Abstract

Frontal projection autostereoscopic three-dimensional (3D) display is a kind of excellent 3D display technique with large display size and efficient space utilization, especially suitable for the future glasses-free 3D cinema. In this paper, we propose a frontal projection autostereoscopic 3D display using a liquid crystal lens array (LCLA) and a quarter-wave retarding film. The LCLA acts as two roles, refraction and transparency, for different polarized light. The forward projected polarized light can pass through the LCLA as a transparency, and then pass through the quarter-wave retarding film. After reflecting from a polarization-preserving screen, the returned light will pass through the quarter-wave retarding film again and turn to an orthogonal polarization. This polarized light will be refracted by the LCLA and reconstruct the 3D image. The demonstrated LCLA has the merits of no driving voltage, simple fabrication, and cost-effective. Optical experiment verifies the proposed method, which is promising for its potential application in the future glasses-free 3D cinema.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A frontal projection-type three-dimensional display

Youngmin Kim, Keehoon Hong, Jiwoon Yeom, Jisoo Hong, Jae-Hyun Jung, Yong Wook Lee, Jae-Hyeung Park, and Byoungho Lee
Opt. Express 20(18) 20130-20138 (2012)

Aberration analyses for improving the frontal projection three-dimensional display

Xin Gao, Xinzhu Sang, Xunbo Yu, Peng Wang, Xuemei Cao, Lei Sun, Binbin Yan, Jinhui Yuan, Kuiru Wang, Chongxiu Yu, and Wenhua Dou
Opt. Express 22(19) 23496-23511 (2014)

High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display

Yu-Cheng Chang, Tai-Hsiang Jen, Chih-Hung Ting, and Yi-Pai Huang
Opt. Express 22(3) 2714-2724 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Y. H. Tao, Q. H. Wang, J. Gu, W. X. Zhao, and D. H. Li, “Autostereoscopic three-dimensional projector based on two parallax barriers,” Opt. Lett. 34(20), 3220–3222 (2009).
    [Crossref]
  2. Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
    [Crossref]
  3. H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12(6), 1067–1076 (2004).
    [Crossref]
  4. Y. Kim, S. G. Park, S.-W. Min, and B. Lee, “Projection-type integral imaging system using multiple elemental image layers,” Appl. Opt. 50(7), B18–B24 (2011).
    [Crossref]
  5. Y. Jeong, S. Jung, J.-H. Park, and B. Lee, “Reflection-type integral imaging scheme for displaying three-dimensional images,” Opt. Lett. 27(9), 704–706 (2002).
    [Crossref]
  6. J.-S. Jang and B. Javidi, “Three-dimensional projection integral imaging using micro-convex-mirror arrays,” Opt. Express 12(6), 1077–1083 (2004).
    [Crossref]
  7. Y. Kim, S. G. Park, S.-W. Min, and B. Lee, “Integral imaging system using a dual-mode technique,” Appl. Opt. 48(34), H71–H76 (2009).
    [Crossref]
  8. J. Hong, Y. Kim, S. G. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, and B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express 18(20), 20628–20637 (2010).
    [Crossref]
  9. J.-Y. Jang, D. Shin, B.-G. Lee, and E.-S. Kim, “Multi-projection integral imaging by use of a convex mirror array,” Opt. Lett. 39(10), 2853–2856 (2014).
    [Crossref]
  10. Y. Kim, K. Hong, J. Yeom, J. Hong, J. H. Jung, Y. W. Lee, and B. Lee, “A frontal projection-type three-dimensional display,” Opt. Express 20(18), 20130–20138 (2012).
    [Crossref]
  11. S. F. Zang, Q. H. Wang, W. X. Zhao, J. Zhang, and J. L. Liang, “A frontal multi-projection autostereoscopic 3D display based on a 3D-image-guided screen,” J. Disp. Technol. 10(10), 882–886 (2014).
    [Crossref]
  12. P. Wang, S. Xie, X. Sang, D. Chen, C. Li, X. Gao, and L. Xiao, “A large depth of field frontal multi-projection three-dimensional display with uniform light field distribution,” Opt. Commun. 354, 321–329 (2015).
    [Crossref]
  13. X. Gao, X. Sang, X. Yu, P. Wang, X. Cao, L. Sun, and W. Dou, “Aberration analyses for improving the frontal projection three-dimensional display,” Opt. Express 22(19), 23496–23511 (2014).
    [Crossref]
  14. P. Yeh, “Extended Jones matrix method,” J. Opt. Soc. Am. 72(4), 507–513 (1982).
    [Crossref]
  15. Y. Kim, J. H. Park, H. Choi, S. Jung, S. W. Min, and B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express 12(3), 421–429 (2004).
    [Crossref]
  16. Y. Kim, J. H. Park, S. W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44(4), 546–552 (2005).
    [Crossref]
  17. Z. Wang, G. Q. Lv, Q. B. Feng, A. T. Wang, and H. Ming, “Resolution priority holographic stereogram based on integral imaging with enhanced depth range,” Opt. Express 27(3), 2689–2702 (2019).
    [Crossref]

2019 (1)

2015 (1)

P. Wang, S. Xie, X. Sang, D. Chen, C. Li, X. Gao, and L. Xiao, “A large depth of field frontal multi-projection three-dimensional display with uniform light field distribution,” Opt. Commun. 354, 321–329 (2015).
[Crossref]

2014 (3)

2012 (1)

2011 (1)

2010 (2)

2009 (2)

2005 (1)

2004 (3)

2002 (1)

1982 (1)

Cao, X.

Chen, D.

P. Wang, S. Xie, X. Sang, D. Chen, C. Li, X. Gao, and L. Xiao, “A large depth of field frontal multi-projection three-dimensional display with uniform light field distribution,” Opt. Commun. 354, 321–329 (2015).
[Crossref]

Choi, H.

Dohi, T.

Dou, W.

Feng, Q. B.

Gao, X.

P. Wang, S. Xie, X. Sang, D. Chen, C. Li, X. Gao, and L. Xiao, “A large depth of field frontal multi-projection three-dimensional display with uniform light field distribution,” Opt. Commun. 354, 321–329 (2015).
[Crossref]

X. Gao, X. Sang, X. Yu, P. Wang, X. Cao, L. Sun, and W. Dou, “Aberration analyses for improving the frontal projection three-dimensional display,” Opt. Express 22(19), 23496–23511 (2014).
[Crossref]

Gu, J.

Hata, N.

Hong, J.

Hong, J.-H.

Hong, K.

Iwahara, M.

Jang, J.-S.

Jang, J.-Y.

Javidi, B.

Jeong, Y.

Jung, J. H.

Jung, S.

Kim, E.-S.

Kim, Y.

Lee, B.

Lee, B.-G.

Lee, S.-D.

Lee, Y. W.

Li, C.

P. Wang, S. Xie, X. Sang, D. Chen, C. Li, X. Gao, and L. Xiao, “A large depth of field frontal multi-projection three-dimensional display with uniform light field distribution,” Opt. Commun. 354, 321–329 (2015).
[Crossref]

Li, D. H.

Liang, J. L.

S. F. Zang, Q. H. Wang, W. X. Zhao, J. Zhang, and J. L. Liang, “A frontal multi-projection autostereoscopic 3D display based on a 3D-image-guided screen,” J. Disp. Technol. 10(10), 882–886 (2014).
[Crossref]

Liao, H.

Lv, G. Q.

Min, S. W.

Min, S.-W.

Ming, H.

Nago, N.

Park, J. H.

Park, J.-H.

Park, S. G.

Sang, X.

P. Wang, S. Xie, X. Sang, D. Chen, C. Li, X. Gao, and L. Xiao, “A large depth of field frontal multi-projection three-dimensional display with uniform light field distribution,” Opt. Commun. 354, 321–329 (2015).
[Crossref]

X. Gao, X. Sang, X. Yu, P. Wang, X. Cao, L. Sun, and W. Dou, “Aberration analyses for improving the frontal projection three-dimensional display,” Opt. Express 22(19), 23496–23511 (2014).
[Crossref]

Shin, D.

Sun, L.

Takaki, Y.

Tao, Y. H.

Wang, A. T.

Wang, P.

P. Wang, S. Xie, X. Sang, D. Chen, C. Li, X. Gao, and L. Xiao, “A large depth of field frontal multi-projection three-dimensional display with uniform light field distribution,” Opt. Commun. 354, 321–329 (2015).
[Crossref]

X. Gao, X. Sang, X. Yu, P. Wang, X. Cao, L. Sun, and W. Dou, “Aberration analyses for improving the frontal projection three-dimensional display,” Opt. Express 22(19), 23496–23511 (2014).
[Crossref]

Wang, Q. H.

S. F. Zang, Q. H. Wang, W. X. Zhao, J. Zhang, and J. L. Liang, “A frontal multi-projection autostereoscopic 3D display based on a 3D-image-guided screen,” J. Disp. Technol. 10(10), 882–886 (2014).
[Crossref]

Y. H. Tao, Q. H. Wang, J. Gu, W. X. Zhao, and D. H. Li, “Autostereoscopic three-dimensional projector based on two parallax barriers,” Opt. Lett. 34(20), 3220–3222 (2009).
[Crossref]

Wang, Z.

Xiao, L.

P. Wang, S. Xie, X. Sang, D. Chen, C. Li, X. Gao, and L. Xiao, “A large depth of field frontal multi-projection three-dimensional display with uniform light field distribution,” Opt. Commun. 354, 321–329 (2015).
[Crossref]

Xie, S.

P. Wang, S. Xie, X. Sang, D. Chen, C. Li, X. Gao, and L. Xiao, “A large depth of field frontal multi-projection three-dimensional display with uniform light field distribution,” Opt. Commun. 354, 321–329 (2015).
[Crossref]

Yeh, P.

Yeom, J.

Yu, X.

Zang, S. F.

S. F. Zang, Q. H. Wang, W. X. Zhao, J. Zhang, and J. L. Liang, “A frontal multi-projection autostereoscopic 3D display based on a 3D-image-guided screen,” J. Disp. Technol. 10(10), 882–886 (2014).
[Crossref]

Zhang, J.

S. F. Zang, Q. H. Wang, W. X. Zhao, J. Zhang, and J. L. Liang, “A frontal multi-projection autostereoscopic 3D display based on a 3D-image-guided screen,” J. Disp. Technol. 10(10), 882–886 (2014).
[Crossref]

Zhao, W. X.

S. F. Zang, Q. H. Wang, W. X. Zhao, J. Zhang, and J. L. Liang, “A frontal multi-projection autostereoscopic 3D display based on a 3D-image-guided screen,” J. Disp. Technol. 10(10), 882–886 (2014).
[Crossref]

Y. H. Tao, Q. H. Wang, J. Gu, W. X. Zhao, and D. H. Li, “Autostereoscopic three-dimensional projector based on two parallax barriers,” Opt. Lett. 34(20), 3220–3222 (2009).
[Crossref]

Appl. Opt. (3)

J. Disp. Technol. (1)

S. F. Zang, Q. H. Wang, W. X. Zhao, J. Zhang, and J. L. Liang, “A frontal multi-projection autostereoscopic 3D display based on a 3D-image-guided screen,” J. Disp. Technol. 10(10), 882–886 (2014).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

P. Wang, S. Xie, X. Sang, D. Chen, C. Li, X. Gao, and L. Xiao, “A large depth of field frontal multi-projection three-dimensional display with uniform light field distribution,” Opt. Commun. 354, 321–329 (2015).
[Crossref]

Opt. Express (8)

Opt. Lett. (3)

Supplementary Material (2)

NameDescription
» Visualization 1       Experimental results captured from different directions of the 3D image of two letters “3” and “D”
» Visualization 2       Experimental results captured from different directions of the 3D image of a bee model.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Principle of the proposed single frontal projection 3D display using a LCLA. (b) The equivalent light path of the proposed method.
Fig. 2.
Fig. 2. (a) Simplified case for simulation in proposed method. (b) The DOP changes with wavelength and incident angle.
Fig. 3.
Fig. 3. Schematic cross-section of the procedures for fabricating a LCLA.
Fig. 4.
Fig. 4. (a) The LCLA presents the property of a transparency to the y-polarized light. (b) The LCLA presents the property of a positive lens array to the x-polarized light.
Fig. 5.
Fig. 5. (a) The fabricated LCLLA. (b) The light distribution of the vertically polarized light after passing the LCLLA. (c) The light distribution of the horizontally polarized light after passing the LCLLA.
Fig. 6.
Fig. 6. Experimental setup.
Fig. 7.
Fig. 7. (a) The elemental image arrays of the two 3D models. (b) Experimental results captured from different directions of the 3D image of two letters “3” and “D”. (c) Experimental results captured from different directions of the 3D image of a bee model.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n e f f = n o n e n e 2 cos 2 θ + n o 2 sin 2 θ
( A s A p ) = ( t s 0 0 t p ) ( cos ψ sin ψ sin ψ cos ψ ) ( 1 0 0 exp ( i π / 2 ) ) ( cos ψ sin ψ sin ψ cos ψ ) ( t s 0 0 t p ) ( A s A p ) = T o R ( ψ ) P R ( ψ ) T i ( A s A p )
t s = 2 n cos θ n cos θ + n 0 cos θ 0 , t p = 2 n cos θ n cos θ 0 + n 0 cos θ , t s = 2 n 0 cos θ 0 n 0 cos θ 0 + n cos θ , t p = 2 n 0 cos θ 0 n 0 cos θ + n cos θ 0 ,
cos ψ = cos θ 0 sin ϕ 1 sin 2 θ 0 sin 2 ϕ
n s + n s = n n r

Metrics