Abstract

The use of silicone optical elements is demonstrated for a concentrated photovoltaic system. These components show over 96% transmission through most of the solar spectrum and excellent temperature stability. Unique moldability enables the use of complex freeform designs. A light, compact, and cost-effective concentrated photovoltaic system based on silicone optics is proposed. In this system, air-plasma treatment is utilized to overcome the mechanical properties of silicone and difficulties with coating to reduce Fresnel loss. Lens arrays and waveguides are fabricated by injection molding following freeform optical design by LightTools. First-order characterizations are also performed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Planar micro-optic solar concentrator

Jason H. Karp, Eric J. Tremblay, and Joseph E. Ford
Opt. Express 18(2) 1122-1133 (2010)

Self-tracking solar concentrator with an acceptance angle of 32°

Volker Zagolla, Didier Dominé, Eric Tremblay, and Christophe Moser
Opt. Express 22(S7) A1880-A1894 (2014)

Design and modeling of a cost-effective achromatic Fresnel lens for concentrating photovoltaics

Guido Vallerotto, Marta Victoria, Stephen Askins, Rebeca Herrero, César Domínguez, Ignacio Antón, and Gabriel Sala
Opt. Express 24(18) A1245-A1256 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multi junction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
    [Crossref]
  2. K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Sol. Energy 80(12), 1580–1587 (2006).
    [Crossref]
  3. L. R. Diaz, B. Cocilovo, A. Miles, W. Pan, P. A. Blanche, and R. A. Norwood, “Optical and mechanical tolerances in hybrid concentrated thermal-PV solar trough,” Opt. Express 26(10), A602–A608 (2018).
    [Crossref] [PubMed]
  4. J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18(2), 1122–1133 (2010).
    [Crossref] [PubMed]
  5. K. Miyaki, Y. Guo, T. Shimosaka, T. Nakagama, H. Nakajima, and K. Uchiyama, “fabrication of an integrated PDMS microchip incorporating an LED-induced fluorescence device,” Anal. Bioanal. Chem. 382(3), 810–816 (2005).
    [Crossref] [PubMed]
  6. R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87(5–8), 963–967 (2010).
    [Crossref]
  7. K. Y. Kwon, A. Khomenko, H. Mahmoodul, and L. Wen, “Integrated slanted microneedle-LED array for optogenetics,” in 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, 2013), pp. 249–252.
  8. E. Vanlathem, A. W. Norris, M. Bahadur, J. DeGroot, and M. Yoshitake, “Novel silicone materials for LED packaging and optoelectronics devices,” Proc. SPIE 6192, 619202 (2006).
    [Crossref]
  9. MS-1001 (Dow Corning) datasheet, https://consumer.dow.com/content/dam/dcc/documents/en-us/productdatasheet/11/11-34/11-3438-01-dowsil-ms-1001-moldable-silicone.pdf?iframe=true .
  10. P. E. Keller and R. Kouzes, “Water vapor permeation in plastics,” (Homeland Security, 2017), https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-26070.pdf .
    [Crossref]
  11. K. Kwapiszewska, K. Żukowski, R. Kwapiszewski, and Z. Brzózka, “Double casting prototyping with a thermal aging step for fabrication of 3D microstructures in poly(dimethylsiloxane),” AIMS Biophys. 3(4), 553–562 (2016).
    [Crossref]
  12. Lighttools software from Synopsys, https://www.protolabs.com/services/injection-molding/ .
  13. G. Kweon and C. Kim, “Aspherical lens design by using a numerical analysis,” J. Korean Phys. Soc. 51(1), 93–103 (2007).
    [Crossref]
  14. Protolabs, Inc., https://www.protolabs.com/services/injection-molding/ .
  15. S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
    [Crossref]

2018 (1)

2016 (1)

K. Kwapiszewska, K. Żukowski, R. Kwapiszewski, and Z. Brzózka, “Double casting prototyping with a thermal aging step for fabrication of 3D microstructures in poly(dimethylsiloxane),” AIMS Biophys. 3(4), 553–562 (2016).
[Crossref]

2010 (2)

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87(5–8), 963–967 (2010).
[Crossref]

J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18(2), 1122–1133 (2010).
[Crossref] [PubMed]

2007 (2)

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multi junction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[Crossref]

G. Kweon and C. Kim, “Aspherical lens design by using a numerical analysis,” J. Korean Phys. Soc. 51(1), 93–103 (2007).
[Crossref]

2006 (2)

E. Vanlathem, A. W. Norris, M. Bahadur, J. DeGroot, and M. Yoshitake, “Novel silicone materials for LED packaging and optoelectronics devices,” Proc. SPIE 6192, 619202 (2006).
[Crossref]

K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Sol. Energy 80(12), 1580–1587 (2006).
[Crossref]

2005 (2)

K. Miyaki, Y. Guo, T. Shimosaka, T. Nakagama, H. Nakajima, and K. Uchiyama, “fabrication of an integrated PDMS microchip incorporating an LED-induced fluorescence device,” Anal. Bioanal. Chem. 382(3), 810–816 (2005).
[Crossref] [PubMed]

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
[Crossref]

Bahadur, M.

E. Vanlathem, A. W. Norris, M. Bahadur, J. DeGroot, and M. Yoshitake, “Novel silicone materials for LED packaging and optoelectronics devices,” Proc. SPIE 6192, 619202 (2006).
[Crossref]

Berg, J. M.

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
[Crossref]

Bhattacharya, S.

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
[Crossref]

Blanche, P. A.

Brzózka, Z.

K. Kwapiszewska, K. Żukowski, R. Kwapiszewski, and Z. Brzózka, “Double casting prototyping with a thermal aging step for fabrication of 3D microstructures in poly(dimethylsiloxane),” AIMS Biophys. 3(4), 553–562 (2016).
[Crossref]

Cocilovo, B.

Datta, A.

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
[Crossref]

DeGroot, J.

E. Vanlathem, A. W. Norris, M. Bahadur, J. DeGroot, and M. Yoshitake, “Novel silicone materials for LED packaging and optoelectronics devices,” Proc. SPIE 6192, 619202 (2006).
[Crossref]

Diaz, L. R.

Edmondson, K. M.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multi junction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[Crossref]

Fetzer, C. M.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multi junction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[Crossref]

Ford, J. E.

Gangopadhyay, S.

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
[Crossref]

Guo, Y.

K. Miyaki, Y. Guo, T. Shimosaka, T. Nakagama, H. Nakajima, and K. Uchiyama, “fabrication of an integrated PDMS microchip incorporating an LED-induced fluorescence device,” Anal. Bioanal. Chem. 382(3), 810–816 (2005).
[Crossref] [PubMed]

Hornung, M.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87(5–8), 963–967 (2010).
[Crossref]

Ji, R.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87(5–8), 963–967 (2010).
[Crossref]

Karam, N. H.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multi junction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[Crossref]

Karp, J. H.

Keller, P. E.

P. E. Keller and R. Kouzes, “Water vapor permeation in plastics,” (Homeland Security, 2017), https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-26070.pdf .
[Crossref]

Khomenko, A.

K. Y. Kwon, A. Khomenko, H. Mahmoodul, and L. Wen, “Integrated slanted microneedle-LED array for optogenetics,” in 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, 2013), pp. 249–252.

Kim, C.

G. Kweon and C. Kim, “Aspherical lens design by using a numerical analysis,” J. Korean Phys. Soc. 51(1), 93–103 (2007).
[Crossref]

Kim, J.

K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Sol. Energy 80(12), 1580–1587 (2006).
[Crossref]

King, R. R.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multi junction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[Crossref]

Kinsey, G. S.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multi junction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[Crossref]

Kouzes, R.

P. E. Keller and R. Kouzes, “Water vapor permeation in plastics,” (Homeland Security, 2017), https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-26070.pdf .
[Crossref]

Kwapiszewska, K.

K. Kwapiszewska, K. Żukowski, R. Kwapiszewski, and Z. Brzózka, “Double casting prototyping with a thermal aging step for fabrication of 3D microstructures in poly(dimethylsiloxane),” AIMS Biophys. 3(4), 553–562 (2016).
[Crossref]

Kwapiszewski, R.

K. Kwapiszewska, K. Żukowski, R. Kwapiszewski, and Z. Brzózka, “Double casting prototyping with a thermal aging step for fabrication of 3D microstructures in poly(dimethylsiloxane),” AIMS Biophys. 3(4), 553–562 (2016).
[Crossref]

Kweon, G.

G. Kweon and C. Kim, “Aspherical lens design by using a numerical analysis,” J. Korean Phys. Soc. 51(1), 93–103 (2007).
[Crossref]

Kwon, K. Y.

K. Y. Kwon, A. Khomenko, H. Mahmoodul, and L. Wen, “Integrated slanted microneedle-LED array for optogenetics,” in 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, 2013), pp. 249–252.

Law, D. C.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multi junction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[Crossref]

Mahmoodul, H.

K. Y. Kwon, A. Khomenko, H. Mahmoodul, and L. Wen, “Integrated slanted microneedle-LED array for optogenetics,” in 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, 2013), pp. 249–252.

Miles, A.

Miyaki, K.

K. Miyaki, Y. Guo, T. Shimosaka, T. Nakagama, H. Nakajima, and K. Uchiyama, “fabrication of an integrated PDMS microchip incorporating an LED-induced fluorescence device,” Anal. Bioanal. Chem. 382(3), 810–816 (2005).
[Crossref] [PubMed]

Moeller, M.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87(5–8), 963–967 (2010).
[Crossref]

Moormann, C.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87(5–8), 963–967 (2010).
[Crossref]

Nakagama, T.

K. Miyaki, Y. Guo, T. Shimosaka, T. Nakagama, H. Nakajima, and K. Uchiyama, “fabrication of an integrated PDMS microchip incorporating an LED-induced fluorescence device,” Anal. Bioanal. Chem. 382(3), 810–816 (2005).
[Crossref] [PubMed]

Nakajima, H.

K. Miyaki, Y. Guo, T. Shimosaka, T. Nakagama, H. Nakajima, and K. Uchiyama, “fabrication of an integrated PDMS microchip incorporating an LED-induced fluorescence device,” Anal. Bioanal. Chem. 382(3), 810–816 (2005).
[Crossref] [PubMed]

Norris, A. W.

E. Vanlathem, A. W. Norris, M. Bahadur, J. DeGroot, and M. Yoshitake, “Novel silicone materials for LED packaging and optoelectronics devices,” Proc. SPIE 6192, 619202 (2006).
[Crossref]

Norwood, R. A.

Pan, W.

Park, K. M.

K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Sol. Energy 80(12), 1580–1587 (2006).
[Crossref]

Plachetka, U.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87(5–8), 963–967 (2010).
[Crossref]

Rhee, J. G.

K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Sol. Energy 80(12), 1580–1587 (2006).
[Crossref]

Ryu, K.

K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Sol. Energy 80(12), 1580–1587 (2006).
[Crossref]

Sherif, R. A.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multi junction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[Crossref]

Shimosaka, T.

K. Miyaki, Y. Guo, T. Shimosaka, T. Nakagama, H. Nakajima, and K. Uchiyama, “fabrication of an integrated PDMS microchip incorporating an LED-induced fluorescence device,” Anal. Bioanal. Chem. 382(3), 810–816 (2005).
[Crossref] [PubMed]

Tremblay, E. J.

Uchiyama, K.

K. Miyaki, Y. Guo, T. Shimosaka, T. Nakagama, H. Nakajima, and K. Uchiyama, “fabrication of an integrated PDMS microchip incorporating an LED-induced fluorescence device,” Anal. Bioanal. Chem. 382(3), 810–816 (2005).
[Crossref] [PubMed]

van de Laar, R.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87(5–8), 963–967 (2010).
[Crossref]

van Eekelen, J.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87(5–8), 963–967 (2010).
[Crossref]

Vanlathem, E.

E. Vanlathem, A. W. Norris, M. Bahadur, J. DeGroot, and M. Yoshitake, “Novel silicone materials for LED packaging and optoelectronics devices,” Proc. SPIE 6192, 619202 (2006).
[Crossref]

Verschuuren, M. A.

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87(5–8), 963–967 (2010).
[Crossref]

Wen, L.

K. Y. Kwon, A. Khomenko, H. Mahmoodul, and L. Wen, “Integrated slanted microneedle-LED array for optogenetics,” in 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, 2013), pp. 249–252.

Yoon, H.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multi junction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[Crossref]

Yoshitake, M.

E. Vanlathem, A. W. Norris, M. Bahadur, J. DeGroot, and M. Yoshitake, “Novel silicone materials for LED packaging and optoelectronics devices,” Proc. SPIE 6192, 619202 (2006).
[Crossref]

Zukowski, K.

K. Kwapiszewska, K. Żukowski, R. Kwapiszewski, and Z. Brzózka, “Double casting prototyping with a thermal aging step for fabrication of 3D microstructures in poly(dimethylsiloxane),” AIMS Biophys. 3(4), 553–562 (2016).
[Crossref]

AIMS Biophys. (1)

K. Kwapiszewska, K. Żukowski, R. Kwapiszewski, and Z. Brzózka, “Double casting prototyping with a thermal aging step for fabrication of 3D microstructures in poly(dimethylsiloxane),” AIMS Biophys. 3(4), 553–562 (2016).
[Crossref]

Anal. Bioanal. Chem. (1)

K. Miyaki, Y. Guo, T. Shimosaka, T. Nakagama, H. Nakajima, and K. Uchiyama, “fabrication of an integrated PDMS microchip incorporating an LED-induced fluorescence device,” Anal. Bioanal. Chem. 382(3), 810–816 (2005).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multi junction solar cells,” Appl. Phys. Lett. 90(18), 183516 (2007).
[Crossref]

J. Korean Phys. Soc. (1)

G. Kweon and C. Kim, “Aspherical lens design by using a numerical analysis,” J. Korean Phys. Soc. 51(1), 93–103 (2007).
[Crossref]

J. Microelectromech. Syst. (1)

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
[Crossref]

Microelectron. Eng. (1)

R. Ji, M. Hornung, M. A. Verschuuren, R. van de Laar, J. van Eekelen, U. Plachetka, M. Moeller, and C. Moormann, “UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing,” Microelectron. Eng. 87(5–8), 963–967 (2010).
[Crossref]

Opt. Express (2)

Proc. SPIE (1)

E. Vanlathem, A. W. Norris, M. Bahadur, J. DeGroot, and M. Yoshitake, “Novel silicone materials for LED packaging and optoelectronics devices,” Proc. SPIE 6192, 619202 (2006).
[Crossref]

Sol. Energy (1)

K. Ryu, J. G. Rhee, K. M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Sol. Energy 80(12), 1580–1587 (2006).
[Crossref]

Other (5)

MS-1001 (Dow Corning) datasheet, https://consumer.dow.com/content/dam/dcc/documents/en-us/productdatasheet/11/11-34/11-3438-01-dowsil-ms-1001-moldable-silicone.pdf?iframe=true .

P. E. Keller and R. Kouzes, “Water vapor permeation in plastics,” (Homeland Security, 2017), https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-26070.pdf .
[Crossref]

K. Y. Kwon, A. Khomenko, H. Mahmoodul, and L. Wen, “Integrated slanted microneedle-LED array for optogenetics,” in 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, 2013), pp. 249–252.

Protolabs, Inc., https://www.protolabs.com/services/injection-molding/ .

Lighttools software from Synopsys, https://www.protolabs.com/services/injection-molding/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Lens-waveguide-CPV design, a 3-layer solar panel based on moldable silicone freeform optics.
Fig. 2
Fig. 2 Transmission spectrum of MS-1001: measured transmittance with UV-VIS spectrophotometer from 350 to 1400 nm with various thickness (upper) and normalized transmittance combined with AM 1.5 solar spectrum (lower).
Fig. 3
Fig. 3 Refractive index of MS-1001 for several samples with different thicknesses.
Fig. 4
Fig. 4 (a) Upper: PMMA master of acylindrical lenses. Lower: MS-1001 replica. (b) optical funnel.
Fig. 5
Fig. 5 MS-1002 acylindrical lens array: (left) structure without support glass and (right) structure with backing glass making use of the plasma treatment technique.
Fig. 6
Fig. 6 (a) Horn-like waveguide. (b) Light output through the horn-like waveguide. (c) Wing-like waveguide. (d) Light output through the wing-like waveguide. (e) Systematic optical flux on CPV for MS-1002 wing waveguide. (f) Systematic optical flux on CPV for PMMA wing waveguide.

Tables (2)

Tables Icon

Table 1 Comparison of key factors among popular material candidates in solar applications.

Tables Icon

Table 2 Characterization of PMMA and MS-1001 lenses for temperature cycling test.

Metrics