10), 2506–2509 (2019).
[Crossref]

S. Sarang, O. Kitzler, O. Lux, Z. Bai, R. J. Williams, D. J. Spence, and R. P. Mildren, “Single-longitudinal-mode diamond laser stabilization using polarization-dependent Raman gain,” OSA Continuum 2(4), 1028–1038 (2019).
[Crossref]

Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
[Crossref]

R. J. Williams, D. J. Spence, O. Lux, and R. P. Mildren, “High-power continuous-wave Raman frequency conversion from 1.06 µm to 1.49 µm in diamond,” Opt. Express 25(2), 749–757 (2017).
[Crossref]

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photonics Rev. 9(4), 405–411 (2015).
[Crossref]

Xu, P.

Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
[Crossref]

Yuan, H.

Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1400108 (2013).
[Crossref]

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

Laser Photonics Rev. (1)

R. J. Williams, J. Nold, M. Strecker, O. Kitzler, A. McKay, T. Schreiber, and R. P. Mildren, “Efficient Raman frequency conversion of high-power fiber lasers in diamond,” Laser Photonics Rev. 9(4), 405–411 (2015).
[Crossref]

Opt. Commun. (1)

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[Crossref]

Opt. Express (7)

Opt. Lett. (5)

Opt. Mater. (1)

Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, “Stimulated Brillouin scattering materials, experimental design and applications: A review,” Opt. Mater. 75, 626–645 (2018).
[Crossref]

Optica (1)

OSA Continuum (1)

Proc. SPIE (1)

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[Crossref]

Prog. Quantum Electron. (1)

D. J. Spence, “Spectral effects of stimulated Raman scattering in crystals,” Prog. Quantum Electron. 51, 1–45 (2017).
[Crossref]

Other (3)

R. P. Mildren, “Intrinsic Optical Properties of Diamond,” in Optical Engineering of Diamond (John Wiley & Sons, Ltd, 2013), pp. 1–34.

M. Ebrahimzadeh, Mid-Infrared Ultrafast and Continuous-Wave Optical Parametric Oscillators, Topics in Applied Physics (Springer Berlin Heidelberg, 2003), 89(January 2008).

A. E. Siegman, Lasers (University Science Books, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic layout of the experimental setup. Inset is the spectrum of the IC/OC for second Stokes. The label P, S, and SS means the position of the pump, Stokes and second Stokes field in experiment
Fig. 2.
Fig. 2. Measured (squares) and modeled (solid line) Stokes output power (left axis) and conversion efficiency (right axis) as a function of incident pump power. Inset is the beam profile of the first Stokes beam.
Fig. 3.
Fig. 3. (a) Measured and modelled second Stokes output power and conversion efficiency as function of pump power. (b)-(d) Output of a scanning FPI monitoring the second Stokes spectra at output powers shown in (a). Inset in (a) is the beam profile of the second Stokes beam.
Fig. 4.
Fig. 4. Output of a scanning FPI, showing the stability of the second Stokes SLM spectrum.

Tables (1)

Tables Icon

Table 1. The details of resonator mirrors.

Metrics