Abstract

A photonics-based broadband phased array radar is demonstrated to realize high-resolution imaging based on digital beamforming. This photonics-based phased array radar can achieve a high range resolution enabled by a large operation bandwidth, and can realize squint-free beam steering by digital true time delay (TTD) compensation. In addition, the photonic dechirp processing applied in the receiver can alleviate the hardware requirements for data sampling and storage, and hence remarkably enhance the real-time signal processing capability. In a proof-of-concept experiment, target imaging by a photonics-based 1 × 4 phased array radar that has a bandwidth of 4 GHz (22-26 GHz) is demonstrated, of which the range and azimuth resolution is measured to be 3.85 cm and 2.68°, respectively. The proposed scheme provides good solution to overcoming the bandwidth limitation and implementing high-resolution imaging in a phased array radar.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photonics-based MIMO radar with high-resolution and fast detection capability

Fangzheng Zhang, Bindong Gao, and Shilong Pan
Opt. Express 26(13) 17529-17540 (2018)

Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging

Fangzheng Zhang, Qingshui Guo, Ziqian Wang, Pei Zhou, Guoqiang Zhang, Jun Sun, and Shilong Pan
Opt. Express 25(14) 16274-16281 (2017)

Photonics-based radar with balanced I/Q de-chirping for interference-suppressed high-resolution detection and imaging

Xingwei Ye, Fangzheng Zhang, Yue Yang, and Shilong Pan
Photon. Res. 7(3) 265-272 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Stanko, D. Notel, A. Wahlen, J. Huck, F. Kloppel, R. Sommer, and M. Hagelen, “Active and passive mm-wave imaging for concealed weapon detection and surveillance,” in 2008 33rd International Conference (IEEE IRMMW-THz, 2008).
    [Crossref]
  2. J. Dickmann, N. Appenrodt, H. Bloecher, C. Brenk, T. Hackbarth, M. Hahn, J. Klappstein, M. Muntzinger, and A. Sailer, “Radar contribution to highly automated driving,” in 2014 44th European Microwave Conference (EuMC, 2014).
  3. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems,” IEEE Microw. Mag. 16(8), 74–83 (2015).
    [Crossref]
  4. L. Zhuang, C. G. Roeloffzen, A. Meijerink, M. Burla, D. A. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—Part II: Experimental prototype,” J. Lightwave Technol. 28(1), 19–31 (2010).
    [Crossref]
  5. C. Jose and N. Dovak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  6. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  7. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
    [Crossref] [PubMed]
  8. F. Zhang, Q. Guo, and S. Pan, “Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing,” Sci. Rep. 7(1), 13848 (2017).
    [Crossref] [PubMed]
  9. W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
    [Crossref] [PubMed]
  10. X. Ye, F. Zhang, Y. Yang, and S. Pan, “Photonics-based radar with balanced I/Q de-chirping for interference-suppressed high-resolution detection and imaging,” Photon. Res. 7(3), 265–272 (2019).
    [Crossref]
  11. F. Zhang, Q. Guo, Z. Wang, P. Zhou, G. Zhang, J. Sun, and S. Pan, “Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt. Express 25(14), 16274–16281 (2017).
    [Crossref] [PubMed]
  12. F. Zhang, Q. Guo, Y. Zhang, Y. Yao, P. Zhou, D. Zhu, and S. Pan, “Photonics-based real-time and high resolution ISAR imaging of non-cooperative target,” Chin. Opt. Lett. 15(11), 112801 (2017).
    [Crossref]
  13. X. Xiao, S. Li, B. Chen, X. Yang, D. Wu, X. Xue, X. Zheng, and B. Zhou, “A microwave photonics- based inverse synthetic aperture radar system,” in 2017 CLEO: Science and Innovations, paper. JW2A.144.
    [Crossref]
  14. F. Zhang, B. Gao, and S. Pan, “Photonics-based MIMO radar with high-resolution and fast detection capability,” Opt. Express 26(13), 17529–17540 (2018).
    [Crossref] [PubMed]
  15. X. Xiao, S. Li, S. Peng, D. Wu, X. Xue, X. Zheng, and B. Zhou, “Photonics-based wideband distributed coherent aperture radar system,” Opt. Express 26(26), 33783–33796 (2018).
    [Crossref] [PubMed]
  16. Z. Tegegne, C. Bin, T. Fromenteze, and C. Berthelemot, “Single Channel Microwave Photonics Digital Beamforming Radar Imaging System,” J. Lightwave Technol. 36(3), 675–681 (2018).
    [Crossref]
  17. X. Ye, F. Zhang, and S. Pan, “Optical true time delay unit for multi-beamforming,” Opt. Express 23(8), 10002–10008 (2015).
    [Crossref] [PubMed]
  18. X. Ye, F. Zhang, and S. Pan, “Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements,” Opt. Lett. 41(17), 3956–3959 (2016).
    [Crossref] [PubMed]
  19. P. Maak, I. Frigyes, L. Jakab, I. Habermayer, M. Gyukics, and P. Richter, “Realization of true-time delay linesbased on acoustooptics,” J. Lightwave Technol. 20(4), 730–739 (2002).
    [Crossref]
  20. S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18(21), 22599–22613 (2010).
    [Crossref] [PubMed]
  21. Q. Guo, F. Zhang, P. Zhou, and S. Pan, “Dual-band LFM signal generation by frequency quadrupling and polarization multiplexing,” IEEE Photonics Technol. Lett. 29(16), 1320–1323 (2017).
    [Crossref]
  22. C. Balanis, Antenna Theory: Analysis and Design (John Wiley & Sons Inc., 2016).
  23. F. Zhang, D. Zhang, and S. Pan, “Fast and wide-range optical beam steering with ultralow side lobes by applying an optimized multi-circular optical phased array,” Appl. Opt. 57(18), 4977–4984 (2018).
    [Crossref] [PubMed]
  24. S. Yin, J. Kim, F. Wu, P. Ruffin, and C. Luo, “Ultra-fast speed, low grating lobe optical beam steering using unequally spaced phased array technique,” Opt. Commun. 270(1), 41–46 (2007).
    [Crossref]
  25. R. Racine, “The telescope point spread function,” Publ. Astron. Soc. Pac. 108(726), 699–705 (1996).
    [Crossref]
  26. Y. Yao, F. Zhang, Y. Zhang, X. Ye, D. Zhu, and S. Pan, “Demonstration of ultra-high-resolution photonics-based Ka-band inverse synthetic aperture radar imaging,” in 2018 Optical Fiber Communication Conference (OFC2018), paper. Th3G.5.
    [Crossref]

2019 (1)

2018 (4)

2017 (4)

F. Zhang, Q. Guo, and S. Pan, “Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing,” Sci. Rep. 7(1), 13848 (2017).
[Crossref] [PubMed]

Q. Guo, F. Zhang, P. Zhou, and S. Pan, “Dual-band LFM signal generation by frequency quadrupling and polarization multiplexing,” IEEE Photonics Technol. Lett. 29(16), 1320–1323 (2017).
[Crossref]

F. Zhang, Q. Guo, Z. Wang, P. Zhou, G. Zhang, J. Sun, and S. Pan, “Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt. Express 25(14), 16274–16281 (2017).
[Crossref] [PubMed]

F. Zhang, Q. Guo, Y. Zhang, Y. Yao, P. Zhou, D. Zhu, and S. Pan, “Photonics-based real-time and high resolution ISAR imaging of non-cooperative target,” Chin. Opt. Lett. 15(11), 112801 (2017).
[Crossref]

2016 (2)

X. Ye, F. Zhang, and S. Pan, “Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements,” Opt. Lett. 41(17), 3956–3959 (2016).
[Crossref] [PubMed]

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

2015 (2)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

X. Ye, F. Zhang, and S. Pan, “Optical true time delay unit for multi-beamforming,” Opt. Express 23(8), 10002–10008 (2015).
[Crossref] [PubMed]

2014 (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

2010 (2)

2009 (1)

2007 (2)

S. Yin, J. Kim, F. Wu, P. Ruffin, and C. Luo, “Ultra-fast speed, low grating lobe optical beam steering using unequally spaced phased array technique,” Opt. Commun. 270(1), 41–46 (2007).
[Crossref]

C. Jose and N. Dovak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2002 (1)

1996 (1)

R. Racine, “The telescope point spread function,” Publ. Astron. Soc. Pac. 108(726), 699–705 (1996).
[Crossref]

Berger, P.

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Berthelemot, C.

Bin, C.

Bogoni, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Bourderionnet, J.

Burla, M.

Capmany, J.

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Chen, J.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Chin, S.

Cui, Y.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Dolfi, D.

Dovak, N.

C. Jose and N. Dovak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Frigyes, I.

Fromenteze, T.

Gao, B.

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Guo, Q.

Q. Guo, F. Zhang, P. Zhou, and S. Pan, “Dual-band LFM signal generation by frequency quadrupling and polarization multiplexing,” IEEE Photonics Technol. Lett. 29(16), 1320–1323 (2017).
[Crossref]

F. Zhang, Q. Guo, and S. Pan, “Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing,” Sci. Rep. 7(1), 13848 (2017).
[Crossref] [PubMed]

F. Zhang, Q. Guo, Z. Wang, P. Zhou, G. Zhang, J. Sun, and S. Pan, “Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt. Express 25(14), 16274–16281 (2017).
[Crossref] [PubMed]

F. Zhang, Q. Guo, Y. Zhang, Y. Yao, P. Zhou, D. Zhu, and S. Pan, “Photonics-based real-time and high resolution ISAR imaging of non-cooperative target,” Chin. Opt. Lett. 15(11), 112801 (2017).
[Crossref]

Gyukics, M.

Habermayer, I.

Heideman, R. G.

Hoekman, M.

Jakab, L.

Jose, C.

C. Jose and N. Dovak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Kim, J.

S. Yin, J. Kim, F. Wu, P. Ruffin, and C. Luo, “Ultra-fast speed, low grating lobe optical beam steering using unequally spaced phased array technique,” Opt. Commun. 270(1), 41–46 (2007).
[Crossref]

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Leinse, A.

Li, S.

Long, X.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Luo, C.

S. Yin, J. Kim, F. Wu, P. Ruffin, and C. Luo, “Ultra-fast speed, low grating lobe optical beam steering using unequally spaced phased array technique,” Opt. Commun. 270(1), 41–46 (2007).
[Crossref]

Maak, P.

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Marpaung, D. A.

Meijerink, A.

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Pan, S.

X. Ye, F. Zhang, Y. Yang, and S. Pan, “Photonics-based radar with balanced I/Q de-chirping for interference-suppressed high-resolution detection and imaging,” Photon. Res. 7(3), 265–272 (2019).
[Crossref]

F. Zhang, B. Gao, and S. Pan, “Photonics-based MIMO radar with high-resolution and fast detection capability,” Opt. Express 26(13), 17529–17540 (2018).
[Crossref] [PubMed]

F. Zhang, D. Zhang, and S. Pan, “Fast and wide-range optical beam steering with ultralow side lobes by applying an optimized multi-circular optical phased array,” Appl. Opt. 57(18), 4977–4984 (2018).
[Crossref] [PubMed]

F. Zhang, Q. Guo, Z. Wang, P. Zhou, G. Zhang, J. Sun, and S. Pan, “Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt. Express 25(14), 16274–16281 (2017).
[Crossref] [PubMed]

F. Zhang, Q. Guo, Y. Zhang, Y. Yao, P. Zhou, D. Zhu, and S. Pan, “Photonics-based real-time and high resolution ISAR imaging of non-cooperative target,” Chin. Opt. Lett. 15(11), 112801 (2017).
[Crossref]

F. Zhang, Q. Guo, and S. Pan, “Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing,” Sci. Rep. 7(1), 13848 (2017).
[Crossref] [PubMed]

Q. Guo, F. Zhang, P. Zhou, and S. Pan, “Dual-band LFM signal generation by frequency quadrupling and polarization multiplexing,” IEEE Photonics Technol. Lett. 29(16), 1320–1323 (2017).
[Crossref]

X. Ye, F. Zhang, and S. Pan, “Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements,” Opt. Lett. 41(17), 3956–3959 (2016).
[Crossref] [PubMed]

X. Ye, F. Zhang, and S. Pan, “Optical true time delay unit for multi-beamforming,” Opt. Express 23(8), 10002–10008 (2015).
[Crossref] [PubMed]

Peng, S.

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Racine, R.

R. Racine, “The telescope point spread function,” Publ. Astron. Soc. Pac. 108(726), 699–705 (1996).
[Crossref]

Richter, P.

Roeloffzen, C. G.

Ruffin, P.

S. Yin, J. Kim, F. Wu, P. Ruffin, and C. Luo, “Ultra-fast speed, low grating lobe optical beam steering using unequally spaced phased array technique,” Opt. Commun. 270(1), 41–46 (2007).
[Crossref]

Sales, S.

Sancho, J.

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Sun, J.

Tegegne, Z.

Thévenaz, L.

van Etten, W.

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Wang, Z.

Wu, D.

Wu, F.

S. Yin, J. Kim, F. Wu, P. Ruffin, and C. Luo, “Ultra-fast speed, low grating lobe optical beam steering using unequally spaced phased array technique,” Opt. Commun. 270(1), 41–46 (2007).
[Crossref]

Xiao, X.

Xue, X.

Yang, Y.

Yao, J.

Yao, Y.

Ye, X.

Yin, S.

S. Yin, J. Kim, F. Wu, P. Ruffin, and C. Luo, “Ultra-fast speed, low grating lobe optical beam steering using unequally spaced phased array technique,” Opt. Commun. 270(1), 41–46 (2007).
[Crossref]

Zhang, D.

Zhang, F.

X. Ye, F. Zhang, Y. Yang, and S. Pan, “Photonics-based radar with balanced I/Q de-chirping for interference-suppressed high-resolution detection and imaging,” Photon. Res. 7(3), 265–272 (2019).
[Crossref]

F. Zhang, B. Gao, and S. Pan, “Photonics-based MIMO radar with high-resolution and fast detection capability,” Opt. Express 26(13), 17529–17540 (2018).
[Crossref] [PubMed]

F. Zhang, D. Zhang, and S. Pan, “Fast and wide-range optical beam steering with ultralow side lobes by applying an optimized multi-circular optical phased array,” Appl. Opt. 57(18), 4977–4984 (2018).
[Crossref] [PubMed]

F. Zhang, Q. Guo, Z. Wang, P. Zhou, G. Zhang, J. Sun, and S. Pan, “Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt. Express 25(14), 16274–16281 (2017).
[Crossref] [PubMed]

F. Zhang, Q. Guo, Y. Zhang, Y. Yao, P. Zhou, D. Zhu, and S. Pan, “Photonics-based real-time and high resolution ISAR imaging of non-cooperative target,” Chin. Opt. Lett. 15(11), 112801 (2017).
[Crossref]

Q. Guo, F. Zhang, P. Zhou, and S. Pan, “Dual-band LFM signal generation by frequency quadrupling and polarization multiplexing,” IEEE Photonics Technol. Lett. 29(16), 1320–1323 (2017).
[Crossref]

F. Zhang, Q. Guo, and S. Pan, “Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing,” Sci. Rep. 7(1), 13848 (2017).
[Crossref] [PubMed]

X. Ye, F. Zhang, and S. Pan, “Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements,” Opt. Lett. 41(17), 3956–3959 (2016).
[Crossref] [PubMed]

X. Ye, F. Zhang, and S. Pan, “Optical true time delay unit for multi-beamforming,” Opt. Express 23(8), 10002–10008 (2015).
[Crossref] [PubMed]

Zhang, G.

Zhang, H.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Zhang, S.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Zhang, Y.

Zheng, X.

Zhou, B.

Zhou, P.

Zhu, D.

Zhuang, L.

Zou, W.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

Chin. Opt. Lett. (1)

IEEE Microw. Mag. (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Q. Guo, F. Zhang, P. Zhou, and S. Pan, “Dual-band LFM signal generation by frequency quadrupling and polarization multiplexing,” IEEE Photonics Technol. Lett. 29(16), 1320–1323 (2017).
[Crossref]

J. Lightwave Technol. (4)

Nat. Photonics (1)

C. Jose and N. Dovak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Nature (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

S. Yin, J. Kim, F. Wu, P. Ruffin, and C. Luo, “Ultra-fast speed, low grating lobe optical beam steering using unequally spaced phased array technique,” Opt. Commun. 270(1), 41–46 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Photon. Res. (1)

Publ. Astron. Soc. Pac. (1)

R. Racine, “The telescope point spread function,” Publ. Astron. Soc. Pac. 108(726), 699–705 (1996).
[Crossref]

Sci. Rep. (2)

F. Zhang, Q. Guo, and S. Pan, “Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing,” Sci. Rep. 7(1), 13848 (2017).
[Crossref] [PubMed]

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Other (5)

X. Xiao, S. Li, B. Chen, X. Yang, D. Wu, X. Xue, X. Zheng, and B. Zhou, “A microwave photonics- based inverse synthetic aperture radar system,” in 2017 CLEO: Science and Innovations, paper. JW2A.144.
[Crossref]

S. Stanko, D. Notel, A. Wahlen, J. Huck, F. Kloppel, R. Sommer, and M. Hagelen, “Active and passive mm-wave imaging for concealed weapon detection and surveillance,” in 2008 33rd International Conference (IEEE IRMMW-THz, 2008).
[Crossref]

J. Dickmann, N. Appenrodt, H. Bloecher, C. Brenk, T. Hackbarth, M. Hahn, J. Klappstein, M. Muntzinger, and A. Sailer, “Radar contribution to highly automated driving,” in 2014 44th European Microwave Conference (EuMC, 2014).

Y. Yao, F. Zhang, Y. Zhang, X. Ye, D. Zhu, and S. Pan, “Demonstration of ultra-high-resolution photonics-based Ka-band inverse synthetic aperture radar imaging,” in 2018 Optical Fiber Communication Conference (OFC2018), paper. Th3G.5.
[Crossref]

C. Balanis, Antenna Theory: Analysis and Design (John Wiley & Sons Inc., 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Setup of the photonics-based phased array radar. LD: laser diode; OC: optical coupler; DPMZM: dual-parallel Mach-Zehnder modulator; EDFA: erbium-doped fiber amplifier; PD: photodetector; EA: electrical amplifier; PA: power amplifier; LNA: low noise amplifier; MZM: Mach-Zehnder modulator; LPF: electrical low-pass filter; ADC: analog-to-digital converter.
Fig. 2
Fig. 2 (a) Optical spectra of the frequency quadrupling modulated signal; (b) spectrum of the generated LFM signal in 22-26 GHz (RBW = 300 kHz, inset: waveform of the LFM signal).
Fig. 3
Fig. 3 Photograph of the antennas and target in the experiment.
Fig. 4
Fig. 4 The sampled waveform of (a) Rx1, (b) Rx2, (c) Rx3 and (d) Rx4; and the 1D range profiles after digital TTD compensation of (e) Rx1, (f) Rx2, (g) Rx3 and (h) Rx4.
Fig. 5
Fig. 5 (a) Imaging result of the single metallic plane, (b) profiles of the PSF along the range direction, (c) profiles of the PSF along the azimuth direction.
Fig. 6
Fig. 6 (a), (b) and (c) Photographs of the four metallic planes placed in different positions, and the corresponding imaging results.
Fig. 7
Fig. 7 Imaging results by (a) a 4-element phased array radar, (b) a 2-element phased array radar.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

R i ( r ) = { F [ S i ( t ) ] } f = 2 k r / c
τ i = Δ f i / k
R i ' ( r ) = { F [ S i ( t ) ] e j 2 π f τ i } f = 2 k r / c
R ( r ) = [ R 1 ' ( r ) R 2 ' ( r ) ... R N ' ( r ) ]
Φ ( θ ) = [ 1 e 2 π f c d sin θ / c ... e 2 π f c ( N 1 ) d sin θ / c ]
I ( r , θ ) = R ( r ) Φ T ( θ )
L R E S = c 2 B
θ R E S 1 cos θ s 0.886 c N d f c

Metrics