Abstract

The Finnish Geospatial Research Institute hyperspectral LiDAR (FGI HSL) was one of the first multichannel terrestrial LiDARs capable of producing simultaneous 3-dimensional topography with spectral data. Supercontinuum-based HSL instruments developed so far have suffered from portability and sensitivity issues, severely restricting potential applications. Recently, we have implemented a new robust field design of the FGI HSL together with an improved pulse digitizing scheme. Small size and significantly improved measuring accuracy of this new system enable a range of novel applications that so far have been impractical for multichannel terrestrial LiDARs. Particularly, this new design has enabled us to perform measurements in underground mines and detect minute spectral differences in various rock types. In this paper, we present the design of our new LiDAR and preliminary algorithms together with a brief performance assessment of the device. In addition, we provide example measurements of typical rock samples found in a ferrochrome mine.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Full waveform hyperspectral LiDAR for terrestrial laser scanning

Teemu Hakala, Juha Suomalainen, Sanna Kaasalainen, and Yuwei Chen
Opt. Express 20(7) 7119-7127 (2012)

Deriving backscatter reflective factors from 32-channel full-waveform LiDAR data for the estimation of leaf biochemical contents

Wang Li, Zheng Niu, Gang Sun, Shuai Gao, and Mingquan Wu
Opt. Express 24(5) 4771-4785 (2016)

Generating pseudo large footprint waveforms from small footprint full-waveform airborne LiDAR data for the layered retrieval of LAI in orchards

Wang Li, Zheng Niu, Jing Li, Hanyue Chen, Shuai Gao, Mingquan Wu, and Dong Li
Opt. Express 24(9) 10142-10156 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Kalacska, M. Lalonde, and T. Moore, “Estimation of foliar chlorophyll and nitrogen content in an ombrotrophic bog from hyperspectral data: Scaling from leaf to image,” Remote Sens. Environ. 169, 270–279 (2015).
    [Crossref]
  2. J. A. R. Rall and R. G. Knox, “Spectral ratio biospheric lidar,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2004), 1951–1954.
  3. I. H. Woodhouse, C. Nichol, P. Sinclair, J. Jack, F. Morsdorf, T. J. Malthus, and G. Patenaude, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2011).
    [Crossref]
  4. E. S. Douglas, A. Strahler, J. Martel, T. Cook, C. Mendillo, R. Marshall, S. Chakrabarti, C. Schaaf, C. Woodcock, Z. Li, X. Yang, D. Culvenor, D. Jupp, G. Newnham, and J. Lovell, “Dwel: A dual-wavelength echidna lidar for ground-based forest scanning,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2012), 4998–5001.
  5. F. M. Danson, R. Gaulton, R. P. Armitage, M. Disney, O. Gunawan, P. Lewis, G. Pearson, and A. F. Ramirez, “Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure,” Agric. For. Meteorol. 198–199, 7–14 (2014).
    [Crossref]
  6. T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral lidar for terrestrial laser scanning,” Opt. Express 20, 7119–7127 (2012).
    [Crossref] [PubMed]
  7. W. Li, G. Sun, Z. Niu, S. Gao, and H. Qiao, “Estimation of leaf biochemical content using a novel hyperspectral full-waveform lidar system,” Remote Sens. Lett. 5, 693–702 (2014).
    [Crossref]
  8. L. Du, W. Gong, S. Shi, J. Yang, J. Sun, B. Zhu, and S. Song, “Estimation of rice leaf nitrogen contents based on hyperspectral lidar,” Int. J. Appl. Earth Obs. Geoinf. 44, 136–143 (2016).
    [Crossref]
  9. R. J. Murphy, S. T. Monteiro, and S. Schneider, “Evaluating classification techniques for mapping vertical geology using field-based hyperspectral sensors,” IEEE Trans. Geosci. Remote Sens. 50, 3066–3080 (2012).
    [Crossref]
  10. L. Schofield, F. Danson, N. Entwistle, R. Gaulton, and S. Hancock, “Radiometric calibration of a dual-wavelength terrestrial laser scanner using neural networks,” Remote Sens. Lett. 7, 299–308 (2016).
    [Crossref]
  11. M. Milenković, W. Wagner, R. Quast, M. Hollaus, C. Ressl, and N. Pfeifer, “Total canopy transmittance estimated from small-footprint, full-waveform airborne lidar,” ISPRS J. Photogramm. Remote Sens. 128, 61–72 (2017).
    [Crossref]
  12. A. Roncat, G. Bergauer, and N. Pfeifer, “B-spline deconvolution for differential target cross-section determination in full-waveform laser scanning data,” ISPRS J. Photogramm. Remote Sens. 66, 418–428 (2011).
    [Crossref]
  13. A. Ullrich and M. Pfennigbauer, “Echo digitization and waveform analysis in airborne and terrestrial laser scanning,” Photogramm. Week 11, 217–228 (2011).
  14. S. Ritt, R. Dinapoli, and U. Hartmann, “Application of the drs chip for fast waveform digitizing,” Nucl. Instrum. Meth. A. 623, 486–488 (2010).
    [Crossref]
  15. A. Przybylski, B. Thiel, J. Keller-Findeisen, B. Stock, and M. Bates, “Gpufit: An open-source toolkit for gpu-accelerated curve fitting,” Sci. Rep. 7, 15722 (2017).
    [Crossref] [PubMed]

2017 (2)

M. Milenković, W. Wagner, R. Quast, M. Hollaus, C. Ressl, and N. Pfeifer, “Total canopy transmittance estimated from small-footprint, full-waveform airborne lidar,” ISPRS J. Photogramm. Remote Sens. 128, 61–72 (2017).
[Crossref]

A. Przybylski, B. Thiel, J. Keller-Findeisen, B. Stock, and M. Bates, “Gpufit: An open-source toolkit for gpu-accelerated curve fitting,” Sci. Rep. 7, 15722 (2017).
[Crossref] [PubMed]

2016 (2)

L. Du, W. Gong, S. Shi, J. Yang, J. Sun, B. Zhu, and S. Song, “Estimation of rice leaf nitrogen contents based on hyperspectral lidar,” Int. J. Appl. Earth Obs. Geoinf. 44, 136–143 (2016).
[Crossref]

L. Schofield, F. Danson, N. Entwistle, R. Gaulton, and S. Hancock, “Radiometric calibration of a dual-wavelength terrestrial laser scanner using neural networks,” Remote Sens. Lett. 7, 299–308 (2016).
[Crossref]

2015 (1)

M. Kalacska, M. Lalonde, and T. Moore, “Estimation of foliar chlorophyll and nitrogen content in an ombrotrophic bog from hyperspectral data: Scaling from leaf to image,” Remote Sens. Environ. 169, 270–279 (2015).
[Crossref]

2014 (2)

F. M. Danson, R. Gaulton, R. P. Armitage, M. Disney, O. Gunawan, P. Lewis, G. Pearson, and A. F. Ramirez, “Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure,” Agric. For. Meteorol. 198–199, 7–14 (2014).
[Crossref]

W. Li, G. Sun, Z. Niu, S. Gao, and H. Qiao, “Estimation of leaf biochemical content using a novel hyperspectral full-waveform lidar system,” Remote Sens. Lett. 5, 693–702 (2014).
[Crossref]

2012 (2)

R. J. Murphy, S. T. Monteiro, and S. Schneider, “Evaluating classification techniques for mapping vertical geology using field-based hyperspectral sensors,” IEEE Trans. Geosci. Remote Sens. 50, 3066–3080 (2012).
[Crossref]

T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral lidar for terrestrial laser scanning,” Opt. Express 20, 7119–7127 (2012).
[Crossref] [PubMed]

2011 (3)

I. H. Woodhouse, C. Nichol, P. Sinclair, J. Jack, F. Morsdorf, T. J. Malthus, and G. Patenaude, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2011).
[Crossref]

A. Roncat, G. Bergauer, and N. Pfeifer, “B-spline deconvolution for differential target cross-section determination in full-waveform laser scanning data,” ISPRS J. Photogramm. Remote Sens. 66, 418–428 (2011).
[Crossref]

A. Ullrich and M. Pfennigbauer, “Echo digitization and waveform analysis in airborne and terrestrial laser scanning,” Photogramm. Week 11, 217–228 (2011).

2010 (1)

S. Ritt, R. Dinapoli, and U. Hartmann, “Application of the drs chip for fast waveform digitizing,” Nucl. Instrum. Meth. A. 623, 486–488 (2010).
[Crossref]

Armitage, R. P.

F. M. Danson, R. Gaulton, R. P. Armitage, M. Disney, O. Gunawan, P. Lewis, G. Pearson, and A. F. Ramirez, “Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure,” Agric. For. Meteorol. 198–199, 7–14 (2014).
[Crossref]

Bates, M.

A. Przybylski, B. Thiel, J. Keller-Findeisen, B. Stock, and M. Bates, “Gpufit: An open-source toolkit for gpu-accelerated curve fitting,” Sci. Rep. 7, 15722 (2017).
[Crossref] [PubMed]

Bergauer, G.

A. Roncat, G. Bergauer, and N. Pfeifer, “B-spline deconvolution for differential target cross-section determination in full-waveform laser scanning data,” ISPRS J. Photogramm. Remote Sens. 66, 418–428 (2011).
[Crossref]

Chakrabarti, S.

E. S. Douglas, A. Strahler, J. Martel, T. Cook, C. Mendillo, R. Marshall, S. Chakrabarti, C. Schaaf, C. Woodcock, Z. Li, X. Yang, D. Culvenor, D. Jupp, G. Newnham, and J. Lovell, “Dwel: A dual-wavelength echidna lidar for ground-based forest scanning,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2012), 4998–5001.

Chen, Y.

Cook, T.

E. S. Douglas, A. Strahler, J. Martel, T. Cook, C. Mendillo, R. Marshall, S. Chakrabarti, C. Schaaf, C. Woodcock, Z. Li, X. Yang, D. Culvenor, D. Jupp, G. Newnham, and J. Lovell, “Dwel: A dual-wavelength echidna lidar for ground-based forest scanning,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2012), 4998–5001.

Culvenor, D.

E. S. Douglas, A. Strahler, J. Martel, T. Cook, C. Mendillo, R. Marshall, S. Chakrabarti, C. Schaaf, C. Woodcock, Z. Li, X. Yang, D. Culvenor, D. Jupp, G. Newnham, and J. Lovell, “Dwel: A dual-wavelength echidna lidar for ground-based forest scanning,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2012), 4998–5001.

Danson, F.

L. Schofield, F. Danson, N. Entwistle, R. Gaulton, and S. Hancock, “Radiometric calibration of a dual-wavelength terrestrial laser scanner using neural networks,” Remote Sens. Lett. 7, 299–308 (2016).
[Crossref]

Danson, F. M.

F. M. Danson, R. Gaulton, R. P. Armitage, M. Disney, O. Gunawan, P. Lewis, G. Pearson, and A. F. Ramirez, “Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure,” Agric. For. Meteorol. 198–199, 7–14 (2014).
[Crossref]

Dinapoli, R.

S. Ritt, R. Dinapoli, and U. Hartmann, “Application of the drs chip for fast waveform digitizing,” Nucl. Instrum. Meth. A. 623, 486–488 (2010).
[Crossref]

Disney, M.

F. M. Danson, R. Gaulton, R. P. Armitage, M. Disney, O. Gunawan, P. Lewis, G. Pearson, and A. F. Ramirez, “Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure,” Agric. For. Meteorol. 198–199, 7–14 (2014).
[Crossref]

Douglas, E. S.

E. S. Douglas, A. Strahler, J. Martel, T. Cook, C. Mendillo, R. Marshall, S. Chakrabarti, C. Schaaf, C. Woodcock, Z. Li, X. Yang, D. Culvenor, D. Jupp, G. Newnham, and J. Lovell, “Dwel: A dual-wavelength echidna lidar for ground-based forest scanning,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2012), 4998–5001.

Du, L.

L. Du, W. Gong, S. Shi, J. Yang, J. Sun, B. Zhu, and S. Song, “Estimation of rice leaf nitrogen contents based on hyperspectral lidar,” Int. J. Appl. Earth Obs. Geoinf. 44, 136–143 (2016).
[Crossref]

Entwistle, N.

L. Schofield, F. Danson, N. Entwistle, R. Gaulton, and S. Hancock, “Radiometric calibration of a dual-wavelength terrestrial laser scanner using neural networks,” Remote Sens. Lett. 7, 299–308 (2016).
[Crossref]

Gao, S.

W. Li, G. Sun, Z. Niu, S. Gao, and H. Qiao, “Estimation of leaf biochemical content using a novel hyperspectral full-waveform lidar system,” Remote Sens. Lett. 5, 693–702 (2014).
[Crossref]

Gaulton, R.

L. Schofield, F. Danson, N. Entwistle, R. Gaulton, and S. Hancock, “Radiometric calibration of a dual-wavelength terrestrial laser scanner using neural networks,” Remote Sens. Lett. 7, 299–308 (2016).
[Crossref]

F. M. Danson, R. Gaulton, R. P. Armitage, M. Disney, O. Gunawan, P. Lewis, G. Pearson, and A. F. Ramirez, “Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure,” Agric. For. Meteorol. 198–199, 7–14 (2014).
[Crossref]

Gong, W.

L. Du, W. Gong, S. Shi, J. Yang, J. Sun, B. Zhu, and S. Song, “Estimation of rice leaf nitrogen contents based on hyperspectral lidar,” Int. J. Appl. Earth Obs. Geoinf. 44, 136–143 (2016).
[Crossref]

Gunawan, O.

F. M. Danson, R. Gaulton, R. P. Armitage, M. Disney, O. Gunawan, P. Lewis, G. Pearson, and A. F. Ramirez, “Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure,” Agric. For. Meteorol. 198–199, 7–14 (2014).
[Crossref]

Hakala, T.

Hancock, S.

L. Schofield, F. Danson, N. Entwistle, R. Gaulton, and S. Hancock, “Radiometric calibration of a dual-wavelength terrestrial laser scanner using neural networks,” Remote Sens. Lett. 7, 299–308 (2016).
[Crossref]

Hartmann, U.

S. Ritt, R. Dinapoli, and U. Hartmann, “Application of the drs chip for fast waveform digitizing,” Nucl. Instrum. Meth. A. 623, 486–488 (2010).
[Crossref]

Hollaus, M.

M. Milenković, W. Wagner, R. Quast, M. Hollaus, C. Ressl, and N. Pfeifer, “Total canopy transmittance estimated from small-footprint, full-waveform airborne lidar,” ISPRS J. Photogramm. Remote Sens. 128, 61–72 (2017).
[Crossref]

Jack, J.

I. H. Woodhouse, C. Nichol, P. Sinclair, J. Jack, F. Morsdorf, T. J. Malthus, and G. Patenaude, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2011).
[Crossref]

Jupp, D.

E. S. Douglas, A. Strahler, J. Martel, T. Cook, C. Mendillo, R. Marshall, S. Chakrabarti, C. Schaaf, C. Woodcock, Z. Li, X. Yang, D. Culvenor, D. Jupp, G. Newnham, and J. Lovell, “Dwel: A dual-wavelength echidna lidar for ground-based forest scanning,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2012), 4998–5001.

Kaasalainen, S.

Kalacska, M.

M. Kalacska, M. Lalonde, and T. Moore, “Estimation of foliar chlorophyll and nitrogen content in an ombrotrophic bog from hyperspectral data: Scaling from leaf to image,” Remote Sens. Environ. 169, 270–279 (2015).
[Crossref]

Keller-Findeisen, J.

A. Przybylski, B. Thiel, J. Keller-Findeisen, B. Stock, and M. Bates, “Gpufit: An open-source toolkit for gpu-accelerated curve fitting,” Sci. Rep. 7, 15722 (2017).
[Crossref] [PubMed]

Knox, R. G.

J. A. R. Rall and R. G. Knox, “Spectral ratio biospheric lidar,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2004), 1951–1954.

Lalonde, M.

M. Kalacska, M. Lalonde, and T. Moore, “Estimation of foliar chlorophyll and nitrogen content in an ombrotrophic bog from hyperspectral data: Scaling from leaf to image,” Remote Sens. Environ. 169, 270–279 (2015).
[Crossref]

Lewis, P.

F. M. Danson, R. Gaulton, R. P. Armitage, M. Disney, O. Gunawan, P. Lewis, G. Pearson, and A. F. Ramirez, “Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure,” Agric. For. Meteorol. 198–199, 7–14 (2014).
[Crossref]

Li, W.

W. Li, G. Sun, Z. Niu, S. Gao, and H. Qiao, “Estimation of leaf biochemical content using a novel hyperspectral full-waveform lidar system,” Remote Sens. Lett. 5, 693–702 (2014).
[Crossref]

Li, Z.

E. S. Douglas, A. Strahler, J. Martel, T. Cook, C. Mendillo, R. Marshall, S. Chakrabarti, C. Schaaf, C. Woodcock, Z. Li, X. Yang, D. Culvenor, D. Jupp, G. Newnham, and J. Lovell, “Dwel: A dual-wavelength echidna lidar for ground-based forest scanning,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2012), 4998–5001.

Lovell, J.

E. S. Douglas, A. Strahler, J. Martel, T. Cook, C. Mendillo, R. Marshall, S. Chakrabarti, C. Schaaf, C. Woodcock, Z. Li, X. Yang, D. Culvenor, D. Jupp, G. Newnham, and J. Lovell, “Dwel: A dual-wavelength echidna lidar for ground-based forest scanning,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2012), 4998–5001.

Malthus, T. J.

I. H. Woodhouse, C. Nichol, P. Sinclair, J. Jack, F. Morsdorf, T. J. Malthus, and G. Patenaude, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2011).
[Crossref]

Marshall, R.

E. S. Douglas, A. Strahler, J. Martel, T. Cook, C. Mendillo, R. Marshall, S. Chakrabarti, C. Schaaf, C. Woodcock, Z. Li, X. Yang, D. Culvenor, D. Jupp, G. Newnham, and J. Lovell, “Dwel: A dual-wavelength echidna lidar for ground-based forest scanning,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2012), 4998–5001.

Martel, J.

E. S. Douglas, A. Strahler, J. Martel, T. Cook, C. Mendillo, R. Marshall, S. Chakrabarti, C. Schaaf, C. Woodcock, Z. Li, X. Yang, D. Culvenor, D. Jupp, G. Newnham, and J. Lovell, “Dwel: A dual-wavelength echidna lidar for ground-based forest scanning,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2012), 4998–5001.

Mendillo, C.

E. S. Douglas, A. Strahler, J. Martel, T. Cook, C. Mendillo, R. Marshall, S. Chakrabarti, C. Schaaf, C. Woodcock, Z. Li, X. Yang, D. Culvenor, D. Jupp, G. Newnham, and J. Lovell, “Dwel: A dual-wavelength echidna lidar for ground-based forest scanning,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2012), 4998–5001.

Milenkovic, M.

M. Milenković, W. Wagner, R. Quast, M. Hollaus, C. Ressl, and N. Pfeifer, “Total canopy transmittance estimated from small-footprint, full-waveform airborne lidar,” ISPRS J. Photogramm. Remote Sens. 128, 61–72 (2017).
[Crossref]

Monteiro, S. T.

R. J. Murphy, S. T. Monteiro, and S. Schneider, “Evaluating classification techniques for mapping vertical geology using field-based hyperspectral sensors,” IEEE Trans. Geosci. Remote Sens. 50, 3066–3080 (2012).
[Crossref]

Moore, T.

M. Kalacska, M. Lalonde, and T. Moore, “Estimation of foliar chlorophyll and nitrogen content in an ombrotrophic bog from hyperspectral data: Scaling from leaf to image,” Remote Sens. Environ. 169, 270–279 (2015).
[Crossref]

Morsdorf, F.

I. H. Woodhouse, C. Nichol, P. Sinclair, J. Jack, F. Morsdorf, T. J. Malthus, and G. Patenaude, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2011).
[Crossref]

Murphy, R. J.

R. J. Murphy, S. T. Monteiro, and S. Schneider, “Evaluating classification techniques for mapping vertical geology using field-based hyperspectral sensors,” IEEE Trans. Geosci. Remote Sens. 50, 3066–3080 (2012).
[Crossref]

Newnham, G.

E. S. Douglas, A. Strahler, J. Martel, T. Cook, C. Mendillo, R. Marshall, S. Chakrabarti, C. Schaaf, C. Woodcock, Z. Li, X. Yang, D. Culvenor, D. Jupp, G. Newnham, and J. Lovell, “Dwel: A dual-wavelength echidna lidar for ground-based forest scanning,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2012), 4998–5001.

Nichol, C.

I. H. Woodhouse, C. Nichol, P. Sinclair, J. Jack, F. Morsdorf, T. J. Malthus, and G. Patenaude, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2011).
[Crossref]

Niu, Z.

W. Li, G. Sun, Z. Niu, S. Gao, and H. Qiao, “Estimation of leaf biochemical content using a novel hyperspectral full-waveform lidar system,” Remote Sens. Lett. 5, 693–702 (2014).
[Crossref]

Patenaude, G.

I. H. Woodhouse, C. Nichol, P. Sinclair, J. Jack, F. Morsdorf, T. J. Malthus, and G. Patenaude, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2011).
[Crossref]

Pearson, G.

F. M. Danson, R. Gaulton, R. P. Armitage, M. Disney, O. Gunawan, P. Lewis, G. Pearson, and A. F. Ramirez, “Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure,” Agric. For. Meteorol. 198–199, 7–14 (2014).
[Crossref]

Pfeifer, N.

M. Milenković, W. Wagner, R. Quast, M. Hollaus, C. Ressl, and N. Pfeifer, “Total canopy transmittance estimated from small-footprint, full-waveform airborne lidar,” ISPRS J. Photogramm. Remote Sens. 128, 61–72 (2017).
[Crossref]

A. Roncat, G. Bergauer, and N. Pfeifer, “B-spline deconvolution for differential target cross-section determination in full-waveform laser scanning data,” ISPRS J. Photogramm. Remote Sens. 66, 418–428 (2011).
[Crossref]

Pfennigbauer, M.

A. Ullrich and M. Pfennigbauer, “Echo digitization and waveform analysis in airborne and terrestrial laser scanning,” Photogramm. Week 11, 217–228 (2011).

Przybylski, A.

A. Przybylski, B. Thiel, J. Keller-Findeisen, B. Stock, and M. Bates, “Gpufit: An open-source toolkit for gpu-accelerated curve fitting,” Sci. Rep. 7, 15722 (2017).
[Crossref] [PubMed]

Qiao, H.

W. Li, G. Sun, Z. Niu, S. Gao, and H. Qiao, “Estimation of leaf biochemical content using a novel hyperspectral full-waveform lidar system,” Remote Sens. Lett. 5, 693–702 (2014).
[Crossref]

Quast, R.

M. Milenković, W. Wagner, R. Quast, M. Hollaus, C. Ressl, and N. Pfeifer, “Total canopy transmittance estimated from small-footprint, full-waveform airborne lidar,” ISPRS J. Photogramm. Remote Sens. 128, 61–72 (2017).
[Crossref]

Rall, J. A. R.

J. A. R. Rall and R. G. Knox, “Spectral ratio biospheric lidar,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2004), 1951–1954.

Ramirez, A. F.

F. M. Danson, R. Gaulton, R. P. Armitage, M. Disney, O. Gunawan, P. Lewis, G. Pearson, and A. F. Ramirez, “Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure,” Agric. For. Meteorol. 198–199, 7–14 (2014).
[Crossref]

Ressl, C.

M. Milenković, W. Wagner, R. Quast, M. Hollaus, C. Ressl, and N. Pfeifer, “Total canopy transmittance estimated from small-footprint, full-waveform airborne lidar,” ISPRS J. Photogramm. Remote Sens. 128, 61–72 (2017).
[Crossref]

Ritt, S.

S. Ritt, R. Dinapoli, and U. Hartmann, “Application of the drs chip for fast waveform digitizing,” Nucl. Instrum. Meth. A. 623, 486–488 (2010).
[Crossref]

Roncat, A.

A. Roncat, G. Bergauer, and N. Pfeifer, “B-spline deconvolution for differential target cross-section determination in full-waveform laser scanning data,” ISPRS J. Photogramm. Remote Sens. 66, 418–428 (2011).
[Crossref]

Schaaf, C.

E. S. Douglas, A. Strahler, J. Martel, T. Cook, C. Mendillo, R. Marshall, S. Chakrabarti, C. Schaaf, C. Woodcock, Z. Li, X. Yang, D. Culvenor, D. Jupp, G. Newnham, and J. Lovell, “Dwel: A dual-wavelength echidna lidar for ground-based forest scanning,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2012), 4998–5001.

Schneider, S.

R. J. Murphy, S. T. Monteiro, and S. Schneider, “Evaluating classification techniques for mapping vertical geology using field-based hyperspectral sensors,” IEEE Trans. Geosci. Remote Sens. 50, 3066–3080 (2012).
[Crossref]

Schofield, L.

L. Schofield, F. Danson, N. Entwistle, R. Gaulton, and S. Hancock, “Radiometric calibration of a dual-wavelength terrestrial laser scanner using neural networks,” Remote Sens. Lett. 7, 299–308 (2016).
[Crossref]

Shi, S.

L. Du, W. Gong, S. Shi, J. Yang, J. Sun, B. Zhu, and S. Song, “Estimation of rice leaf nitrogen contents based on hyperspectral lidar,” Int. J. Appl. Earth Obs. Geoinf. 44, 136–143 (2016).
[Crossref]

Sinclair, P.

I. H. Woodhouse, C. Nichol, P. Sinclair, J. Jack, F. Morsdorf, T. J. Malthus, and G. Patenaude, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2011).
[Crossref]

Song, S.

L. Du, W. Gong, S. Shi, J. Yang, J. Sun, B. Zhu, and S. Song, “Estimation of rice leaf nitrogen contents based on hyperspectral lidar,” Int. J. Appl. Earth Obs. Geoinf. 44, 136–143 (2016).
[Crossref]

Stock, B.

A. Przybylski, B. Thiel, J. Keller-Findeisen, B. Stock, and M. Bates, “Gpufit: An open-source toolkit for gpu-accelerated curve fitting,” Sci. Rep. 7, 15722 (2017).
[Crossref] [PubMed]

Strahler, A.

E. S. Douglas, A. Strahler, J. Martel, T. Cook, C. Mendillo, R. Marshall, S. Chakrabarti, C. Schaaf, C. Woodcock, Z. Li, X. Yang, D. Culvenor, D. Jupp, G. Newnham, and J. Lovell, “Dwel: A dual-wavelength echidna lidar for ground-based forest scanning,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2012), 4998–5001.

Sun, G.

W. Li, G. Sun, Z. Niu, S. Gao, and H. Qiao, “Estimation of leaf biochemical content using a novel hyperspectral full-waveform lidar system,” Remote Sens. Lett. 5, 693–702 (2014).
[Crossref]

Sun, J.

L. Du, W. Gong, S. Shi, J. Yang, J. Sun, B. Zhu, and S. Song, “Estimation of rice leaf nitrogen contents based on hyperspectral lidar,” Int. J. Appl. Earth Obs. Geoinf. 44, 136–143 (2016).
[Crossref]

Suomalainen, J.

Thiel, B.

A. Przybylski, B. Thiel, J. Keller-Findeisen, B. Stock, and M. Bates, “Gpufit: An open-source toolkit for gpu-accelerated curve fitting,” Sci. Rep. 7, 15722 (2017).
[Crossref] [PubMed]

Ullrich, A.

A. Ullrich and M. Pfennigbauer, “Echo digitization and waveform analysis in airborne and terrestrial laser scanning,” Photogramm. Week 11, 217–228 (2011).

Wagner, W.

M. Milenković, W. Wagner, R. Quast, M. Hollaus, C. Ressl, and N. Pfeifer, “Total canopy transmittance estimated from small-footprint, full-waveform airborne lidar,” ISPRS J. Photogramm. Remote Sens. 128, 61–72 (2017).
[Crossref]

Woodcock, C.

E. S. Douglas, A. Strahler, J. Martel, T. Cook, C. Mendillo, R. Marshall, S. Chakrabarti, C. Schaaf, C. Woodcock, Z. Li, X. Yang, D. Culvenor, D. Jupp, G. Newnham, and J. Lovell, “Dwel: A dual-wavelength echidna lidar for ground-based forest scanning,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2012), 4998–5001.

Woodhouse, I. H.

I. H. Woodhouse, C. Nichol, P. Sinclair, J. Jack, F. Morsdorf, T. J. Malthus, and G. Patenaude, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2011).
[Crossref]

Yang, J.

L. Du, W. Gong, S. Shi, J. Yang, J. Sun, B. Zhu, and S. Song, “Estimation of rice leaf nitrogen contents based on hyperspectral lidar,” Int. J. Appl. Earth Obs. Geoinf. 44, 136–143 (2016).
[Crossref]

Yang, X.

E. S. Douglas, A. Strahler, J. Martel, T. Cook, C. Mendillo, R. Marshall, S. Chakrabarti, C. Schaaf, C. Woodcock, Z. Li, X. Yang, D. Culvenor, D. Jupp, G. Newnham, and J. Lovell, “Dwel: A dual-wavelength echidna lidar for ground-based forest scanning,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2012), 4998–5001.

Zhu, B.

L. Du, W. Gong, S. Shi, J. Yang, J. Sun, B. Zhu, and S. Song, “Estimation of rice leaf nitrogen contents based on hyperspectral lidar,” Int. J. Appl. Earth Obs. Geoinf. 44, 136–143 (2016).
[Crossref]

Agric. For. Meteorol. (1)

F. M. Danson, R. Gaulton, R. P. Armitage, M. Disney, O. Gunawan, P. Lewis, G. Pearson, and A. F. Ramirez, “Developing a dual-wavelength full-waveform terrestrial laser scanner to characterize forest canopy structure,” Agric. For. Meteorol. 198–199, 7–14 (2014).
[Crossref]

IEEE Geosci. Remote Sens. Lett. (1)

I. H. Woodhouse, C. Nichol, P. Sinclair, J. Jack, F. Morsdorf, T. J. Malthus, and G. Patenaude, “A multispectral canopy lidar demonstrator project,” IEEE Geosci. Remote Sens. Lett. 8, 839–843 (2011).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

R. J. Murphy, S. T. Monteiro, and S. Schneider, “Evaluating classification techniques for mapping vertical geology using field-based hyperspectral sensors,” IEEE Trans. Geosci. Remote Sens. 50, 3066–3080 (2012).
[Crossref]

Int. J. Appl. Earth Obs. Geoinf. (1)

L. Du, W. Gong, S. Shi, J. Yang, J. Sun, B. Zhu, and S. Song, “Estimation of rice leaf nitrogen contents based on hyperspectral lidar,” Int. J. Appl. Earth Obs. Geoinf. 44, 136–143 (2016).
[Crossref]

ISPRS J. Photogramm. Remote Sens. (2)

M. Milenković, W. Wagner, R. Quast, M. Hollaus, C. Ressl, and N. Pfeifer, “Total canopy transmittance estimated from small-footprint, full-waveform airborne lidar,” ISPRS J. Photogramm. Remote Sens. 128, 61–72 (2017).
[Crossref]

A. Roncat, G. Bergauer, and N. Pfeifer, “B-spline deconvolution for differential target cross-section determination in full-waveform laser scanning data,” ISPRS J. Photogramm. Remote Sens. 66, 418–428 (2011).
[Crossref]

Nucl. Instrum. Meth. A. (1)

S. Ritt, R. Dinapoli, and U. Hartmann, “Application of the drs chip for fast waveform digitizing,” Nucl. Instrum. Meth. A. 623, 486–488 (2010).
[Crossref]

Opt. Express (1)

Photogramm. Week (1)

A. Ullrich and M. Pfennigbauer, “Echo digitization and waveform analysis in airborne and terrestrial laser scanning,” Photogramm. Week 11, 217–228 (2011).

Remote Sens. Environ. (1)

M. Kalacska, M. Lalonde, and T. Moore, “Estimation of foliar chlorophyll and nitrogen content in an ombrotrophic bog from hyperspectral data: Scaling from leaf to image,” Remote Sens. Environ. 169, 270–279 (2015).
[Crossref]

Remote Sens. Lett. (2)

W. Li, G. Sun, Z. Niu, S. Gao, and H. Qiao, “Estimation of leaf biochemical content using a novel hyperspectral full-waveform lidar system,” Remote Sens. Lett. 5, 693–702 (2014).
[Crossref]

L. Schofield, F. Danson, N. Entwistle, R. Gaulton, and S. Hancock, “Radiometric calibration of a dual-wavelength terrestrial laser scanner using neural networks,” Remote Sens. Lett. 7, 299–308 (2016).
[Crossref]

Sci. Rep. (1)

A. Przybylski, B. Thiel, J. Keller-Findeisen, B. Stock, and M. Bates, “Gpufit: An open-source toolkit for gpu-accelerated curve fitting,” Sci. Rep. 7, 15722 (2017).
[Crossref] [PubMed]

Other (2)

J. A. R. Rall and R. G. Knox, “Spectral ratio biospheric lidar,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2004), 1951–1954.

E. S. Douglas, A. Strahler, J. Martel, T. Cook, C. Mendillo, R. Marshall, S. Chakrabarti, C. Schaaf, C. Woodcock, Z. Li, X. Yang, D. Culvenor, D. Jupp, G. Newnham, and J. Lovell, “Dwel: A dual-wavelength echidna lidar for ground-based forest scanning,” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2012), 4998–5001.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 New portable and improved version of FGI hyperspectral LiDAR. An enclosure housing all the electronics forms the base of the unit. On top of this base is attached a 2-axis pan-and-tilt-type gimbal, which performs the 2-dimensional scanning. Light transmitting and collection optics are fitted in a custom housing attached to this gimbal.
Fig. 2
Fig. 2 Optical components and topology of the instrument.
Fig. 3
Fig. 3 High level schematic of the instrument electronics and power supply.
Fig. 4
Fig. 4 An example waveform captured on a single channel. Peak on the left is the 10% trigger portion separated by the beamsampler while the peak on the right is the reflected echo from the target. The oscillation following these pulses is attributed to the suboptimal bandwidth of the sensor. Signal range extends from −50 to 950 mV.
Fig. 5
Fig. 5 Pulse intensities of each of the channels while scanning a Spectralon surface consisting of 12% and 25% Spectralon plates. Samples between 1258 and 1278 are from the 12%, and samples between 1280 and 1305 are from the 25% Spectralon, respectively. Presented values are raw values of the echo-to-trigger ratios, before calibration and without removing static biases. Channel at 473 nm shows slightly higher variations due to it being at edge of the sensor detection range.
Fig. 6
Fig. 6 Example of ToF distance estimation precision. On the left, a ToF for a scanning of rocks against a Spectralon surface is given. Highest peaks on this graph are the Spectralon surfaces. On the right side, a detailed view of the middlemost peak is given, depicting the millimeter level accuracy of the ToF estimation.
Fig. 7
Fig. 7 A point cloud of a sample rock is plotted with intensity values of one measurement channel. Picture of the rock is provided for reference. Z-coordinate indicates the distance from the instrument. The measurement distance in this case was roughly 4.65 m.
Fig. 8
Fig. 8 Intensity point cloud of a moist Serpentine rock surface scanned in an underground mine. A bright red target on the left figure is a 10 cm diameter 99% Spectralon disc, which was placed on the rocks for reference and calibration purposes. Compared to the Spectralon, the reflectance of the rock surface is very low. This represents typical intensity level for all the samples we have tested. The same point cloud is presented on the right side with the values scaled so that the details of the dark regions are more observable. The scanned rocks were moist and partially covered with dust. Measuring distance was roughly 3.4 m.
Fig. 9
Fig. 9 Intensities of two different rock samples as a function of three different measurement channels. Two different channel sets are given in order to show the distinctive clustering patterns of the samples.

Metrics